Identification of HNH endonuclease domain in the basic protein 2 subunit of the polymerase of human influenza viruses

Peramachi Palanivelu *
Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai - 625 021, India.

World Journal of Advanced Research and Reviews, 2022, 15(03), 425-442
Publication history: Received on 16 August 2022; revised on 21 September 2022; accepted on 23 September 2022
Article DOI: https://doi.org/10.30574/wjarr.2022.15.3.0944

Abstract

RNA polymerases of human influenza viruses A, B and C do not have a capping enzyme, as other RNA viruses, to cap their mRNAs for translation in the host cells. So, they employ a unique 'cap-snatching' mechanism, where the mRNA cap structures are snatched from the host cell mRNAs and used as a primer to initiate its own mRNA synthesis. One of the RNA polymerase subunits, the polymerase basic protein subunit 2 (PB2), is shown to involve in the 'cap-snatching' mechanism. The active sites for the 'cap-snatching' and endonuclease by the PB2 were analyzed by multiple sequence alignment (MSA) analysis and corroborated with the results available from biochemical, site-directed mutagenesis (SDM) and X-ray crystallographic techniques. It is found that the PB2 subunit in all three human influenza viruses habours both the cap-binding motif (CBM) and a HNH/N type endonuclease domain. The CBM is aromatic amino acid rich and the $\mathrm{HNH} / \mathrm{N}$ is a -DH- based endonuclease in influenza viruses A and C and a-DQ- based one in influenza virus B . The invariant H is proposed to act as a general base to initiate catalysis and the invariant first N is implicated in nucleotide binding. In addition, the nuclear localization signals were also identified in all three human influenza viruses. By sequence similarity, similar HNH/N domain are found in the RNA cleaving CRISPR-Cas13a/13b and CRISPR-Cas12a endoribonucleases. The identification of $\mathrm{HNH} / \mathrm{N}$ domain in all three human influenza viruses suggests that the PB2 subunit itself could cleave the cap structures from the host cell mRNAs, which are subsequently used as primers to initiate viral mRNA synthesis. These results will facilitate the optimization of endonuclease inhibitors as potential new anti-influenza drugs, and could also help in developing new drugs for flu treatments in the future.

Keywords: Human influenza viruses; RNA Polymerase basic protein subunit 2; HNH endonuclease; Cap-snatching; CRISPR-Cas13a endoribonuclease; CRISPR-Cas12a endoribonuclease.

1. Introduction

Influenza is an infectious disease caused by influenza viruses. Influenza viral infection is a highly contagious, airborne that generally causes acute respiratory illness resulting in variable degrees of systemic symptoms from mild fatigue to respiratory failure and death. Therefore, influenza viral infections are a major public health concern worldwide. The A and B viruses cause seasonal influenza every year, which affect approximately $5-10 \%$ of the adult and $20-30 \%$ of the pediatric population. A report by World Health Organization estimates that seasonal flu may result in 2,90,000-6,50,000 deaths every year due to respiratory diseases alone. (This estimate does not take into account of deaths from other diseases such as cardiovascular disease, which can be influenza-related). The first flu viral pandemic took place in 1918 and was referred to as "Spanish" flu. It was the deadliest, claiming an estimated ~ 50 million lives worldwide in less than a year [1]. The second flu epidemic was reported in 2019-2020. The Center for Disease Control and Prevention (CDC), USA, estimates, the 2019-2020 had caused 39 million to 56 million flu illnesses and 24,000 to 62,000 deaths and found it was mainly caused by the influenza A virus, H1N1. Only few other pandemics have caused such a devastating effect,

[^0]like the ones which were caused by the SARS-Coronaviruses (SARS-CoVs) including the current epidemic caused by SARS-CoV-2.

Influenza viruses belong to the family, Orthomyxoviridae. In this family, there are four genera which are named A, B, C and D. Influenza A, B and C viruses infect humans whereas D virus infects animals. Among them, infections by influenza A virus is most common and severe and causes the flu pandemics. Influenza A virus is an avian virus, which is capable of jumping species and infects both humans and other animals. Wild aquatic birds and other animal species like, pigs, ferrets, horses, seals, whales, minks, giant anteaters, cats and dogs are also found to be the reservoir for the influenza A virus. While influenza A virus shows animal to human transmissions, influenza B and C viruses show very limited host range and appear predominantly in humans [2]. Interestingly, influenza viruses, B and C, do not have animal reservoirs like influenza A virus [3]. Out of the three most widely known human influenza viruses, the influenza A and B viral infections peak in winter months, causing substantial morbidity and mortality in humans and a considerable financial burden worldwide, whereas the influenza C virus [4] cause sporadic outbreaks in humans causing only mild upper respiratory infections [5, 6]. Influenza D virus primarily affects cattle and is not known to infect or cause any major illness in humans [3].

1.1. Human Transmission

Influenza viral infections are mediated by viral surface glycoproteins. Types A and B have two surface glycoproteins, viz. haemaggluntinin (H) and neuraminidase (N). (H is a Type I integral membrane glycoprotein that binds to cellsurface receptors and facilitates fusion between the viral envelope and endosomal membrane, whereas N is a Type II integral membrane glycoprotein, which facilitates viral release from cells by removing sialic acid from sialyloligosaccharides on the cell and viral surfaces). The H of the influenza viruses is a trimer (similar to the spike proteins in SARS-CoVs) that recognizes and binds to the host cell-surface receptor, N -acetylneuraminic (sialic) acid. (Sialic acids are nine-carbon acidic monosaccharides commonly found at the termini of many glycoconjugates), which is followed by the release of the virions into the human cells by the sialidase activity of the N . On the other hand, the types C and D have only one surface glycoprotein, known as Hemagglutinin-Esterase Fusion (HEF) protein, which binds to the host cell-surface receptor (9-0-acetylneuraminic acid) and promotes viral membrane and cell membrane fusion. In C and D types, the neuraminate-O-acetyl esterase functions as neuraminidase in viral release from the infected cells. There are at least 18 haemaggluntinins (H 1 to H 18) and 11 neuraminidases (N 1 to N 11) reported in influenza A virus, whereas the influenza B and C viruses do not have such subtypes. Although vaccines against influenza A and B viruses are available, the protection that they offer is limited by the antigenic variations mainly in the two glycoproteins, viz. H and N, which are found on the envelope of influenza A viral strains at 4:1 ratio [7].

1.2. Genomes of Human Influenza Viruses

Human influenza A, B and C viruses belong to the Orthomyxoviridae family, which are a group of enveloped, negativesense RNA viruses, characterized by their segmented genome. Influenza viruses A and B are made up of 8 RNA segments and B type showed no antigenic relationship to A type virus. RNA segments are joined by the RNA polymerase subunits (PB1, PB2 and PA) and the nuclearcapsid protein, NP. Influenza A viral genome length is 13,588 nts, and that of B is 14,639 nts. This is due to the 5^{\prime} - and 3^{\prime}-UTRs are longer in B viral genome. In influenza viruses A and B, the 8 RNA segments encode at least 10 proteins. Influenza viruses C and D genome consists of only 7 segments and encode only 9 proteins [8]. In all the four genera, the viral RNA (vRNA) genome segments are bound by a heterotrimeric RNAdependent RNA polymerase (RdRp), forming a viral ribonucleoprotein (vRNP) complex [9,10]. In the vRNP, the 5'- and 3'-termini of the vRNA are bound to the RNA polymerase, while the rest of the vRNA associates with oligomeric NPs. Among them, only influenza A virus has many subtypes with different combinations of the two surface glycoproteins.

1.2.1. Transcription and Replication Processes in Influenza Viruses

As they are negative-strand viruses, the viral transcription and replication processes are performed in the host cell nucleus and then transported to the cytoplasm for translation and viral assembly. The crucial enzyme for the multiplication of the viruses in the host cells, is the RNA-dependent RNA polymerases (RdRp), which is a component of the Ribonucleoprotein (RNP) that is imported into the host cell nucleus during the infection process. The viral polymerase is a heterotrimer and made up of three different subunits, viz. two polymerase basic protein subunits (PB1 and PB2) and a polymerase acidic protein subunit (PA) (Fig. 1a). Unlike other RNA viruses, the influenza virus polymerases do not have an inherent capping enzyme to cap its mRNAs for efficient translation in the host cells and therefore, it relies upon the capped pre-mRNAs of the host cells as cap-donors [11]. Thus, during multiplication, the enzyme uses the negative-sense viral RNA (vRNA) as a template to synthesize two positive-sense RNA species, viz. mRNA templates for viral protein synthesis, which are after polyadenylation and capping exported to cytoplasm and translated like other host mRNAs, and complementary RNA (cRNA) intermediates from which the same enzyme
transcribes more copies of negative-sense, genomic vRNAs. In contrast to transcription, the genome replication is capindependent and proceeds via a cRNA replicative intermediate. Thus, genome replication is unprimed and generates exact full-length copies of the template.

The X-ray crystallographic structures of the complete heterotrimeric polymerase ($M_{\mathrm{r}} \sim 255 \mathrm{kDA}$) revealed that the polymerase forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of PA. Like other DNA and RNA polymerases, the PB1 had the canonical right-hand-like fold, possessing fingers, palm, and thumb subdomains [12, 13].

Figure 1a. A schematic diagramme showing various subunits of the heterotrimeric influenza viral polymerase. (The number of amino acids of the subunits is given in brackets from influenza A virus) The influenza viral RNA polymerase (EC 2.7.7.48) is a primer-dependent enzyme. The enzyme cannot copy the (-) strand RNA template without a small piece of RNA that aligns on the template RNA and provides a starting point for mRNA synthesis. They generate the primers by a unique 'cap-snatching' mechanism. As RdRps are not found in mammalian cells, they are an excellent target for designing antiviral compounds.

Figure 1b. A schematic diagram showing various domains of the polymerase PB2 subunit of influenza virus A (CBR, Cap-binding region)
As the virus's initial stages of multiplication are performed in the nucleus, they possess nuclear localization signals (NLSs). The NLSs are generally short peptides rich in basic amino acids that act as a signal to mediate the transport of molecules from the cytoplasm into the nucleus. The NLSs are recognized by the corresponding nuclear transporters, which then interact with nucleoporins to help NLS-containing proteins reach the nucleus through Nuclear Pore Complexes.
A K / R rich NLS is found at the C-terminal region and another possible one at the N-terminal region (highlighted in orange). The first NLS to be discovered was the sequence - ${ }^{126} P K K K R K V{ }^{132}$ - in the SV-40 large T-antigen (a monopartite NLS) [14]. Willis et al. [15] identified a slightly different putative NLS (-640PKLKRQ ${ }^{646-)}$ in vasopressin-activated calcium-mobilizing protein which is similar to the N-terminal one in PB2. In recent years, NLSs are also widely used as targets in cancer treatment and prevention of viral infections [16].

Most of the cellular and eukaryotic viral mRNAs have a cap structure at their 5 '-end that is critical for efficient translation. Cap structures also help in mRNA transport from nucleus to cytoplasm and, in addition, protect the mRNAs from degradation by 5 'exonucleases. A common aromatic-rich cap-binding pocket is conserved by convergent evolution. In this pocket the positively charged $N(7)$-methylated guanine ring of the cap structure is stacked between two aromatic amino acid residues. In the process called 'cap-snatching', the viral polymerase uses its PB2 cap-binding domain to capture the 5^{\prime}-cap of nascently capped host mRNAs and cleaves and the 5^{\prime}-cap of ~ 15 nucleotides which is used as the primer for viral mRNA synthesis. Most attempts to develop anti-influenza drugs against the influenza viruses are for the RdRp and are focused on the highly conserved PB1 polymerase catalytic subunit's active site, the PB2 capbinding and PA endonuclease domains [17].

Transcription is initiated by adding GMP, the nucleotide which is complementary to the second nucleotide at the 3'termini of all eight RNA segments, to the primer. The cap structure (highlighted in blue), snatched from the host mRNAs, is used as the primer for viral mRNA transcription (Fig. 2).

Figure 2 Cap structure of the host mRNAs with the viral polymerase subunits during viral mRNA transcription [11].

There are two different reports on the activities of the polymerase subunits, viz. the PB2 and PA. For example, some reports claim that the cap-binding and endonuclease activities reside on two different subunits, PB2 and PA, respectively [18-21]. Some reports claim that the cap-binding and endonuclease activities reside on the PB2 subunit itself. In this communication, evidences are presented to show that a HNH/N type endonuclease domain is identified in the PB2 subunits of all three human influenza viruses, which not only bind to the cap structure but could also make the endonucleolytic cleavage [21,11].

1.3. HNH Endonucleases

The HNH domains are ubiquitous and reported both in prokaryotes and eukaryotes. All of them invariably harbour an endonuclease site. The HNH domains are small nucleic acid binding motifs (~ 30 amino acids in length) with an associated DNA cleavage module. Such modules are commonly widespread in $\alpha-\alpha-\beta$-metal finger endonucleases. Proteins containing the HNH domain performs variety of functions in the organisms like site-specific group I and group II homing endonucleases, bacterial toxins with non-specific endonuclease activities, restriction enzymes, reverse transcriptase, etc. Their properties and mechanism of action are already discussed in detail by Palanivelu [22].

Based on the active site amino acid analysis, HNH-family of endonucleases are broadly classified into two major subgroups, depending upon the immediate amino acid adjacent to the invariant proton acceptor (His), highlighted in green, i.e., either as -HH- based or -DH- based enzymes (highlighted in red) [22]. (A few exceptions are also observed where the D is replaced by E and the second H is replaced by an N). A typical arrangement of active site amino acids in HNH endonucleases is shown in Fig. 3.

Figure 3 Arrangement and distance conservations active site amino acids in HNH/N endonucleases (Shows the invariant amino acids (green and bold) and the approximate distances between them.

The active site of HNH endonucleases consists of two highly conserved His and Asn, and a variable His (Asn replaces the second H and form another subfamily of HNH endonucleases). The HNH endonucleases can make a nick or a doublestranded break on specific/nonspecific regions on DNA molecules in the presence of a divalent metal ion. The invariant His residue in the conserved motif $\mathbf{H N H} / \mathrm{N}$ serves as the general base that activates a metal-bound water molecule for a nucleophilic attack on the sugar-phosphate backbone of nucleic acids [23,24].

2. Material and methods

The protein sequence data of the polymerase basic protein subunit, PB2 of influenza viruses, A, B and C were obtained from PUBMED and SWISS-PROT databases. The advanced version of Clustal Omega was used for protein sequence analysis. Along with the conserved motifs identified by the bioinformatics analysis and from the data already available from biochemical, SDM and X-ray crystallographic analyses on the PB2 subunit and HNH endonucleases were used to arrive at the possible amino acids that make the active site of the enzyme. For pI calculations, the Expasy tool was used.

3. Results and discussion

3.1. MSA analysis of the PB2 subunit of the polymerase

Despite the availability of antivirals for influenza viruses, the emergence of resistant strains calls for antivirals with novel mechanisms of actions. The PB2 subunit of the influenza A viral polymerase is a promising drug target because of its vital role in the unique 'cap-snatching' mechanism. In fact, blocking the influenza virus "cap-snatching" activity was proved to be a new and efficient strategy for the treatment of influenza viral infections. However, all three subunits PB1 [25], PB2 [21] and PA [18, 20] are implicated in endonuclease activity of the polymerase heterotrimer.

Shi et al. [21] have shown that the endonuclease activity resides in the PB2 subunit of the polymerase in influenza A virus. Their results clearly showed that purified virion RNP-complexes cleaved the RNA specifically to generate a capped 14-nt RNA fragment (cap+13 nt) to be further used as primer to initiate viral mRNA synthesis (Fig. 2). Furthermore, they found that the purified anti-PB2 IgG, inhibited the endonuclease activity, but interestingly, anti-PB1 and anti-PA antibodies did not inhibit the cleavage. They have also further found that RNAs containing the 5'-terminal structure, the Gppp----------G/A, could not be cleaved to produce these specific fragments in the absence of one or two subunits of the polymerase. The presence of the endonucleolytic domain in the PB2 subunit was further supported by Plotch et al. [11].

They found that the purified trimeric complex, expressed by recombinant baculovirus in insect cells, cleaved the artificial substrate, but if one or two subunits were removed from the complex, the cleavage activity was totally lost. Therefore, they suggested that the viral PB2 is the endonuclease that cleaves the host cell mRNA to produce the primer to initiate viral transcription. Furthermore, they found the uncapped ribopolymer inhibitors of viral mRNA transcription inhibited the cleavage of capped RNAs [11]. UV cross-linking studies and photo-affinity labelling by cap analogues have shown that the PB2 subunit recognizes and binds to the cap structure at the 5'-end of the host cell hnRNAs [26]. By using temperature-sensitive mutants with defects in the PA gene, it was shown that the principal role of the PA subunit is not in the viral mRNA synthesis, but rather in viral RNA replication [27, 28]. However, it was shown that the PA subunit is required for successful assembly of an active polymerase complex with PB1 and PB2 [29].

The present work found that the PB2 subunit not only possesses the cap-binding domain but also an endonuclease domain which possibly involves in cleaving the cap structure. For cleaving the cap structure from the host pre-mRNAs, a HNH type of endonuclease active site is identified in the PB2 subunits itself for the first time, supporting the observations by Plotch et al. [11) and Shi et al. (21].

Figure 4 shows the MSA of PB2 subunits of the polymerase from different strains of influenza A virus. (only the required regions for the discussions are shown here). The influenza A virus strain (1934/H1N1) is highlighted and it showed a theoretical pI of 9.73. The MSA shows that the entire sequence is highly conserved irrespective of the serotypes. Further analysis of the MSA found, a -DH- based HNH endonuclease domain in the PB2 subunit of polymerase at the N-terminal region. The - DH- dyad is followed by two completely conserved Ns, suggesting it belongs to HNN subfamily (Fig. 4). Two metal-binding -DxD- motifs are identified (data not shown).

Proposed NLSs and cap-binding regions (CBRs) are highlighted in orange and magenta, respectively. Several studies have shown that the CBR is located in the PB2 subunit. Honda et al. [30] identified a ${ }^{32} \mathrm{P}$-labelled, V8 protease peptides of PB2 derived by UV cross-linking of the influenza ribonucleoprotein complex to a $\mathrm{m} 7 \mathrm{G}^{32} \mathrm{ppp}$-labelled capped oligonucleotide. They suggested that residues 242-282 and a second region from 538-577, were involved in capbinding. Li et al. [25] extended this approach by UV cross-linking a 4 thioU-containing, ${ }^{32} \mathrm{P}$-labelled, capped oligonucleotide. A peptide, -SVLVNTYQWIIRNW- (residues 544-557) was identified after V8 protease digestion. Furthermore, mutation of $\mathrm{W}^{552} \rightarrow$ Ala reduced cap binding to 25% of wild-type levels. Given the proximity of the 4 thioU residue (at residue 2 of the oligonucleotide) to the labelled cap structure, it was proposed that the isolated peptide must be close to the aromatic sandwich. The authors concluded that one or other of the nearby aromatic residues, i.e., W537, Y550, W557 or W564, form the aromatic sandwich, similar to other cap-binding proteins (such as the eukaryotic initiation factor eIF4E or VP39) in which the 7-methylguanine moiety is sandwiched between two aromatic amino acid residues. Honda et al. [30] reported two regions of PB2 involved in cap binding, whereas Li et al. [25] reported one region only. MSA analysis shows at least two CBRs, one with the likely residues from 445 to 452 (-445 LFQNWGVE-) and the other one with the residues from 448 to 557 ($-{ }^{448}$ NTYQWIIRNW-). The second CBR is proved by SDM and other techniques [30, 25].

CLUSTAL 0 (1.2.4) MSA of PB2 subunit of polymerase of influenza A viruses

```
sp|P26107|PB2_I56A3
tr|D9U0Y7|D9U0̄Y7 9INFA
tr|D2E5N3|D2E5N3_9INFA
tr|I6S703|I6S703-9INFA
sp|Q1PUC9|PB2 I7产A5
sp|Q6XU90|PB2_I67A0
splQ3YPY5|PB2_I71A1
sp|P26105|PB2_I86A2
sp|P0DOG6|PB2S1 I34A1
sp|P12445|PB2_I\overline{3}4\textrm{A}0
SplQ0A2F5|PB2_I83A4
sp|P26104|PB2_I77AG
splQ20NV1|PB2 I80AD
sp|P26115|PB2_I77AF
sp|Q9Q0V1|PB2_I96A0
splQ0A449|PB2_I66A1
splQ6DNK1|PB2_I03A1
sp|P26110|PB2_I82A3
sp|Q809P5|PB2_I01A3
sp|P26112|PB2_I80A8
splQ0A438|PB2_I49A1
sp|Q20P12|PB2_I56A1
sp|Q0A427|PB2_I56A2
```

MERIKELRDLMSQSRTREILTTTTVDHMIIKRYTSGRQEKNPALRMKWMMAMKYPITAD MERIKELRNLMSQSRTREILTKTTV MERIKELRNLMSQSRTREILTKTTV MERIKELRNLMSQSRTREILTKTTV MERIKELRNLMSQSRTREILTKTTV MERIKELRNLMSQSRTREILTKTTV MERIKELRNLMSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTTV MERIKELRNLMSQSRTREILTKTTVD MERIKELRDLMSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTTV MERIKGLRDLMSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTTY MERIKELRDLMSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTT MERIKELRDLMSQSRTREILTKTTV MERIKELRDLLSQSRTREILTKTTV MERIKELRDLMSQSRTREILTKTTV

MAIIKKYTSGRQEK IAIIKKYTSGRQEK IAIIKKYTSGRQEK IAIIKKYTSGRQEK IAIIKKYTSGRQEK IAIIKKYTSGRQEK IAIIKKYTSGRQEK MAIIKKYTSGRQEK MAIIKKYTSGRQEK IAI IKKYTSGRQEK NPALRMKWMMAMKYPITAD MAIIKKYTSGRQEKNPALRMKWMMAMKYPITAD IAIIKKYTSGRQEKNPALRMKWMMAMKYPITAD IAI IKKYTSGRQEKNPALRMKWMMAMKYPITAD IAIIKKYTSGRQEK IAIIKKYTSGRQEK MAIIKKYTSGRQEK IAIIKKYTSGRQEK IAIIKKYTSGRQEK MAIIKKYTSGRQEK IAIIKKYTSGRQEK 1AIIKKYTSGRQEK IAIIKKYTSGRQEKNALRMKWMMAMKYPITAD
MAIIKKYTSGRQEKNPALRMKWMMAMKYPITAD $* * * *: * * * * * * * *$ PALRMKWMMAMKYPITAD

SLRMKWMMAMKYPITAD SLRMKWMMAMKYPITAD SLRMKWMMAMKYPITAD SLRMKWMMAMKYPITAD SLRMKWMMAMKYPITAD SLRMKWMMAMKYPITAD ALRMKWMMAMKYP PALRMKWMMAMKY ALRMKWMMAMKYPITAD PALRMKWMMAMKYPITAD
PALRMKWMMAMKYPITAD SALRMKWMMAMKYPITAD SALRMKWMMAMKYPITAD PALRMKWMMAMKYPITAD PALRMKWMMAMKYPITAD ALRMKWMMAMKYPITAD ALRMKWMMAMKYPITAD $\because * * * * * * * * * * * * * * * *$
sp|P26107|PB2_I56A3 tr|D9U0Y7|D9U0Y7 9INFA tr|D2E5N3|D2E5N3-9INFA tr|I6S703|I6S703-9INFA splQ1PUC9|PB2_I73̄5 splQ6XU90|PB2_I67A0 splQ3YPY5|PB2-I71A1 sp|P26105|PB2 I86A2 sp|P0DOG6|PB2S1 I34A1 sp|P12445|PB2_I34A0 splQ0A2F5|PB2_I83A splP26104|PB2_I77AG splQ20NV1|PB2_I80AD splP26115|PB2-I77AF splQ9Q0V1|PB2-I96A0 splQ0A4491PB2_I66A splQ6DNK1|PB2_I03A1 splP26110|PB2_I82A3 splQ809P5|PB2 I01A3 sp|P26112|PB2-I80A8 splQ0A438|PB2_I49A1 splQ20P12|PB2_I56A1 sp|Q0A427|PB2_I56A2

KRIMEMIPERNEQGQTLWSKTNDAGSDRIMVSPLAVTWWNRNGPTAVTTHYPKVYKTY KRITEMVPEF KRITEMVPEF KRITEMVPER KRITEMVPER KRITEMVPER KRITEMVPEF KRIMEMI PEF RRIMEMI PEF KRIMEMIPERI KRIMEMIPER KRIMEMIPER KRIMEMIPER KRIIEMVPER KRIMEMI PKR KRIIEMI PEF KRIMEMIPER KRIMEMIPEF KRIMEMI PEF KRIMEMIPEF :** **:*:

ERIGGQTLWSKMNDAGSDRVMVSPLAVTWWNRNGPITNTVHYPKIYKTYFE
 RRIMEMIPERNEQGQILWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTIHYPKVYKTYFE

ZQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFD QGGTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFD EQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFD EQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPVTSTVHYPKVYKTYFD EQGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPMTSTVHYPKVYNTYFE QGGQTLWSKMSDAGSDRVMVSPLAVTWWNRNGPMTSTVHYPKVYKTYFD QQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTIHYPKVYKTYFE QGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTIHYPKVYKTYFE EQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTAHYPKVYKTYFE QGQTIWSKTNDAGSDRVMVSPIAVTWWNRNGPTTSTVHYBKVYKTYFE EQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTVHYPKVYKTYFE EQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTVHYPKVYKTYFE EQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSAVHYPKVYKTYFE QGQTLWSNTNDAGSDRVMVSPLAVTWWNRNGPTTSTVHYPKVYKTYFE QGOTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSAVHYPKVYKTYFE EQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTVHYPKVYKTYFE EQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTVHYPKVYKPYFE EQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPATSTVHYPKVYKTYFE QQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTTSTVHYPKVYKTYFE $k * * * * * *: . * * * * * *: * * * * * * * * * * * * * * *: ~: ~ * * * *: *, * *:$

120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
20
120
120
120
sp|P26107|PB2_I56A3 tr|D9U0Y7 |D9U0̄Y7_9INFA tr|D2E5N3|D2E5N3 9INFA tr|I6S703|I6S703-9INFA splQ1PUC9 |PB2_I73̄A5 sp|Q6XU90|PB2 I67A0 sp|Q3YPY5 |PB2_I71A1 sp|P26105|PB2 I86A2 sp|P0DOG6|PB2S1_I34A1 sp|P12445|PB2 I34A0 sp|Q0A2F5 |PB2_I83A4 splP26104|PB2_I77AG splQ20NV1|PB2 I80AD splP26115|PB2_I77AF splQ9Q0V1|PB2_I96A0 splQ0A449|PB2_I66A1 sp|Q6DNK1 |PB2_I03A1 sp|P26110|PB2_I82A3 sp|Q809P5 |PB2_I01A3 sp|P26112|PB2_I80A8 splQ0A438|PB2_I49A1 sp|Q20P12 |PB2_I56A1 splQ0A427|PB2_I56A2

KVERLKNGTFGPVHFRNQ IKIRRRVDTNPGHADLSAKEAQDVIMEVVFPNEVGAQLITSE KVERLKHGTFGPVHFRNQVKIRRRJDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDVNPGHADLSAKEAQDVIMEVVFPNEVGARILTSE RVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHANLSAKEAQDVIMEVVFPNEVGARILTSE KVGRLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLRHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGAKILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSD KVERLKHGTFGPVHFRNQVKIRRRJDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVH FRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE KVERLKHGTFGPVHFRNQ JKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVGARILTSE

CBR
sp|P26107|PB2_I56A3 tr|D9U0Y7|D9U0Y7 9INFA tr|D2E5N3|D2E5N3_9INFA tr|I6S703|I6S703_9INFA sp|Q1PUC9|PB2_I73A5 sp|Q6XU90|PB2 I67A0 sp|Q3YPY5 |PB2 ${ }^{-}$I71A1 sp|P26105|PB2-I86A2 sp|PODOG6|PB2S1 I34A1 sp|P12445|PB2 I34A0 $\mathrm{sp\mid Q0A} 2 \mathrm{~F} 5 \mid \mathrm{PB}_{2}^{-} \mathrm{I} 83 \mathrm{~A} 4$ sp|P26104|PB2_I77AG sp|Q2 0NV1 |PB2_I80AD sp|P2 6115|PB2 I77AF sp|Q9QOV1|PB2_I96A0 sp|Q0A449|PB2_I66A1 sp|Q6DNK1|PB2 I03A1 sp|P26110|PB2 I82A3 sp|Q809P5|PB2-IO1A3 sp|P26112|PB2_I80A8 sp|Q0A438|PB2 I4 9A1 sp|Q20P12|PB2 I56A1 sp|QOA427|PB2_I56A2

MNRANQRLNPMHQLLRHFQKDAK VNRANQRLNPMHOLLRHFQKDAK VNRANORLNPMHOLLRHFOKDAK VNRANQRLNPMHOLLRHFQKDAK VNRANQRLNPMHQLLRHFQKDAK VNRANQRLNPMHQLLRHFQKDAKT VNRANQRLNPMHOLLRHFQKDAKY VNRANQRLNPMHOLLRHFQKDAKV VNRANQRLNPMHQLLRHFQKDAK VNRANQRLNPMHQLLRHFQKDAKI VNRANQRLNPMHOLLRHFQKDAK VNRANQRLNPMHOLLRHFQKDAK VNRANQRLNPMHQLLRHFQKDAK VNRANQRLNPMHOLLRHFQKDAKV VNRANQRLNPMHQLLRHFQKDAK VNRANQRLNPMHOLLRHFQKDAK VNRANQRLNPMHOLLRHFQKDAKV VNRANQRLNPMHQLLRHFQKDAKV VNRANQRLNPMHQLLRHFQKDAKV VNRANQRLNPMHQLLRHFQKDAKV VNRANQRLNPMHOLLRHFQKDAKV VNRANORLNPMHOLLRHFOKDAKV VNRANQRLNPMHOLLRHFQKDAKV

LFQNWGIEPIDNIMGMTGILPDMTPSTEMSLRGIRI 480 LFQNWGVEHIDSVMGMIGVLPDMTPSTEMSMRGIRV 480 LFQNWGVEHIDSVMGMIGVL PDMTPSTEMSMRGIRV 480 LFQNWGVEHIDSVMGMIGVLPDMTPSTEMSMRGIRV 480 LFQNWGIEHIDNVMGMVGVLPDMTPSTEMSMRGIRV 480 LFQNWGIEHIDNVMGMIGVLPDMTPSTEMSMRGIRV 480 LFQNWGIEHIDNVMGMIGVLPDMTPSTEMSMRGIRV 480 LFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGVRV 48 LFQNWGVEPIDNVMGMIGILPDMTPSIEMSMRGVRI 480CBR1 LFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGVRV 48 LFQNWGVEPIDNVMGMIGILPDMTPSTEMSLRGVRV 480 LFQNWGIEP IDNVMGMIGILPDMTPSTEMSLRGVRV 480 LFQNWGIEPIDNVMGMIGILPDMTPNTEMSLRGIRI 480 LFQNWGIEPIDNVMGMIGILPDMTPNAEMSLRGIRV 480 LFQNWGIEPIDNVMGMIGILPDMTPSAEMSLRGVRV 480 LFQNWGIETIDNVMGMIGILPDMTPSTEMSLRGIRV 480 LFQNWGIEPIDNVMGMIGVLPDMTPSTEVSLRGVRV 480 LFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGIRV 480 LFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGVRV 480 LFQNWGIEPIDNVMGMIGIMPDMTPSTEMSLRGIRV 480 LFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGVRV 480 LFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGLRV 480 LFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGVRV 480

sp|P26107|PB2_I56A3 tr|D9U0Y7|D9U0Y7_9INFA tr|D2E5N3|D2E5N3_9INFA tr|I6S703|I6S703_9INFA sp|Q1 PUC9|PB2 I73̄A5 sp|Q6XU90|PB2_I67A0 sp|Q3YPY5|PB2-I71A1 sp|P26105|PB2 I86A2 sp|PODOG6|PB2S1 I34A1 sp|P12445|PB2_I34A0 sp|Q0A2F5|PB2-I83A4 sp|P26104|PB2_I77AG sp|Q2 ONV1|PB2 I80AD $\mathrm{sp}|\mathrm{P} 26115| \mathrm{PB} 2^{-}$I77AF sp|Q9Q0V1|PB2_I96A0 sp|Q0A449|PB2-I66A1 sp|Q6DNK1|PB2 I03A1 sp|P26110|PB2 ${ }^{-}$I82A3 sp|Q809P5|PB2_I01A3 sp|P26112|PB2_I80A8 sp|Q0A438|PB2 I49A1 sp|Q20P12|PB2-I56A1 sp|Q0A427|PB2_I56A2

GPESILVNTYQWIIKNWETVKIQWSQ GPESVIVNTYQWIIRNWEAVKIQWSQ GPESVIVNTYQWIIRNWEAVKIQWSQ GPESVIVNTYQWIIRNWEAVKIQWSQ GPESVLVNTYQWIIRNWETVKIQWSQ GPESVIVNTYQWIIRNWETVKIQWSQ GPESVIVNTYQWIIRNWETVKIQWSQ GPESVIVNTYQWIIRNWE IVKIQWSQ GPESVLVNTYQWIIRNWETVKIQWSQ GPESVIVNTYQWIIRNWETVKIQWSQ GPESVLVNTYQWIIRNWETVKIQWSQ GSESVIVNTYQWIIRNWETVKIQWSQ GPESVIVNTYQWIIRNWEMIKIQWSQ GPESVIVNTYQWIIRNWEMIKIQWSQ GPESVIVNTYQWIIRNWETVKIQWSQ GPESVIVNTYQWIIRNWEAVKIQWSQ GPESVLVNTYQWIIRNWETVKIQWSQ GPESVIVNTYQWIIRNWETVKIQWSQ GPESVIVNTYQWIIRNWETVKIQWSQ GPESVI VNTYQWIIRNWETVKIQWSQ GPESVIVNTYQWIIRNWETVKIQWSQ GPESVI VNTYQWIIRNWETVKIQWSQ GPESVLVNTYQWIIRNWETVKIQWSQ

DPTILYNKIEFEPFOSLIPKAARAQYSGFVRTLF 600 NPAML YNKMEFEPFQSLVPKAIRSQYSGFVRTLF 600 NPAMLYNKMEFEPFQSLVPKAIRSQYSGFVRTLF 600 NPAML YNKMEFEPFQSLVPKAIRSQYSGFVRTLF 600 NPTMLYNKMEFEPFQSLVPKAIRGQYSGFVRTLF 600 NPTML YNKMEFEPFQSLVPKAIRGQYSGFVRTLF 600 NPTMLYNKMEFEPFQSLVPKAIRGQYSGFVRTLF 600 DPTMLYNKIEFEPFQSLVPRATRSQYSGFVRTLF 600 NPTMLYNKMEFEPFQSLVPKAIRGQYSGFVRTLF 600CBR2 VPATLYNKMEFEPFQSLVPKAARGQYSGFVRTLF 600 NPTMLYNKMEFEPFQSLVPKAARGQYSGFVRALF 600 DPTML YNKMEFEPFQSLVPKAARGKYSGFVRTLF 600 EPTMLYNKMEFEPFQSLVPKAARGQYSGFVRTLF 600 NPTMLYNKMEFEPFQSLVPKAARAQYSGFVRTLF 600 DPTMLYNKMEFESFQSLVPKAARSQYSGFVRTLF 600 DPTML YNKMEFEPFQSLVPKAARGQYSGFVRTLF 600 DPTML YNKMEFEPFQSLVPKAARGQYSGFVRTLF 600 DPTML YNKMEFEPFQSLI PKAARGQYSGFVRTLF 600 DPTML YNKMEFEPFQSLVPKAARGQYSGFVRTLF 600 DPTML YNKMEFEPFQSLVPKAARGQYSGFVRTLF 600 DPTMLYNKMEFEPFQSLVPKAARGQYSGFVRTLF 600 DPTML YNKMEFEPFQSLVPKAARGQYSGFVRTLF 600 DPTVLYNKMEFEPFQSLVPKAARGQYSGFVRTLF 600

//End of PB2 subunits of influenza A viruses					
sp\|P26107	PB2_I56A3	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMATN	759
tr\|D9U0Y7	D9U0Y7_9INFA	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
tr\|D2E5N3	D2E5N3_9INFA	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
tr\|I6S703	I6S703_9INFA	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q1PUC9	PB2_I73A5	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q6XU90	PB2_I67A0	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q3YPY5	PB2_I71A1	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|P26105	PB2_I86A2	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|P0DOG6	PB2S1_I34A1	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|P12445	PB2_I34A0	KANVLIGQGDVVLTM	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q0A2F5	PB2_I83A4	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|P26104	PB2_I77AG	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRLRMAIN	759
sp\|Q20NV1	PB2_I80AD	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759NLS2
sp\|P26115	PB2_I77AF	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q9Q0V1	PB2_I96A0	KANVLIMQGDVVLY	MKRKRD	ESILTDSQTATKRIRMAIN	759
sp\|Q0A449	PB2_I66A1	KANVLIGQGDVVLTM	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q6DNK1	PB2_I03A1	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|P26110	PB2_I82A3	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q809P5	PB2_I01A3	KANVLIGQGDVVLY	MKRKRD	S	742
sp\|P26112	PB2_I80A8	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q0A438	PB2_I49A1	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q20P12	PB2_I56A1	KANVLIGQGDVVLY	MKRKRD	SSILTDSQTATKRIRMAIN	759
sp\|Q0A427	PB2_I56A2	KANVLIGQGDVVL $* * * * * * * * * * * *$	MKRKRD	SSILTDSQTATKRIRMAIN ******************	759

P26107|PB2_I56A3 Influenza A vinus (Equine/Prague/1956 H7N7) D9U0Y7_9INFA Influenza A virus (Peru/2007 H3N2) D2E5N3 -9INFA Influenza A virus (Thailand/2007 H3N2) I6S703 9INFA Influenza A virus (Nepal/2006 H3N2) Q1PUC9|PB2_I73A5 Influenza A virus (Port Chalmers/1973 H3N2) Q6XU90|PB2_I67AO Influenza A vinus (Tokyo/1967 H2N2) Q3YPY5|PB2 I71A1 Influenza A virus (Memphis/1971 H3N2) P26105|PB2 I86A2 Influenza A vinus (Equine/Kentucky/1986 H3N8) PODOG6|PB2S1_I34A1 Influenza A virus (Puerto Rico/1934 H1N1) (pI =9.73) P12445|PB2_I34AO Influenza A virus (Fowi plague virus/Rostock/1934 H7N1) QOA2FS|PB 2 I83A4 Influenza A virus (/Turkey/Ireland/1983 HSN8) P26104|PB2 I77AG Influenza A virus (Budgerigar/Hokkaido/1977 H4N6) Q20NV1|PB2_I80AD Influenza A virus (Gu11/Minnesota/1980 H13N6) (pI $=9.49$) P26115|PB2_I77AF Influenza A virus (Gu11/Maryland/1977 H13N6) Q9Q0V1|PB2_I96A0 Influenza A virus (Goose/Guangdong/1996 HSN1 genotype QOA449|PB2 I66A1 Influenza A virus (Turkey/Wisconsin/1966 H9N2) QOA438|PB2_I49A1 Influenza A virus (Duck/Germany/1949 H1ON7) Q6DNK1|PB2 IO3A1 Influenza A virus (Chicken/Shantou/2003 HSN1) P26110|PB2_I82A3 Influenza A virus (Seal/Massachusetts/1982 H4N5) Q809P5|PB2_IO1A3 Influenza A virus (Chicken/Hong Kong/2001 H5N1) P26112|PB2 I80A8 Influenza A virus (strain A/Turkey/Minnesota/833/1980 H4N2) QOA427|PB2 I56A2 Influenza A virus (strain A/Duck/Eng1and/1/1956 H1 1N6) Q20P12|PB2_I56A1 Influenza A virus (strain A/Duck/Czechosiovakia/1956 H4N6)

Figure 4 MSA of polymerase basic protein subunits PB2 of different strains of influenza A virus. NLS, Nuclear localization signal; CBR, Cap-binding region

Figure 5 shows the MSA of the PB2 subunits from various strains of influenza B virus (only the required regions for the discussions are shown here). The Influenza B viral strain (1940) is highlighted and it showed a theoretical pI of 9.24. The PB2 of influenza B viral strains are almost completely conserved from N - to C-terminal than influenza A viral strains. The PB2 subunits of the influenza B viral strains also possess an HNH domain and belong to HNN subfamily. However, in a striking contrast to the influenza A viruses and other HNH endonucleases, in the influenza B viral strains, a -DQ- is identified as the likely first dyad of the HNN domain which is followed by two invariant Ns (highlighted in red). The likely NLSs and CBRs are highlighted in orange and magenta, respectively. DxD/E type of metal binding motifs are found (data not shown). A highly acidic peptide motif is also identified in the C-terminal region (data not shown)

CLUSTAL 0 (1.2.4) MSA of polymerase PB2 subunit of influenza B viruses

| tr\|A0A4Y5WMY ||A0A4Y5WMYl 9INFB | MTLAKIELLKQLLRDNEAKTVLKQTTVL | VNIIRKENTSRIEFMSLRMKWAMCSNPPLA | 60 |
| :---: | :---: | :---: | :---: |
| tr\|Q4ID02|Q4ID02 9INFB | MTLAKIELLKQLLRDNEAKTVLKQTTV | YNIIRKFNTSRIERNPSLRMKWAMCSNEPLA | 60 |
| tr\|G2U3G6|G2U3G6-9INEB | MTLAKIELLKQLLRDNEAKTVLKQTTV | YNIIRKENTSRIEFMPSLRMKWAMCSNFPLA | 60 |
| tr\|A4D4J2|A4D4J2-9INFB | MTLAKIELLKQLLRDNEAKTVLKQTTV | YNIIRKENTSRIEFDSLRMKWAMCSNFPLA | 60 |
| tr\|G2U1P7|G2U1P7_9INFB | MTLAKIELLKQLLRDNEAKTVLKQTTV | FNIIRKFNTSRIEFSSLRMKWAMCSNFPLA | 60 |
| tr\|A4D5K5|A4D5K5_9INFB | MTLAKIELLKQLLRDNEAKTVLKQTTV | FNIIRKFNTSRIEFSSLRMKWAMCSNFPLA | 60 |
| tr\|U3RKA 71 U 3 RKA 7 - 9INEB | MTLAKIELLKQLLRDNEAKTVLKQTTV | KNIIRKENTSRIEFMSLRMKWAMCSNFPLA | 60 |
| tr\|U3RTT2|U3RTT2-9INFB | MTLAKIELLKQLLRDNEAKTVLKQTTV | FNIIRKFNTSRIEFSSLRMKWAMCSNFPLA | 60 |
| tr\|U3RWZ8|U3RW28_9INFB | MTLAKIELLKQLLRDNEAKTVLKQTTV | YNIIRKFNTSRIEF SSLRMKWAMCSNFPLA | 60 |
| tr\|S4SZ00|S4SZ00_9INFB | MTLAKIELLKQLLRDNEAKTVLKQTTV | VNIIRKFNTSRIEFSSLRMKWAMCSNFPLA | 60 |
| tr\|U3RUJ3|U3RUJ3-9INFB | MTLAKIELLKQLLRDNEAKTVLK | YNIIRKFNTSRIEFSSLRMKWAMCSNFPLA | 60 |
| sp\|Q9QLL6|PB2_INBLE | MTLAKIELLKQLLRDNEAKTVLRQTTVD | YNIIRKENTSRIEKNPSLRMKWAMCSNFPLA | 60 |
| sp\|P13875|PB2_INBAC | MTLAKIELLKQLLRDNEAKTVLKQTTV | YNIIRKENTSRIER SLRMKWAMCS PRLA | 60 |
| tr\|U3S2T7|U3S2̄T7_9INFB | MTLAKIELIKQLLRDNEAKTVLKQTTV | YNIIRKENTSRIEFPSLRMKWAMCSNFPLA | 60 |
| tr\|A0A140EVM2|A0Ā140EVM2_9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | VNIIRKFNTSRIEFPSLRMKWAMCSNFPLA | 60 |
| tr\|A90XW8|A90XW8_9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | (NIIRKFNTSRIEFPSLRMKWAMCSNFPLA | 60 |
| tr\|I2DDZ0|I2DDZ ${ }^{-}$9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | YNI IRKENTSRIEFPSLRMKWAMCSNFPLA | 60 |
| tr\|A0A126UI98|A0Ā126UI98_9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | VNIIRKENTSRIEFMSSLRMKWAMCSNPPLA | 60 |
| tr\|A0Al40EUD2|A0A140EUD2_9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | \%NIIRKFNTSRIEFSSLRMKWAMCSNFPLA | 60 |
| tr\|A0Al40EKH4|A0A140EKH4_9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | FNIIRKENTSRIEFMSSLRMKWAMCSNFPA | 60 |
| tr\|C4LQ20|C4LQ20_9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | (NIIRKFNTSRIEFMPSLRMKWAMCSNFPLA | 60 |
| tr\|A0Al40EVH8|A0Ā140EVH8_9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | YNIIRKENTSRIEFMSLRMKWAMCSNFPLA | 60 |
| tr\|A0A126UDK6|A0A126UDK6_9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | YNIIRKFNTSRIEFSSLRMKWAMCSNFPLA | 60 |
| sp\|036431|PB2_INBP9 | MTLAKIELLKQLIRDNEAKTVLKQTTV | YNIIRKENTSRIEFPSLRMKWAMCSNEPLA | 60 |
| tr\|A3DQP8|A3DQP8_9INFB | MTLAKIELLKQLIRDNEAKTVLKQTTV | VNIIRKFNTSRIERNSLRMKWAMCSNFPLA | 60 |
| | **********************:**** | $k * * *: * k * * * * * * * * * * * * *$ | |
| tr\|A0A4Y5WMYl|A0A4Y5WMY1_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | GLNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|Q4LD02|Q4LD02_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|G2U3G6|G2U3G6_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A4D4J2|A4D4J2_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|G2UlP7|G2U1P7-9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A4D5K5|A4D5K5_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|U3RKA 7 |U3RKA 7 -9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|U3RTT2|U3RTT2-9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|U3RWZ8|U3RWZ8_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|S4SZ00|S4SZ00_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|U3RUJ3|U3RUJ3_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV\| | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| splQ9QLL6\|PB2_INBLE | FLRKMRLDNATWGRITFGPVERVRKRVI | LINPLTKEMPPDEASNVIMEILFPKEAGIPRES | $180 \mathrm{NLS1}$ |
| sp\|P13875|PB2_INBAC | FLRKMRLDNATWGRITFGPVERVRKRV宜 | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|U3S2T7|U3S2T7_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A0Al $40 \mathrm{EVM2\mid A0A} 140 \mathrm{EVM2} 2 \mathrm{INFB}$ | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A9QXW8|A90XW8_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|I2DDZ0|I2DDZ0_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A0A126UI98|A0Ä126UI98_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A0A140EUD2|A0A140EUD2_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A0A140EKH4|A0A140EKH4_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|C4IQ20|C4LQ20_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A0A140EVH8|A0Ā140EVH8_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A0A126UDK6|A0A126UDK6_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| sp\|036431|PB2_INBP9 | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMPPDEASNVIMEILFPKEAGIPRES | 180 |
| tr\|A3DQP8|A3DQP8_9INFB | FLRKMRLDNATWGRITFGPVERVRKRV | LNPLTKEMP PDEASNVIMEILFPKEAGIPRES | 180 |
| | *****************************) | ********************************* | |

tr|A0A4Y5WMY1|A0A4Y5WMY1 9INFB
tr|Q4LD02।Q4LD02_9INFB
tr|G2U3G6|G2U3G6_9INFB
tr|A4D4J2|A4D4J2 9INFB
tr|G2U1P7|G2U1P7 9INFB tr|A4D5K5|A4D5K5_9INFB tr|U3RKA7|U3RKA7_9INFB tr|U3RTT2|U3RTT2-9INFB tr|U3RWZ8|U3RWZ8 9INFB tr|S4SZOO|S4SZ00 ${ }^{-}$9INFB tr|U3RUJ3।U3RUJ3_9INFB sp|Q9QLL6|PB2_INBLE sp|P13875|PB2 INBAC tr|U3S2T7|U3S2T7 9INFB $\operatorname{tr}|\mathrm{A} 0 \mathrm{~A} 140 \mathrm{EVM} 2| \mathrm{A} 0 \overline{\mathrm{~A}} 140 \mathrm{EVM} 2$ _9INFB tr|A9QXW8|A9QXW8_9INFB
tr|I2DDZ0|I2DDZ0_9INFB tr|A0A126UI98|A0A126UI98 9INFB tr|A0A140EUD2|A0A140EUD2-9INFB tr|A0A140EKH4|A0A140EKH4_9INFB tr|C4LQ20|C4LQ20_9INFB tr|A0A140EVH8|A0A140EVH8 9INFB tr|A0A126UDK6|A0A126UDK6 9INFB spl036431|PB2 INBP9
tr|A3DQP8|A3DQQP8_9INFB
$\longrightarrow C B R$ NFLNRAGQLLSPMYQLQRYFLNRSND NFLNRAGQLLSPMYQLQRYFLSRSND NFLNRAGQLLSPMYQLQRYFLNRSND NFLNRAGQLLSPMYQLQRYFLNRSND
LFDQWGYE

ESPKASELHGINESMNASDYTLKGVV SPKASELHGINESMNASDYTLKGVV ESPKASELHGINESMNASDYTLKGVV ESPKASELHGINESMNASDYTLKGVV EESPKASELHGINESMNASDYTLKGVV QGYEESPKASELHGINESMNASDYTLKGVV DOWGYEESPKASELHGINESMNASDYTLKGVV FDQWGYEESPKASELHGINESMNASDYTLKGVV FDQWGYEESPKASELHGINESMNASDYTLKGVV QWGYEESPKASELHGINELMNASDYTLKGVV FQGEEPPKASELHGINELMNASDYTLKGVV ESPKASELHGINELMNASDYTLKGVV ESPKASELHGINELMNASDYTLKGVV EESPKASELHGINELMNASDYTLKGVV EESPKASELHGINELMNASDYTLKGVV ESPKASELHGINELMNASDYTLKGVV ESPKASELHGINELMNASDYTLKGVV ESPKASELHGINELMNASDYTLKGVV EESPKASELHGINELMNASDYTLKGVV ESPKASELHGINELMNASDYTLKGVV ESPKASELHGINELMNASDYTLKGVV ESPKASELHGINELMNASDYTLKGVV ESPKASELHGINELMNASDYTLKGVV
tr|A.0A4Y5WMY1|A0A4Y5WMY1_9INFB tr|Q4LD02|Q4LD02_9INFB tr|G2U3G6|G2U3G6_9INFB tr|A4D4J2|A4D4J2_9INFB tr|G2U1P7|G2U1P7 ${ }^{-}$9INFB tr|A4D5K5|A4D5K5-9INFB tr|U3RKA7|U3RKA7-9INFB tr|U3RTT2|U3RTT2-9INFB tr|U3RWZ8|U3RWZ8_9INFB tr|S4SZ00|S4SZ00_9INFB tr|U3RUJ3|U3RUJ3 ${ }^{-}$9INFB sp|Q9QLL6|PB2_INBLE sp|P13875|PB2_INBAC
tr|U3S2T7|U3S2T7 9INFB tr|A0A140EVM2|A0A140EVM2_9INFB tr|A9QXW8|A9QXW8_9INFB tr|I2DDZ0|I2DDZ0_9INFB tr|A0A126UI98|A0 $\overline{\mathrm{A}} 126 \mathrm{UI} 98$ _9INFB tr|A0A140EUD2|A0A140EUD2_-9INFB tr|A0A140EKH $4 \mid$ A0A140EKH 4 -9INFB tr|C4LQ20|C4LQ20 9INFB tr|A0A140EVH8|A0Ā140EVH8 9INFB tr|A0A126UDK6|A0A126UDK6_9INFB sp|036431|PB2_INBP9
tr|A3DQP8|A3DQP8_9INFB

MGTTKELVQ CBTYWVLKN MGTTKELVONTYQWVLKN MGTTKELVQNTYQWVLKN MGTTKELVONTYQWVLKN MGTTKELVONTYQWVLKN MGTTKELVQNTYQWVLKN MGTTKELVONTYQWVLKN MGTTKELVQNTYQWVLKN MGTTKELVQNTYQWVLKN MGTTKELVQNTYQWVLKN MGTTKELVQNTYQWVLKN MGTTKELVQNTYQWVLKN MGTTKELVQNTYQWVLKN MGTTKELVQNTYQWVMKN MGTTKELVONTYQWVMKN MGTTKELVONTYQWVMKN MGTTKELVQNTYQWVMKN MGTTKELVQNTYQWVMKN MGTTKELVQNTYQWVMKN MGTTKELVQNTYQWVMKN MGTTKELVQNTYQWVMKN MGTTKELVQNTYQWVMKN MGTTKELVQNTYQWVLKN MGTTKELVQNTYQWVLKN MGTTKELVQNTYQWVLKN ***************: **

LVTLKAQFLLGKEDMFQWDAFEAFESI I PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFES I I PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESIIPQKMAGQYSGFARA VTLKAQFLLGKEDMFQWDAFEAFESII PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESIIPQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESIIPQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESII PQKMAGQYSGFARA VTILKAQFLLGKEDMFQWDAFEAFES I I PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESIIPQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESII PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESIIPQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESIIPQKMAGQYSGFARA UVTLKAQFLLGKEDMFQWDAFEAFESII PQKMAGQYSGFARA VVTLKAQFLLGKEDMFQWDAFEAFESII PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESIIPQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESIIPQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESIIPQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFES I I PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESI I PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESI I PQKMAGQYSGFARA VTLKAQFLLGKEDMFQWDAFEAFES I I PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESI I PQKMAGQYSGFARA LATLKAQFLLGKEDMFQWDAFEAFESII PQKMAGQYSGFARA LVTLKAQFLLGKEDMFQWDAFEAFESII PQKMAGQYSGFARA LVTLKAQFLLGKEDMEQWDAFEAFESIIPQKMAGQYSGFARA
//End of PB2 subunits of influenza B viruses
tr|A0A4Y5WMY1|A0A4Y5WMY1 9INFB $\operatorname{tr|Q4LD02|Q4LD02_ 9INFB}$ tr|G2U3G6|G2U3G6_9INFB tr|A4D4J2|A4D4J2 9INFB tr|G2U1P7|G2U1P7-9INFB $\operatorname{tr|A4D5K5|A4D5K5-9INFB}$ tr|U3RKA7lU3RKA7 9INFB tr|U3RTT2|U3RTT2_9INFB tr|U3RWZ8|U3RWZ8-9INFB tr|S4SZ00|S4SZ00 9INFB tr|U3RUJ3|U3RUJ3_9INFB splQ9QLL6|PB2_INB̄LE splP13875|PB2 INBAC tr|U3S2T7|U3S2T77_9INFB tr|A0A140EVM2|A0Ā140EVM2_9INFB tr|A9QXW8|A9QXW8 9INFB tr|I2DDZ0|I2DDZO_9INFB tr|A0A126UI98|A0 $\bar{A} 126 \mathrm{UI} 98$ 9INFB tr|A0A140EUD2|A0A140EUD2_9INFB tr|A0A140EKH4|A0A140EKH4_9INFB $\operatorname{tr|C4LQ20|C4LQ20-9INFB}$
$\mathrm{tr|A0A140EVH8|A0A140EVH8} 9$ 9INFB tr|A0A126UDK6|A0A126UDK6_9INFB spl036431|PB2_INBP9
tr|A3DQP8|A3DQP8_9INFB

LKPGEKANILLYQGKPVK才VKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLLYQGKPVKKVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLLYQGKPVKKVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLLYQGKPVKKVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKR YSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLLYQGKPVKVVKRKR YSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKV VKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKV VKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVVKRKRYSALSNDISQGIKRQRMTVESMGWALS LKPGEKANILLYQGKPVKVUVKRKAYSALSNDISQGIKRQRMTVESMGWALS

```
AOA4Y5WMY1 9INFB, Influenza B virus
Q4LD02 9INFB,Influenza B virus (Tehran/2002)
G2U3G6_9INFB, Influenza B virus (California/2003)
A4D4J2_-9INFB, Influenza B virus (Hawaii/2004)
G2U1P7_9INFB. Influenza B virus (Taiwan/2007)
A4D5K5_9INFB, Influenza B virus (Paraguay/2003)
U3RKA7_9INFB, Influenza B virus (Waikato/2007)
U3RTT2 9INFB, Influenza B virus (Auckland/2002)
U3RWZ\overline{8}9INFB. Influenza B virus (Sydney/2006)
S4SZ00_9INFB, Influenza B virus (Thailand/2006)
U3RUJ3-9INFB, Influenza B virus (Sydney/2008)
Q9QLL6|PB2_INBLE, Influenza B virus (Lee/1940) (pI = 9.24)
P13875|PB2 INBAC, Influenza B virus (Ann Arbor/1966
[cold-adapted]) (pI =9.30)
U3S2T7 9INFB, Influenza B virus (Sydney/2005)
AOA140EVM12_9INFB, Influenza B virus (Darwin/2013)
A9QXW8_9INFB, Influenza B virus (Guangzhou/2007)
I2DDZO_9INFB, Influenza B virus (Malaysia/2007)
A0A126ÛI98_9INFB, Influenza B virus (Tasmania/2014)
AOA140EUD2_9INFB, Influenza B virus (Mid-centra1/2013)
AOA140EKH4_9INFB, Influenza B virus (T auranga/2013)
C4LQ20 9INFB, Influenza B virus (Managua/2008)
AOA140EVH8_9INFB. Influenza B virus (T asmania/2013)
AOA126UDK6_9INFB, Influenza B virus (Singapore/2014)
O36431|PB2_INBP9, Influenza B virus (Panama/1990)
A3DQP8_9INFB, Influenza B virus (Johannesburg/2001)
```

Figure 5 MSA of the polymerases basic protein subunits PB2 of from influenza B viruses
Figure 6 shows the MSA of the PB2 subunits from different strains of influenza C virus (only the required regions for the discussions are shown here). The influenza C virus strain (1947) is highlighted and it showed a theoretical pI of 9.25. But for a small region in the N - and C-terminals, the entire sequence is almost completely conserved in all the strains. The PB2 subunits of the influenza C viral strains are more completely conserved than influenza A viral strains. A -DH- based HNN motif, as in influenza A virus, is indented in a smaller peptide region at the N -terminal, which is followed by two invariant Ns. The likely NLSs, CBRs and metal-binding motifs are highlighted in orange, magenta and green, respectively. The second consecutive basic amino acids which represents the NLS was identified in the N terminal itself, suggesting a significant divergence in their evolutions.

CLUSTAL 0 (1.2.4) MSA of the basic protein subunits PB2 of from influenza C viruses.
sp|P21770|PB2 INCBE tr|S4T8F3।S4T8F3 90RTO
sp|P13877|PB2_INCJJ
tr|A0A1B0RMT8 |A0A1B0RMT8_9ORTO tr|A0A830ZL67|A0A830ZL67-90RTO $\operatorname{tr|A0A193PPU8|A0A193PPU8-INCEN}$ tr|A0A193PPD6|A0A193PPD6_INCP2 tr|W8CI60|W8CI60_90RTO
tr|W8CHY7|W8CHY7 90 TO
splQ9IMP3|PB2 INC̄JH
tr|A0A193PPS9|A0A193PPS9_90RTO tr|A0A193PPJ9|A0A193PPJ9_90RTO sple6I7C4|PB2 INCAA tr|A0A193PPX7|A0A193PPX7 90RTO tr|A0A193PQ18|A0A193PQ18-90RTO tr|A0A193PPR8|A0A193PPR8_-90RTO tr|A0A193PPB8|A0A193PPB8_INCTA
sp|P21770|PB2 INCBE
tr|S4T8F3|S4T8F3_90RTO
splP13877|PB2_INC̄JJ
tr|A0A1B0RMT8|A0A1B0RMT8_90RTO tr|A0A830ZL67|A0A830ZL67_90RTO tr|A0A193PPU8|A0A193PPU8 INCEN tr|A0A193PPD6|A0A193PPD6 INCP2 tr|W8CI60|W8CI60_90RTO
tr|W8CHY7|W8CHY7_-90RTO
splQ9IMP3|PB2 INCJH
tr|A0A193PPS9|A0A193PPS9 90RTO tr|A0A193PPJ9|A0A193PPJ9-90RTO splQ6I7C4|PB2 INCAA
tr|A0A193PPX7|A0A193PPX7_90RTO tr|A0A193PQ18|A0A193PQ18-90RTO tr|A0A193PPR8|A0A193PPR8 90RTO tr|A0A193PPB8|A0A193PPB8 INCTA

sp|P21770|PB2 INCBE trlS4T8F3|S4T8̄F3 90RTO splP13877|PB2_INC̄JJ tr|A0A1B0RMT8|A0A1B0RMT8 90RTO tr|A0A830ZL67|A0A830ZL67 90RTO tr|A0A193PPU8|A0A193PPU8_INCEN tr|A0A193PPD6|A0A193PPD6_INCP2 tr|W8CI60|W8CI60 90RTO splQ9IMP3|PB2_INC̄JH
tr|A0A193PPS9|A0A193PPS9_90RTO tr|A0A193PPJ9|A0A193PPJ9-90RTO splQ6I7C4|PB2_INCAA
tr|A0A193PPX7|A0A193PPX7_90RTO tr|A0A193PQ18|A0A193PQ18 90RTO tr|A0A193PPR8|A0A193PPR8-90RTO $\operatorname{tr|A0A193PPB8|A0A193PPB8-INCTA~}$

DYFKDAPATITMADLTTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLTTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLTTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLTTKLGREIPYQYVMMNWIQßSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLTTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVEPNPGKMGSS DYFKDAPATITMADLTTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLTTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMMNWIQЩSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMMNWIQßSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMMNWIQßSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMMWWIQKSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMMNWIQKSEDNLEALLYSRGIVETNPGKMGSS
sp|P21770|PB2_INCBE
tr|S4T8F3|S4T8F3_90RTO
sp|P13877|PB2_INCJJ
tr|A0A1B0RMT8|A0A1B0RMT8_90RTO tr|A0A830ZL67|A0A830ZL67_-90RTO tr|A0A193PPU8|A0A193PPU8_INCEN tr|A0A193PPD6|A0A193PPD6_INCP2 tr|W8CI60|W8CI60_90RTO splQ9IMP3|PB2_INC̄JH tr|A0A193PPS9|A0A193PPS9_90RTO tr|A0A193PPJ9|A0A193PPJ9_90RTO splQ6I7C4|PB2_INCAA
tr|A0A193PPX7|A0A193PPX7_90RTO tr|A0A193PQ18|A0A193PQ18-90RTO tr|A0A193PPR8|A0A193PPR8_90RTO tr|A0A193PPB8|A0A193PPB8_INCTA
//End of PB2 subunits of influenza C viruses
sp|P21770|PB2_INCBE
APMVTGQDLIDVGFGGKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTGQDLIDVGFGQNVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSAPMVTRQDLIDVGFGQKVRLFIGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGLGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSAPMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKN-

N-------APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGFGGQVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN
tr|S4I8F3|S4T8F3 90RT0
sp|P13877|PB2 INC̄JJ tr|A0A1B0RMT8|A0A1B0RMT8_90RTO tr|A0A830ZL67|A0A8302L67-90RTO tr|A0A193PPU8|A0A193PPU8_INCEN tr|A0A193PPD6|A0A193PPD6_INCP2 tr|W8CI60|W8CI60_90RTO
splQ9IMP3|PB2_INC̄JH
tr|A0A193PPS9|A0A193PPS9_90RTO tr|A0A193PPJ9|A0A193PPJ9_90RTO splQ6I7C4|PB2_INCAA tr|A0A193PPX7|A0A193PPX7_90RTO tr|A0A193PQ18|A0A193PQ18 90RTO tr|A0A193PPR8|A0A193PPR8_90RTO tr|A0A193PPB8|A0A193PPB8_INCTA

APMVTRQDLIDVGFGQKVRLFVGQGSVRTFKRTASQRAASSDVNKNVKKIKMSN 774

```
P21770|PB2_INCBE, Influenza C virus (strain C/Berlin/1985)
S4T8F3_9ORTO, Influenza C virus (C/Eastern India/2011)
P13877|\overline{P}B2_INCJJ, Influenza C virus (strain C/1950)
A0A1B0RMT8_9ORTO, Influenza C virus (C/India/2011) ( }\textrm{pI}=9.24\mathrm{ )
A0A830ZL67_9ORTO, Influenza C virus
A0A193PPU8_INCEN, Influenza C virus (strain C/England/1983)
A0A193PPD6_INCP2, Influenza C virus (strain C/Pig/Beijing/1981) (pI = 9.24)
W8CI60_9ORTO, Influenza C virus (C/Singapore/2006)
Q9IMP3|PB2_INCJH, Influenza C virus (strain C/Johannesburg/1/1966) (pI=9.24)
A0A193PPS9_9ORTO, Influenza C virus (C/Paris/1967) (pI=9.24)
A0A193PPJ9_9ORTO, Influenza C virus (C/Tokyo/2010
Q6I7C4|PB2_INCAA, Influenza C virus (strain C/Ann Arbor/1950)
A0A193PPX7_9ORTO, Influenza C virus (C/Yamagata/2008)
A0A193PQ18_9ORTO, Influenza C virus (C/Fukuoka/2012)
A0A193PPR8_9ORTO, Influenza C virus (C/Greece/1/1979)
A0A193PPB8_INCTA, Influenza C virus (strain C/Taylor/1947)(pI =9.25)
```

Figure 6 MSA of BP2 subunit of the polymerase from different strains of Influenza C viruses

Figure 7 shows the mix and match analysis of all the three human influenza viruses (only the required regions for the discussions are shown here). It is interesting to note that the human influenza viruses A and B align in the proposed conserved motifs, suggesting their possible similar origins. The first dyad (-DH/DQ-)- which is shown to involve in $\mathrm{Mg}^{2+}-$ binding and as the proton acceptor are aligned in the influenza viruses A and B , but not in C . The dipeptide alignment suggests that the B virus could possibly use the Q as the proton acceptor instead of H, as reported in other HNH/N endonucleases. Though one of the proposed NLSs align in all three viruses, the CBRs align only in A and B viruses, further suggesting their similar origins (Fig. 6). From the MSA analysis, it is clear that the A and B influenza viruses are close to each other, whereas the influenza virus C has diverged significantly during evolution or may have a different origin.

CLUSTAL O (1.2.4) Mix and Match Analysis of the PB2 subunits from Influenza A, B \& C viruses
sp|P21770|PB2_INCBE splP13877|PB2_INCJJ splQ9IMP3|PB2-INCJH splQ6I7C4|PB2_INCAA $\operatorname{tr}|\mathrm{A} 0 \mathrm{~A} 193 \mathrm{PPX} 7| \mathrm{A} 0 \mathrm{~A} 193 \mathrm{PPX} 7$ 90RT0 $\operatorname{tr}|A 0 A 193 P Q 18| A 0 A 193 P Q 18-90 R T 0$ $\operatorname{tr} \mid A 0 A 4 Y 5$ WMY1|A0A4Y5WMY1-9INFB $\operatorname{tr|Q4LD02|Q4LD02~9INFB~}$ splQ9QLL6|PB2_INBLE $\operatorname{tr|U3S2T7|U3S2T749INFB}$ splP13875|PB2_INBAAC spl036431|PB2_INBP9 splQ1PUC9|PB2_I73A5 splQ6XU90|PB2_I67A0 sp|P0DOG6|PB2 $\bar{S} 1$ I I34A1 SplQ0A2F5|PB2_I $\overline{8} 3 \mathrm{~A} 4$ splQ20NV1|PB2_I80AD splQ0A438|PB2_I49A1

```
sp|P21770|PB2_INCBE
splP13877|PB2_INCJJ
splQ9 IMP3|PB2-INCJH
splQ6I7C4|PB2 INCAA
tr|A0A193PPX7\A0A193PPX7_90RT0
tr|A0A193PQ18|A0A193PQ18-90RTO
tr|A0A4Y5WMY1|A0A4Y5WMYl_9INFB
tr|Q4LD02|Q4LD02_9INFB
sp|Q9QLL6|PB2_INBLE
tr|U3S2T7|U3S2T7 9INFB
sp|P13875|PB2_INBAC
spl036431|PB2_INBP9
splQ1PUC9|PB2_I73A5
splQ6xu90|PB2-I67A0
sp|P0DOG6|PB2S1_I34A1
splQ0A2F5|PB2_I83A4
splQ20NV1|PB2_I80AD
splQ0A438|PB2_I49A1
```

splP21770|PB2_INCBE
sp|P13877|PB2_INCJJ
splQ9 IMP3|PB2-INCJH
splQ6I7C4|PB2 ${ }^{-}$INCAA
tr|A0A193ppX7TA0A193PPX7 90RTO
tr |A0A193PQ18|A0A193PQ18-90RTO
tr |A0A4Y 5 WMY1|A0A 4 Y 5 WMY

tr|Q4LD02|Q4LD02 9INFB
splQ9QLL6|PB2_INBLE
tr|U3S2T7।U3S2T7 9INFB
tr|U3S2T71U3S2T7_9IN
splP13875|PB2_INBAC
spl036431|PB2_INBP9
sp IQ1PUC91PB2_I73A5
splQ6XU90|PB2 I67A0
splP0DOG6|PB2S1_I34A1
splQ0A2F5|PB2_I83A4
splea2F5|PB2_I83A4
splQ20NV1|PB2_I80AD
splQ0A438|PB2_I49A1

MSLLLTIIAKEYKRLCQDAKAAQMMTVGTVSNYTTFKKWTTSRKE KNP SLRMRWAMSSKFP MSLLLTTIAKEY KRLCQDAKAAQMMTVGTVSNYTTFKKWTTSRKE KNPSLRMRWAMS SKFP MSLLLTTIAKEY KRLCQDAKAAQMMTVGTVSNYTTFKKWTTSRKE KNPSLRMRWAMSSKFP MSFLLTIAKEYKRLCQDAKAAQMMTVGTVSNYTTFKKWTTSRKE KNP SLRMRWAMSSKFP MSLLLTIAKEY KRLCQDAKAAQMMTVGTVSNYTTFKKWTTSRKE KNPSLRMRWAMSSKFP MSLLLTTAKEY KRLCQDAKAAQMMTVGTVSNY TTFKKWTTSRKE KNP SLRMRWAMSSKFP --MTLAKIELLKQLLRDNEAKTVLKQTTVDENIIRKFNTSRIE M PSLRMKWAMCSNFP --MTLAKIELLKQLLRDNEAKTVLKQTTVDQ NIIRKFNTSRIE WPSLRMKWAMCSNEP --MTLAKIELLKQLLRDNEAKTVLRQTTVDQ N NIIRKFNTSRIE N PSLRMKWAMCSNEP --MTLAKIELL KQLLRDNEAKTVLKQTTVDQ NIIRKFNTSRIE A PSLRMKWAMCSNFP --MTLAKIELLKQLLRDNEAKTVLKQTTVDQ FIIRKFNTSRIEBAPSLRMKWAMCSNEP --MTLAKIELLKQLLRDNEAKTVLKQTTVD\&NIIRKFNTSRIENAPSLRMKWAMCSEFP ----MERI KELRNLMSQSRTREILTKTTV DHYAII KKYTSGRQE W PSLRMKWMMAMKYP ----MERI KEL RNLMSQSRTREILTKTTT IAII KKYTSGRQER IAII KKYTSGRQE EN PALRMKWMMAMKYP ----MERI KELRNLMSQSRTREILTKTTV पAII KKYTSGRQEF PALRMKWMMAMKYP ----MERI KELRDLMSQSRTREILTKTT ----MERI KELRDLMSQSRTREILTKTTV 1AII KKYTSGRQE R PALRMKWMMAMKYP ----MERI KELRDLMSQSRTREILTKTTYDHYAII KKYTSGRQEF PALRMKWMMAMKYP

IIANKRMLEEAQIPKEHNNVALWEDTEDVSKFDHLASASCINYW局CGPCVNFSEVIKE IIANKRMLEEAQIPKEHNNVALWEDTEDVSKPDHVLASTSCINYWN ECGPCANNSEVIKE IIANKRMLEEAQIPKEHNNVALWEDTEDVSKFDHVLASASCINYWNFCGPCVNNSEVIKE IIANKRMLEEAQIPKEHNNVALWEDTEDVSKPDHVLASASCINYWNFCGPCVNNSEVIKE IIANKRMLEEAQIPREHNNVALWEDTEDVSKHDHVLASASCINYWNECGPCVNNNEVIKE IIANKRMLEEAQIPKEHNNVALWEDTEDVSKFD VLASASCINYW FCGPCVN/SEVIKE LALTKGDMA-NRIPLEYKGIQLKTNAEDIGTK-GQMCSIAAVTWWNTYGPIGD-TEGFER LAL TKGDMA-NRIPLEYKGIQLKTNAEDIGTK-GQMCSIAAVTWWNTYGPIGD-TEGFER LALTKG LALTKGDMA-NRIPLEYKGIQLKTNAEDIGTK-GQMCSIAAVTWWNTYGPIGD-TEGFEK LALTKGDMA-NRIPLEYKGIQLKTNAEDIGTK-GQMCSIAAVTWWNTYGPIGD-TEGFEK LAL TKGDMA-NRIPLEYKGIQLKTNAEDIGTK-GQMCSIAAVTWWNTYGPIGD-TEGFEK ITADKRITE-MVPER REQGQTLWSKMSDAGSD-RVMVSPLAVTWWNRNGPVTS-TVYPK ITADKRITE-MVPERMEQGQTLWSKMSDAGSD-RVMVSPLAVTWWNRNGPMTS-TVHYPK ITADKRITE-MI PERNEQGQTLWSKMNDAGSD-RVMVSPLAVTWWNRNGPITN-TVHYPK ITADRRIME-MI PERNEQGQILWSKTNDAGSD-RVMVSPLAVTWWNRNGPTTS-TIHYPK ITADKRIME-MI PERNEQGQTLWSKTNDAGSD-RVMVSPLAVTWWNRNGPTTS-TAHYPK ITADKRIME-MI PERNEQGQTLWSKTNDAGSD-RVMVSPLAVTWWNRNGPTTS-TVHYPK

VYKSRFGRLERRKEIMWKELRFTLVIRQRRRVTQPVEQRLRTGEIKDLQMWTLFEDEAP VYKSRFGRLERRKEIMWKELRFTLVIRQRRRVPTQPVEQRLRTGEI KDLQMWTLFEDEAP VYK SRFGRLERRKEIMWKELRFTLVIRQRRRVPTQPVEQRLRTGEI KDLQMWTLFEDEAP VYK SRFGRLERRKEIMWKELRFTLVIRQRRRVTQPVEQRLRTGEI KDLQMWTLFEDEAP VYK SRFGRLERRKEIMWKELRFTLVLRQRRRVDTQPVEQRLRTGEI KDLQMWTLFEDEAP VYKSRFGRLERRKEIMWKELRFTLVIRQRRRVPTQPVEQRLRTGEIKDLQMWTLFEDEAP VYESFFLRKMRLDNATWGRITFGPVERVRKRVLLNPLTKEMPPDEASNVIMEILFPKEAG VYE SFFLRKMRLDNATWGRITFGPVERVRKRVULNPLTKEMPPDEASNVIMEILFPKEAG VYESFFLRKMRLDNATWGRITFGPVERVRKRVLLNPLTKEMPPDEASNVIMEI LFPREAG VYE SFFLRKMRLDNATWGRITFGPVERVRKRVLLNPLTKEMPPDEASNVIMEI LFPREAG VYESFFLRKMRLDNATWGRITFGPVERVRKRVLLNPLTKEMPPDEASNVIMEILFPKEAG VYE SFFLRKMRLDNATWGRITFGPVERVRKRVLLNPLTKEMPPDEASNVIMEILFPKEAG VYKTYFDKVERLKHGT FGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVG VYNTYFEKVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVG IYKTYFERVERLKHGT FGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVG VYKTYFEKVGRLKHGT FGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVG VYKTYFEKVERLKHGTFGPVHFRNQVKIRRRVDINPGHADLSAKEAQDVIMEVVFPNEVG

$\left.\begin{array}{l}120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 115 \\ 113 \\ 113 \\ 113 \\ 113 \\ 113 \\ 113\end{array}\right\}$

splP21770|PB2 INCBE splP13877|PB2_INCJJ spl Q9IMP3|PB2_INCJH splQ6I7C4|PB2 INCAA tr|A0A193ppX7|A0A193ppX7 90RTO tr|A0A193PQ18|A0A193PQ18_90RTO tr|A0A4Y5WMY1|A0A4Y5WMYl_9INFB
tr|Q4LD02|Q4LD02 9INFB
splQ9QLL6| PB2_INBLE
tr|u3s2T7|U3s2̄T7_9INFB
splP13875|PB2_INBAC spl036431|PB2_INBP9 splQ1PUC9| PB2_I73A5 splQ6XU90|PB2_I67A0 splP0DOG6| PB2S1 I34A1 sple0A2F5| PB2_I83A4 splQ20NV1|PB2 I80AD sple0A438|PB2_I49A1
splP21770|PB2 INCBE splP13877|PB2_INCJJ spl Q9 IMP3|PB2-INCJH splQ6I7C4|PB2 INCAA tr|A0A193ppX7|A0A193ppX7_90RTO tr|A0A193PQ18|A0A193PQ18_-90RTO tr|A0A4Y5WMY1|A0A4Y5WMY1 9INFB tr|Q4LD02|Q4LD02 9INFB sple9QLL6| PB2_INBLE trlu3s2T7lu3s2T7 9INFB splP13875|PB2 INBAC spl036431|PB2_INBP9 splQ1 PUC9| PB2_I73A5 splexxu90|PB2 I67A0 spl|P0DOG6|PB2 $\bar{S} 1$ _I34A sple0A2F5|PB2 I $\overline{8} 3 \mathrm{~A} 4$ splQ20NV1|PB2_I80AD sple0A438|PB2_I49A1
sp|P21770|PB2_INCBE splP13877|PB2 INCJJ splQ9IMP3|PB2_INCJH splQ6I7C4|PB2_INCAA tr|A0A193PPX7|A0A193PPX7 90RT0 tr|A0A193PQ18|A0A193PQ18 90RTO tr |A0A4Y 5WMY1|A0A4Y5WMYl_-9INFB tr|Q4LD02|Q4LD02 9INFB splQ9QLL 6 |PB2 INBLE tr|U3S2T7|U3s 2 T7_9INFB sp|P13875|PB2_INBAC sp|036431|PB2 INBP9 sp |Q1 PUC9|PB2_I73A5 sple6xU90|PB2 ${ }^{-167 A 0}$ splP0DOG6|PB2S1 I34A1 splQ0A2F5|PB2_I83A4 splQ20NV1|PB2_I80AD splQ0A438|PB2_I49A1
splP21770|PB2 INCBE splP13877|PB2_INCJJ spl09IMP3|PB2-INCJH splQ6I7C4|PB2 INCAA tr|A0A193PPX7|A0A193PPX7 90RT0 tr \mid A0A193PQ18|A0A193PQ18_-90RTO tr|A0A4Y5WMY1|A0A $4 Y 5$ WMY1-9INFB tr|Q4LD02|Q4LD02 9INFB splQ9QLL6|PB2_INBLE tr|u3S2T7lU3s2T7 9INFB sp|P13875|PB2 INBAC spl036431|PB2_INBP9 splQ1PUC9|PB2 I73A5 splQ6XU90|PB2 I67A0 splP0DOG6|PB2 $\bar{S} 1$ I 34 A splQ0A2F5|PB2_I83A4 splQ20NV1|PB2 I80AD splQ0A438|PB2_I49A1

VR2 2 VEEYWEEQEEYGEYKSATALFSRKERSLEWITIGGGINEDRKRLLAMCMI FCRDG VRAVQFEYW EEQEE FYGEYKSATALFSRKERSLEWITIGGGINEDRKRLLAMCMI FCRDG VRIVQFEYW EEQEE FYGEYKSATAL FSRKERSLEWITIGGGINEDRKRLLAMCMIFCRDG VRA VQFEYWEEQEEFYGEYKSATALFSRKERSLEWITIGGGINEDRKRLLAMCMIFCRDG VRIVOFEYW EEQEEFYGEYKSATALFSRKERSLEWITIGGGINEDRKRLLAMCMIFCRDG VR2 VQEEYW EEQEE FYGEYKSATALFSRKERSLEWITIGGGINEDRKRLLAMCMI FCRDG GTIQKIGIWDGEEEFHVRCGECRGILKKSKMRLERLLINSAKKEDMRDLIILCMVFSQDT GTIQRIGIWDGEEEFHVRCGECRGILKKSKMRLEKLLINSAKKEDMRDLIILCMVFSQDT GTIQKI GIWDGEEEFHVRCGECRGILKKSQMRMEKLLINSAKKEDMKDLIILCMVFSQDT GTIQKI GIWDGEEEFHVRCGECRGILKKSKMRMERLLINSAKKEDMKDLIILCMVFSQDT GTIQRIGIWDGEEEFHVRCGECRGILKKSKMRMEKLLINSAKKEDMKDLIILCMVFSQDT GTIORI GIWDGEEEFHVRCGECRGILKKSKMRMERLLINSAKKEDMKDLIILCMVFSODT LQTLKIRVHEGYEE FTMVGKRATAILRKATRRLVQLIVSGRDEQSIAEAI IVAMVFSQED LQTLKIRVHEGYEE FTMVGKRATAILRKATRRLVQLIVSGRDEQSIVEAI IVAMVFSQED LQTLKIRVHEGYEE FTMVGRRATAILRKATRRLIQLIVSGRDEQSIAEAI IVAMVFSQED LQTLKIRVHEGYEE FTMVGRRATAILRKATRRLIQLIVSGRDEQSIAEAI IVAMVFSQED LQTLKIRVHEGYEE FTMVGRRATAILRKATRRLIQLIVSGRDEQSIAEAI IVAMVFSQED LQTLKIRVHEGYEE FTMVGRRATAILRKATRRLIQLIVSGRDEQSIAEAI IVAMVFSQED

DYFKDAPATITMADLTTKLGREIPYQYVMGINWIQ ${ }^{\text {FSEDNLEALLYSRGIVETNPGKMGSS }}$ DYFKDAPATITMADLSTKLGREIPYQYVM DYFKDAPATITMADLSTKLGREIPYQYVMANWIQFSEDNLEALLYSRGIVETNPGKMGSS
 DYFKDAPATITMADLSTKLGREIPYQYVMANWIQRSEDNLEALLYSRGIVETNPGKMGSS DYFKDAPATITMADLSTKLGREIPYQYVMANWIQESEDNLEALLYSRGIVETNPGKMGSS RMFQGVRGE INFLNRAG---QLLSPMYQLQRYFLNRSND---EFDQWGYE-ESPRA---RMFQGVRGE INFLNRAG---QLLSPMYQLQRYFLNRSND--- EDQWIGYE-ES PKA---RMFQGVRGE INFLNRAG---QLLSPMYQLQRYFLNRSND---EDQWGYE-ES PKA---RMFQGVRGE INFLNRAG---QLLSPMYQLQRYFLSRSND---EFDQWGYE-ESPKA---RMFQGVRGE INFLNRAG---QLLSPMYQLQRYFLNRSND---EDDQWGYE-EPPRA---RMFQGVRGE INFLNRAG---QLLSPMYQLQRYFLNRSND---EDQWGYE-ES PKA----CMIKAVRGDLNFVNRAN---QRLNPMHQLLRHFQRDAKV---ERNWGIE-HIDNV----CMIKAVRGDLNFVNRAN---QRLNPMHQLLRHFQRDAKV---EFQNGGIE-HIDNV----CMIKAVRGDLNFVNRAN---QRLNPMHQLLRHFQKDAKV---EFQNGGVE-PIDNV----CMIKAVRGDLNFVNRAN---QRLNPMHQLLRHFQKDAKI---EFQNWGVE-PIDNV----CMIKAVRGDLNFVNRAN---QRLNPMHQLLRHFQRDAKV---EFQNMGIE-PIDNV----CMIKAVRGDLNFVNRAN---QRLNPMHQLLRHFQRDAKV---EFQNGIE-PIDNV----

DLPSDKKVTFQDVSFQHPDLAVLRDEKTAITKGYEALIKRLGTGDNDIPSLIAKKDYLSI DLPSDKKVT FQDVSFQHPDLAVLRDEKTAITKGYEALIKRLGTGDNDIPSLIAKKDYLSL DLPSDKKVTFQDVSFQHPDLAVLRDEKTAITKGYEALIKRLGTGDNDIPSLIAKKDYLSL DLPSDKKVTFQDVSFQHPDLAVLRDEKTAITKGYEALIKRLGTGDNDIPSLIAKKDYLSI DLPSDKKVTFQDVSFQHPDLAVLRDEKTAITKGYEALIKRLGTGDNDDIPSLIAKKDYLSI DLPSDKKVTFQDVSFQHPDLAVLRDEKTAITKGYEALIKRLGTGDNDIPSLIAKKDYLSI DVSELESQAQLMITYDTPKMNEMGTTKELVQNTYQWVLKNLVTLKAQF-----LLGKEDM DVSELESQAQLMITYDTPKMWEMGTTKELVQNTYQWVLKNLVTLKAQF-----LLGKEDM DVSELESQAQLMITYDTPKMWEMGTTKELVQNTYQWVLKNLVTLKAQF-----LLGKEDM DVSELESQAQLMITYDTPKMNEMGTTKELVQNTYQWVMKNLVTLKAQF-----LLGKEDM DVSELESQAQLMITYDTPKMNEMGTTKELVQNTYQWVLKNLVTLKAQF-----LLGKEDM DVSELESQAQLMITYDTPKMWEMGTTKELVQNTYQWVLKNLVTLKAQF-----LLGKEDM EVSETQGTERLTITYSSSMMWE ING PESVL VNTYQWI IRNWETVKIQW-----SQNPTML EVSETQGTEKLT ITYSSSMMWE ING PESVL/VNTYQWI IRNWETVKIQW-----SQNPTML EVSETQGTEKLTITYSSSMMWE ING PESVLVNTYQWI IRNWETVKIQW-----SQNPTMI EVSETQGTEKLTITYSSSMMWE ING PESVL VNTYQWI IRNWETVKIQW-----SQNPTMI EVSETQGTEKLT ITYSSSMMWE ING PESVL VNTYQWI IRNWEMIKIQW-----SQEPTML EVSETQGTE KLTITYSSSMMWE ING PESVL/VNTYQWI IRNWETVKIQW-----SQD PTML

LALLEGFSVCEND--PRAPMVTGQDLIDVGFGQKVRL FVGQGSVRTFKRTASQRAASSDV LALLEGFSVCEND--PRAPMVTRQDLIDVGFGQRVRLFIGQGSVRTFKRTASQRAASSDV LALLEGFSVCEND--PRAPMVTRQDLIDVGFGQRVRL FVGQGSVRTFKRTASQRAASSDV LALLEGFSVCEND--PRAPMVTRQDLIDVGFGQKVRL FVGQGSVRTFKRTASQRAASSDV LALLEGFSVCEND--PRAPMVTRQDLIDVGFGQKVRL FVGQGSVRTFKRTASQRAASSDV LALLEGFSVCEND--PRAPMVTRQDLIDVGFGQKVRL FVGQGSVRTFKRTASORAASSDV NAVLAGFLVSGKYDPDLGDFKT IEELEKLKPGEKANI LLYQGK PVKVVKRKRYSALSNDI NAVLAGFLVSGKYDPDLGDFKT IEELEKLKPGEKANILLYQGKPVKVVKRKRYSALSNDI NAVLAGFLVSGKYDPDLGDFKTIEELERLKPGEKANILLYQGKPVKVVKRKRYSALSNDI NAVLAGFLVSGKYDPDLGDFKT IEELEKLKPGEKANI LLYQGKPVKVVKRKRYSALSNDI NAVLAGFLVSGKYDPDLGDFKT IEELEKLKPGEKANILLYQGKPVKVVKRKRYSALSNDI NAVLAGFLVSGKYDPDLGDFKT IEELEKLKPGEKANI LLYQGKPVKVVKRKRYSAL SNDI SAVLRGFLILGKEERRYGPALSINELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDS SAVLRGFLILGKEDRRYGPALS INELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDS SAVLRGFLILGKEDKRYGPALS INELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDS SAVLRGFLI LGKEDKRYGPALS INELSNLARGEKANVLIGQGDVVLVMKRKRDS $5 I L T D S$ SAVLRGFLILGKEDKRYGPALS INELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDS SAVLRGFLILGKEDKRYGPALS INELSNLAKGEKANVLIGQGDVVLVMKRKRDSSILTDS

／／End of PB2 subunits of influenza A, B and C viruses		
sp｜P21770｜PB2＿INCBE	NKNVKRIKMSN	774
sp｜P13877｜PB2＿INCJJ	NKNVKRIRMSN－－－－－－－－	774
splQ9 IMP3｜PB2＿INCJH $^{\text {a }}$	NKNVKKIKMSN	774
sp｜06I7C4｜PB2＿INCAA	NKNVKRIKMSN	774
tr｜A0A193PPX7｜｜A0A193PPX7＿90RTO	NKNVKRIKMSN	774
$\operatorname{tr\|A0A193PQ18\|A0A193PQ18-90RTO~}$	NKNVRKIKMSN	774
tr｜A0A4Y 5WMY1｜A0A4Y5 WMY1＿9INFB	SQGIRRQRMTVESMGWALS	770
tr｜04LD02｜O4LD02＿9INFB	SQGIRRQRMTVESMGWALS	770
sp｜Q90LL6｜PB2＿INBLE	SQGIKRQRMTVESMGWALS	770
tr｜U3S2T7｜U3S2T7＿9INFB	SQGIRRQRMTVESMGWALS	771
sp｜P13875｜PB2＿INBAC	SQGIKRQRMTVESMGWALS	770
sp｜036431｜PB2＿INBP9	SQGIKRQRMTVESMGWALS	770
splQ1PUC9｜PB2＿I73A5	QTATRRIRMAIN	759
spl06XU90｜PB2＿167A0	QTATKRIRMAIN－－－－－－－	759
sp｜P0DOG6｜PB2S1＿I34A1	QTATKRIRMAIN－－－－－－－	759
splQ0A2F5｜PB2＿I83A4	QTATKRIRMAIN－－－－－－－	759
splQ20NV1｜PB2＿I80AD	QTATKRIRMAIN－－－－－－－	759
splQ0A438｜PB2＿I49A1	QTATRRIRMAIN	759
	．＊：${ }^{*}$ ：	

Figure 7 A mix and match analysis of human influenza viruses A，B and C（For legends，see Figs．4， 5 and 6）
Table 1 shows the active site regions of different HNH／N endonucleases which makes both double－stranded breaks or nicks on DNAs and single－stranded cleavage on RNAs（CRIPSR－Cas13a and CRIPSR－Cas12a）suggesting the proposed regions on the influenza viral polymerase PB2 subunits could also make a cleavage on the host cell mRNAs in the cap－ snatching process．Proposed HNH／N endonuclease domains，by sequence similarity，are highlighted in yellow and needs further experimental validation．

Table 1 Active site regions in different $\mathrm{HNH} / \mathrm{N}$ family of endonucleases

HNH／N Type（Organism）	Active Site Region
HH－Homing endonuclease domain（Bacteriophage Bp7 I－Tev	II）－YEIHHKDGNRENNDLDNLMCLSIQEHY ${ }^{49}$－
HH－based（HNH／N）group II introns（S．cerevisiae）	－LEVHHVRTLNNAANKIKDDYLLGRMIKMNRKQITICKTCHF ${ }^{842}$
HH－based mcr $\mathrm{A}(\mathrm{HNH})$ restriction endonuclease（E．coli）	－LEVHHVIPLSSGGADTTDNCVALCPNCHRELHYS ${ }^{258}$－
DH－based HNN endonucleases（E．coli plasmids）	－WYADHVQAV／／PEADCPENLVPACAPCNLLK ${ }^{\text {85 }}$
DH－based HNN endonucleases（E．proavitum）	－MEADHITPWHEGGKTTSVNCQMLCKDCNRRK ${ }^{\mathbf{3 5 5}}$
DH－based HNH Endonuclease VII（Resolvase）（T4 Phage）	－LDHDHELNGPKAGKVRGLLCNLCNAAEGQMKHKFNR³－
HH based HNH Colicin endonuclease（Type 9＊）（E．coli ）	－YELHHDKPISQGGEVYDMDNIRVTTPKRHIDIHRGK592－
HH－HNH Pyocins endonuclease（Type－S1）（P．aeruginosa）	－IEIHHKVRVADGGGVYNMGNLVAVTPKRHIEIHKGGK ${ }^{618}$
HH－HNH Pyocins endonuclease（Type－S2）（ P ．aeruginosa）	－IEIHHKVRIADGGGVYNMGNLVAVTPKRHIEIHKGGK ${ }^{689}$
DH－based Influenza virus A（HNN endonuclease domain）＊	－TTVDH ${ }^{27}$ MAIIKKYTSGRQEKN ${ }^{42}$ PALRMKWM／／PITADKRITEMIPERN ${ }^{71} \mathrm{E}$－
DQ－based Influenza virus B（HNN endonuclease domain）＊	－TTVDQ ${ }^{29}$ YNIIRKFNTSRIEKN ${ }^{44}$ PSLRMKWAMCSN ${ }^{56} \mathrm{~F}$－
DH－based Influenza virus C（HNN endonuclease domain）＊	－SKRDH ${ }^{94} \mathrm{VLASASCIN}{ }^{103} \mathrm{Y} W$ NFCGPCVN ${ }^{113} \mathrm{NS}$－
HH－based CRISPR－Cas13a（HNH endonucleases domains）＊ ＞sp／PODPB8／CS13A），Listeria seeligeri	－TLIHH ${ }^{11}$ LGVLFFCDYMY ${ }^{23}$ RRE／／DRKKVLISRDKNG ${ }^{55}$－ －QIMHH ${ }^{74}$ KKSSFYKSVVN ${ }^{85}$ KTICRPEQKQMKKLVHG ${ }^{102}$－
HH－based CRISPR－Cas13b（HNN endonuclease domain） ＞tr／E6K398／Prevotella buccae	－DYMHH ${ }^{199}$ ENIDMQRDFTHLN ${ }^{212}$ RKKQVGRTKN ${ }^{222}$ II－
DH－based CRISPR－Cas12a（HNN endonuclease domain）＊ ＞sp／U2UMQ6／CS12A，Acidaminococcus sp．	－AKGHH ${ }^{755}$ GKPNLHTLYWTGLFSPEN ${ }^{773}$ LAKTSIKLNG ${ }^{783}$
DH－based CRISPR－Cas9（HNN endonuclease domain）＊ ＞sp／J3F2BO／CRISPR－CAS9，Actinomyces naeslundii	－CQLDH ${ }^{581}$ IVPQAGPGSNN ${ }^{593}$ RRGNLVAVCERCN ${ }^{606} \mathrm{RSKS}^{610}$
DH－based CRISPR－Cas9（HNN endonuclease domain） ＞sp／Q99ZW2／CRIPRS－Cas9，Streptococcus pyogene	－YDVDH ${ }^{840}$ IVPQSFLKDDSID ${ }^{854}$ KVLTRSDK ${ }^{863}{ }^{86}$ RKS 867－ 5
SDM \＆X－ray data Type II restriction endonuclease R．KpnI CoIE7 HNH endonuclease（E．coli）（Colicin） Pyocin S8（P．aeruginosa） Vvn（Vibrio vulnicus HNN nuclease）	```-FELH每45EKPISQNGGVYDMD \560ISVVTPKRHIDI每73RGK- Zn2+ [32] Y旡HHH}\mp@subsup{}{}{789}\mathrm{ VVQISQGGAVYDIDN N04LRVMTPKMHIQVHSN N'19KGK-Zn2+ [33] -EWE[[00VV----------------HN118LTPAIGEVNN N```

Adapted from Palanivelu（22）＊By sequence similarity．Experimentally validated active site amino acids of the HNH／N domains are highlighted in dark blue（SDM）and light blue（X－ray crystallography）．

CRISPR-Cas13a is a single-molecule effector of the Class II, Type VI family of CRISPR-Cas systems that is part of the bacterial and archaeal defense systems. All so far characterized Cas13-family members possess two distinct active sites: one for precrRNA processing and the other for target ssRNA cleavage. Recently, Kick et al. [35] found that the Cas13a from the purple bacteria, Rhodobacter capsulatus, possessed two HEPN (higher eukaryotes and prokaryotes nucleotide binding) domains which exhibited nuclease activity. Interestingly, they found that RcCas13a did not rely on the catalytic HEPN-domains for pre-crRNA processing since RcCas13a mutants, where the active-site residues in one or both of the HEPN1 or HEPN2 domains were mutated to Ala, were not affected in their pre-crRNA processing activity, suggesting the active site is elsewhere and possibly in the HNH domain.

The CRISPR-associated protein Cas12a (Cpf1) possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. Like CRISPR-Cas9, CRISPR-Cas12a has a conserved RuvC nuclease domain at its C-terminal region.

In CRISPR-Cas 9 enzymes, the HNH domain binds to the target DNA and cleaves it.

3.2. HNH/N Active Site Analyses of Human Influenza Viruses A, B and C

Saravanan et al. [31] have analyzed the HNH motif in the Type II restriction endonuclease R.KpnI, a member of the HNH nuclease superfamily, which possess the HNH domain with the conserved amino acids D148, H149 and Q175. By SDM analysis they have shown that the $\mathrm{D} 148 \rightarrow \mathrm{G} / \mathrm{A}$ and $\mathrm{H} 149 \rightarrow \mathrm{~L} / \mathrm{A}$ led to complete loss of activity and the mutant $\mathrm{Q} 175 \rightarrow \mathrm{E}$, failed to bind DNA at the standard conditions, although the DNA binding and cleavage was rescued at pH 6.0.

Furthermore, the nuclease domain of ColE7 (nuclease-ColE7) purified from Escherichia coli contained a one-to-one stoichiometry of zinc ion and that this zinc-containing enzyme hydrolyzed DNA without externally added divalent metal ions. The apo-enzyme, in which the indigenous zinc ion was removed from the nuclease-ColE7, had no detectable DNase activity [36]. SDM experiments followed by fluorescence resonance energy transfer (FRET) assays, by Huang and Yuan [32] to decipher the role of conserved Asn and His residues in the H545, N560, H573 motif of the Colicin, ColE7, found that in the H545 mutants, the activity was completely abolished while activities of N560 and H573 mutants varied from 6.9% to 83.2% of the wild-type activity. Both $\mathrm{N} 560 \rightarrow$ A and N560 \rightarrow D mutants contained a disordered loop in the HNH motif due to the disruption of the hydrogen bond network surrounding the side-chain of residue of N560 [32].

The active site amino acids of Vvn HNH endonuclease were analyzed by both SDM and X-ray crystallography by Li et al. [34]. They found that the mutation of the invariant His $80 \rightarrow$ Ala abolished the endonuclease activity of Vvn, demonstrating the critical importance of this residue in DNA hydrolysis. The X-ray crystallographic study has further suggested that the Vvn HNH endonuclease hydrolyzed DNA by a general single-metal ion mechanism. The metal ion located in the $\beta \beta \alpha$-metal motif was assigned as a magnesium ion in Vvn [34]. The X-ray crystallographic data have further shown that the magnesium ion was bound to Glu79, Asn127 and four water molecules. A water molecule, W1, bridges the invariant His80 and a Mg^{2+}-bound water (Table 1).

3.3. Proposed Mechanism of Action of HNN of Human Influenza Viruses A, B and C

The invariant D/H is always found to be engaged with a metal ion and the first invariant His of D/HHNH/N domain acts as a general base to activate a metal-bound water molecule for the nucleophilic attack on the scissile phosphate bond of nucleic acids, and the first Asn interacts with base to be cleaved and thus, generating 3'-OH for subsequent viral mRNA synthesis (in the nucleus) by the PB1 subunit of the polymerase in influenza viruses. The second His/Asn stabilizes the leaving group (Fig. 7) [22, 23].

Figure 8 Proposed mechanism of 'Cap-binding and cleavage by PB2 subunits of influenza polymerase (Numbering from influenza virus A, H1N1). CAP, Host mRNA cap structure

4. Conclusions

The endonuclease is suggested to be present in the PB1 and PA subunits of the heterotrimeric human influenza polymerases. However, by sequence similarity, a typical HNH/N motif is identified in the cap-snatching PB2 subunit itself, suggesting that it could not only bind the cap structures of the host mRNAs but also could cleave it. The PB2 subunits of the human influenza viruses A and B are very close to each other, whereas the C has significantly diverged from them. MSA analyses have also shown that even though these viruses are genetically diverged, but share a common genetic ancestry. These results will facilitate the optimization of endonuclease inhibitors as potential new anti-influenza drugs, and could also help in developing new antiviral drugs for the treatments of flu in the future.

Compliance with ethical standards

Acknowledgments

The author wishes to thank Dr. H. Shakila, Professor and Head, Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, for useful suggestions on the manuscript.

Disclosure of conflict of interest

The author has declared that no competing interests exist.

References

[1] Palese P. Influenza: Old and new threats. Nat Medicine. 2004; 10: S82-S87.
[2] Dangi T, Jain A. Influenza Virus: A Brief Overview. Proc. Natl. Acad. Sci. (USA). 2012; 82(1):111-121. DOI 10.1007/s40011-011-0009-6.
[3] Su S, Fu X, Li G, Kerlin F, Veit M. Novel Influenza D virus: Epidemiology, pathology, evolution and biological characteristics, Virulence. 2017; 8:1580-1591.
[4] Guo Y, Jin F, Wang P, Wang M, Zhu JM. Isolation of Influenza virus C from pigs and experimental infection of pigs with influenza C virus. J Gen Virol. 1983; 64:177-182.
[5] Molinari NA, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, Bridges CB. The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine. 2007; 25:50865096. [PubMed: 17544181]
[6] Muraki Y, Hongo S. The molecular virology and reverse genetics of influenza C virus. Jpn J Infect Dis. 2010; 63:157-65. [PubMed: 20495266]
[7] Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 2015; 14:167-182.
[8] Krug R, Fodor E. Textbook of Influenza. Webster R, Monto A, Braciale T, Lamb R, editors. Wiley-Blackwell; 2013. pp. 57-66.
[9] Fodor E. The RNA polymerase of influenza a virus: mechanisms of viral transcription and replication. Acta Virol. 2013; 57:113-22. [PubMed: 23600869]
[10] Resa-Infante P, Jorba N, Coloma R, Ortin J. The influenza virus RNA synthesis machine: advances in its structure and function. RNA Biol. 2011; 8:207-15. [PubMed: 21358279]
[11] Plotch SJ, Bouloy M, Ulmanen L, Krug RM. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell. 1981;23:847-858.
[12] Pflug A, Guilligay D, Reich S, Cusack S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature. 2014;516:355-360.
[13] Fan H, Walker AP, Carrique L, Keown JR, Martin IS, Karia D, Sharps J, Hengrung N, Pardon E, Steyaert J, Grimes JM, Fodor E. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature. 2019; 573:287-295.
[14] Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, Ruan H. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal. 2021;19, 1-10
[15] Willis AN, Dean SE, Habbouche JA, Kempers BT, Ludwig ML, Sayfie AD, Lewis SP, Harrier S, DeBruine ZJ, Garrett R, et al. Nuclear localization signal sequence is required for VACM-1/CUL5-dependent regulation of cellular growth. Cell Tissue Res. 2017;368(1):105-114.
[16] Yan C, Shi W, Gu J, Lee RJ, Zhang Y. Design of a novel nucleus-targeted NLS-KALA-SA nanocarrier to delivery poorly water-soluble anti-tumor drug for lung cancer treatment. J Pharm Sci. 2021;S0022-3549(21):00001.
[17] Monod A, Swale C, Tarus B, Tissot A, Delmas B, Ruigrok RW, et al. Learning from structure-based drug design and new antivirals targeting the ribonucleoprotein complex for the treatment of influenza. Expert Opin Drug Discov. 2015; 10:345-371.
[18] Dias A, et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature. 2009; 458:914-8. [PubMed: 19194459]
[19] Guilligay D, et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol. 2008; 15:500-6. [PubMed: 18454157]
[20] Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, et al. Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature. 2009; 458:909-13.
[21] Shi L., Summers DF, Peng Q, Galarza JM. Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell mRNA and functions only as the trimeric enzyme. Virology. 1995; 208:38-47.
[22] Palanivelu P. Assessment and Analyses of Homing Endonucleases and Mechanism of Action of CRISPR-Cas9 HNH Endonucleases, In Current Advances in Chemistry and Biochemistry Vol. 1, pp 20-48. SCIENCEDOMAIN International Book Publishers, UK. Print ISBN: 978-93-90516-10-0, eBook ISBN: 978-93-90516-18-6. DOI: 10.9734/bpi/cacb/v1/2273E, 2021
[23] Xu SY, and Gupta YK. Natural zinc ribbon HNH endonucleases and engineered zinc finger nicking endonuclease. Nucleic Acids Res. 2013, Vol. 41, 378-390.
[24] Xu SY, Sequence-specific DNA nicking endonucleases. Bio Mol Concepts. 2015; 6(4): 253-267
[25] Li ML, Rao P, Krug RM. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J. 2001; 20, 2078-2086.
[26] Blaas D, Patzelt E, Kuechler E. Identification of the cap binding protein of influenza virus. Nucleic Acids Res. 1982;10:4803-4812.
[27] Krug RM, Ueda M, Palese P. Temperature-sensitive mutants of influenza WSN virus defective in virus- specific RNA synthesis. J Virol. 1974; 64: 790-796.
[28] Mahy BWJ, Barret T, Nichol ST, Penn CR, Wolstenholme AJ. Analysis of the functions of influenza virus genome RNA segments by use of temperature-sensitive mutants of fowl plague virus. In "Replication of negative strsnd viruses" (DHL Bishop and RW Compans, Eds). Pp 379-387, Elsevier/North Holland, New York, 1981.
[29] Kobayashi M, Tuchiya K, Nagata K, Ishihama A Reconstitution of influenza virus RNA polymerase from three subunits expressed using recombinant baculovirus system. Virus Res. 1992; 22: 235-245
[30] Honda A, Mizumoto K, Ishihama A. Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells. 1999; 4, 475-485.
[31] Saravanan M, Bujnicki JM, Cymerman IA, Rao DN, Nagaraja V. Type II restriction endonuclease R.KpnI is a member of the HNH nuclease superfamily. Nucleic Acids Res. 2004; 23:6129-6135.
[32] Huang H, HS Yuan. The Conserved Asparagine in the HNH Motif Serves an Important Structural Role in Metal Finger Endonucleases. J Mol Biol. 2007; 368:812-821
[33] Turano H, Gomes H, Domingos RM, Degenhardt MFS, Oliveira CLP, Garratt RC, Lincopan N Netto LES. Molecular Structure and Functional Analysis of Pyocin S8 from Pseudomonas aeruginosa Reveals the Essential Requirement of a Glutamate Residue in the H-N-H Motif for DNase Activity. J Bacteriol. 2020; 202:1-17, e00346-20
[34] Li CL, Hor LI, Chang ZF, Tsai LC, Yang WZ, Yuan HS. DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. EMBO J. 2003; 22:4014-4025.
[35] Kick LM, von Wrisberg MK, Runtsch LS, Schneider S. Structure and mechanism of the RNA dependent RNase Cas13a from Rhodobacter capsulatus. Commun Biol. 2022; 5:71, https://doi.org/10.1038/s42003-022-030254.
[36] Ku WY, Liu YW, Hsu YC, Liao CC, Liang PH, Yuan HS, Chak FU. The zinc ion in the HNH motif of the endonuclease domain of colicin E7 is not required for DNA binding but is essential for DNA hydrolysis. Nucleic Acids Res. 2002; 30:1670-1678.

[^0]: * Corresponding author: Peramachi Palanivelu

 Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai - 625 021, India.

