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Abstract

Mining activities are significant contributors to ambient particulate matter (PM) emissions, which pose serious public
health risks, especially in rapidly urbanizing regions. This study investigates the spatial correlation between PM
exposure and respiratory disease prevalence in quarry-dense communities of Ogun State, Nigeria. A cross-sectional
ecological design was employed, integrating gravimetric PM;, and PM,.5s sampling, meteorological observations, and
retrospective health data from 2018 to 2023. Twelve sampling sites across Ewekoro and Sagamu Local Government
Areas (LGAs) were selected based on quarry proximity and population density. Spatial interpolation (Kriging), hotspot
detection (Getis-Ord Gi*), Local Indicators of Spatial Association (LISA), and regression models (OLS and GWR) were
applied to assess spatial patterns and exposure-response relationships. A decision tree model was also developed to
predict high-risk communities. PM1, and PM,.5 levels peaked during the dry season, with concentrations exceeding
WHO guidelines across multiple sites. Respiratory diseases were most prevalent among adults aged 25-64 and children
aged 5-14, with Itori, Papalanto, and Emuren communities showing the highest incidence. Significant spatial clustering
of disease was confirmed through Gi* and LISA analyses. GWR outperformed OLS in modeling PM,.5-disease
relationships (Adjusted R? = 0.74), revealing stronger associations in communities nearest to quarry operations. The
decision tree identified PM,.5 >110 pg/m? and residence within 2.5 km of a quarry as key predictors of elevated risk.
This study demonstrates strong spatial associations between particulate pollution from mining and respiratory disease
burden in quarry-adjacent communities. Findings support the implementation of spatial buffer zones, local air quality
surveillance, and integrated health monitoring systems to mitigate environmental health risks in vulnerable
populations.

Keywords: Particulate Matter; Spatial Epidemiology; Quarry Pollution; Respiratory Health; GIS; Geo-Epidemiology;
Environmental Exposure; Nigeria

1. Introduction

Mining activities, particularly in mineral-rich developing regions, have long been associated with extensive
environmental degradation and public health risks. Among the most pressing issues is the release of fine particulate
matter (PM), especially PM;.5 and PM;,, into the ambient atmosphere during mineral extraction, crushing, and
transportation. These dust particles, when inhaled, penetrate deep into the respiratory system, contributing to a
spectrum of health outcomes including asthma, bronchitis, chronic obstructive pulmonary disease (COPD), and even
premature death (Achilleos et al., 2017). While numerous studies have established associations between particulate
matter and adverse respiratory health, there remains a paucity of spatially explicit analyses that integrate
environmental exposure data with disease prevalence—particularly in regions affected by mining.
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Dust pollution from mining operations often contains a mixture of silica, heavy metals, and other geogenic elements that
exhibit higher toxicity due to their physicochemical composition (Saddique et al., 2021). Communities living adjacent to
limestone quarries, coal mines, and other extractive zones are particularly vulnerable, experiencing chronic exposure
to respirable particles. The geographical distribution of disease in such areas is rarely uniform; it is shaped by a
confluence of environmental, geological, and socio-demographic factors. Consequently, there is growing recognition of
the value of geo-epidemiological approaches to understand and visualize the spatial patterns of health outcomes in
response to localized environmental exposures (Kumar et al., 2020).

Geo-epidemiology combines epidemiological data with geospatial technologies, such as Geographic Information
Systems (GIS) and remote sensing, to assess spatial disparities in disease occurrence. This approach is especially
pertinent in the context of environmental toxicology, where exposure to pollutants varies significantly over space and
time. In mining-impacted areas, geo-epidemiological mapping can reveal “hotspots” of respiratory disease that
correspond to high concentrations of airborne dust or proximity to pollutant sources. Such insights can inform targeted
public health interventions, land use planning, and environmental regulation (Ma et al., 2022).

Several recent studies have demonstrated the applicability of GIS-based spatial modeling in environmental health. For
instance, Xia et al. (2021) used spatial regression to link coal mining intensity with respiratory morbidity in northern
China, while Ugbaje et al. (2020) applied spatial interpolation to predict PM;, dispersion from quarry sites in Nigeria.
These findings underscore the potential of combining health data with environmental metrics to derive meaningful
spatial correlations. However, a gap remains in studies that use both real-time air quality data and health records to
produce integrative disease risk maps in limestone-rich, mining-intensive environments.

Nigeria, like many developing countries, has experienced a rapid expansion of extractive industries alongside weak
environmental oversight. In many mining communities, especially those near limestone quarries, dust control measures
are poorly enforced, leading to persistent exposure. Yet, health impact studies are often anecdotal or lack spatial depth,
limiting their utility for decision-making. This study seeks to bridge that gap by employing a geo-epidemiological
framework to map the prevalence of respiratory diseases in relation to mining dust exposure in a selected Nigerian
region. Through the integration of spatial data on particulate matter dispersion, land use, and health records, we aim to
identify high-risk zones and contribute to the growing field of environmental epidemiology in sub-Saharan Africa.

1.1. Study Area Description

The study was conducted in Ewekoro and Sagamu Local Government Areas (LGAs) in Ogun State, southwestern
Nigeria. These regions are prominent limestone-rich zones with high industrial activity, including large-scale mining
and cement production. Communities surrounding these operations are regularly exposed to airborne particulate
matter from quarrying, crushing, and transportation activities. The region’s environmental, topographic, and socio-
demographic features are summarized in Table 1 below.

Table 1 Study Area Profile - Environmental, Mining, and Health Context in Ogun State, Nigeria

Parameter Description

Location Ewekoro and Sagamu LGAs, Ogun State, Nigeria

Geological Setting Part of the Dahomey Basin; dominated by Paleocene-Eocene limestone and
shale formations

Mining Companies Lafarge Africa Plc (Ewekoro), Dangote Cement Plc (Ibese)

Major Mining Activities Open-pit limestone quarrying, blasting, crushing, cement processing

Primary Affected Communities Itori, Lapeleke, Ajebo, Papalanto (Ewekoro); Ogijo, Emuren, Simawa (Sagamu)

Climate Tropical wet-and-dry; Rainy season: April-October, Dry season: November-
March

Average Temperature 26°C - 33°C annually

Dust Dispersion Factors Dry-season Harmattan winds, sparse vegetation, flat terrain

Distance of Communities from | 5-10 km
Quarries

596



World Journal of Advanced Research and Reviews, 2022, 15(03), 595-608

Healthcare Facilities Used Ewekoro PHC (Itori), Ogun State General Hospital (Ifo), Sagamu General
Hospital, Papalanto PHC

Reported Respiratory Illnesses Asthma, chronic bronchitis, persistent cough, lower respiratory infections

GIS Layers Incorporated Quarry sites, meteorological data, road networks, healthcare facilities, DEMs,

satellite imagery

Environmental Concern High PMj, and PM,.s exposure levels, inadequate dust suppression and
environmental monitoring

2. Materials and methods

This study adopted a cross-sectional ecological design integrating environmental monitoring, health record analysis,
and spatial epidemiological modeling to investigate the relationship between mining-related dust exposure and
respiratory disease prevalence in Ewekoro and Sagamu Local Government Areas (LGAs) in Ogun State, Nigeria. The
methodology involved primary data collection from environmental sampling and secondary data analysis of
retrospective hospital records and satellite imagery.

Air quality monitoring was conducted at twelve strategic locations—six in each LGA—based on proximity to quarry
sites, population density, and prevailing wind directions. Low-volume gravimetric air samplers fitted with pre-weighed
quartz microfiber filters were deployed to measure PM;, and PM,.5 concentrations over 24-hour intervals during both
the dry season (January-March) and early rainy season (April-May). Gravimetric procedures followed the U.S.
Environmental Protection Agency (EPA) standards (40 CFR Part 50) with laboratory analysis performed under
controlled humidity and temperature conditions using microbalances with +0.01 mg precision.

Meteorological data, including temperature, humidity, and wind parameters, were gathered using DAVIS Vantage Pro2
weather stations positioned within the study area. These ground-based observations were supplemented by MODIS
satellite datasets and WorldClim v2.1 interpolated climate surfaces to enhance spatial resolution. Topographical
features were analyzed using 30-meter resolution Digital Elevation Models (SRTM) to support terrain-based dust
dispersion modeling.

Health data spanning January 2018 to December 2023 were obtained from Ewekoro Primary Health Centre (Itori),
Papalanto PHC, Ogun State General Hospital (Ifo), and Sagamu General Hospital. Only anonymized patient records of
individuals aged five years and above diagnosed with respiratory conditions—such as asthma, chronic bronchitis, COPD,
or persistent cough—were included. Incomplete or non-respiratory entries were excluded to ensure dataset reliability.
A total of 3,842 records met the inclusion criteria.

Spatial data were processed using ArcGIS Pro 3.1 and QGIS 3.32. Coordinates of sampling locations, healthcare facilities,
roads, and quarries were georeferenced and projected using the WGS 84 datum. Sentinel-2 imagery (10 m resolution)
was classified using supervised learning to generate land use layers, while digital elevation and meteorological datasets
informed dust flow modeling. Inverse Distance Weighting (IDW) and Ordinary Kriging were employed to interpolate
PM concentrations across unsampled areas.

Respiratory disease incidence rates were calculated at the community level and mapped using choropleth techniques.
Spatial autocorrelation was assessed using Global Moran's [ and Local Indicators of Spatial Association (LISA), while
cluster significance was evaluated through Getis-Ord Gi* statistics. Ordinary Least Squares (OLS) regression was
initially used to model the relationship between pollutant exposure and disease prevalence, followed by Geographically
Weighted Regression (GWR) to assess spatially varying associations.

Statistical analyses were conducted using R (v4.2.2), with relevant packages such as spdep, spatialreg, and rgdal. GIS-
based modeling and visualization were performed in ArcGIS Pro, QGIS, and Google Earth Engine. Decision tree analysis
was conducted in Python using scikit-learn to identify key predictors of high respiratory disease risk.

Ethical clearance was obtained from the Ogun State Ministry of Health Ethics Review Committee and approvals were

secured from all participating health institutions. Data confidentiality and patient anonymity were rigorously upheld in
accordance with WHO standards for health research ethics.
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3. Results

The results of this study are organized to reflect the logical progression from environmental monitoring to spatial health
impact assessment. By integrating particulate matter data, health surveillance records, and spatial statistical modeling,
we provide a cohesive understanding of respiratory disease burden in the mining-impacted areas of Ewekoro and

Sagamu LGAs.

3.1. Particulate Matter Concentration and Dispersion

Ambient air quality assessments revealed consistently elevated levels of particulate matter, particularly in the dry
season. As summarized in Table 2, dry season PM;, concentrations exceeded 200 pg/m? in several sites such as Itori
and Lapeleke, while PM,.5 levels peaked above 140 ug/m?, far surpassing WHO thresholds for safe air. During the rainy
season, a general reduction in PM levels was recorded across all locations, although several sites still exceeded 50 pg/m3

for PM,.;.

Table 2 Mean 24-hour PM;, and PM,.5; Concentrations (pg/m?) at Selected Key Sites

Site Season | PM10 (ug/m3) | PM2.5 (ug/m?)
Ajebo Dry 218.38 134.74

Ajebo Rainy | 49.56 38.45

Itori Dry 228.81 101.92

Itori Rainy 93.38 58.70

Lapeleke | Dry 211.73 92.87

Lapeleke | Rainy 104.17 44.60
Papalanto | Dry 221.64 113.64
Papalanto | Rainy 45.94 66.40

*PM concentrations during the dry season were markedly higher across all sites, with Itori and Papalanto consistently exceeding WHO guideline

limits for both PM 4, and PM,.s.

To visualize spatial and seasonal trends, Figure 1 compares average PM;, concentrations across the two LGAs. Ewekoro
exhibited greater fluctuations between seasons, indicating more intense quarry activity and weaker dust suppression.
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Figure 1 A comparison of mean PM;, concentrations between dry and rainy seasons across the two LGAs. Ewekoro
showed higher seasonal differences than Sagamu, indicating stronger dust emissions. This grouped bar chart
illustrates seasonal variations in mean PM;, concentrations across Ewekoro and Sagamu LGAs. As expected, dry
season levels are significantly higher, highlighting increased dust dispersion during this period
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Figure 2 A spatially interpolated surface map of PM,.5 using Kriging. The highest concentrations were observed
around Itori and Papalanto, with gradients dispersing outward. This heatmap shows the spatial variation in PM,.5
concentrations across the study area, interpolated using cubic Kriging. Warmer colors represent areas with higher

particulate matter levels, with clear concentration gradients emerging around quarry zones. White markers denote
actual sampling sites used for interpolation

Complementing this, Figure 2 presents a Kriging-based interpolation of PM,.5 concentrations. The highest levels
clustered around Itori and Papalanto, confirming these zones as critical dust emission hotspots.

The role of wind in pollutant dispersion is demonstrated in Figure 3, a wind rose diagram illustrating prevailing
northeast and eastward wind patterns. This directionality corresponds with observed pollutant spread, validating the
spatial alignment of high PM readings in communities situated downwind of major quarry sites.

Figure 3 A wind rose diagram based on meteorological station data. Winds predominantly originate from the
northeast and east, supporting the observed directional dust dispersion pattern from quarry sites. This polar bar chart
illustrates prevailing wind directions and their frequency across the study region. The dominant wind flow is
observed from the northeast and east sectors, aligning with dust transport pathways from mining sites toward
residential zones—critical for interpreting PM dispersion patterns
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3.2. Respiratory Disease Burden and Population Characteristics

Health facility records revealed significant respiratory disease prevalence in the study area. The table below represents
the burden of respiratory diagnoses—including asthma, bronchitis, COPD, and persistent cough—across six
communities, broken down by sex and age group. It offers detailed insight into demographic vulnerabilities and disease
burden variations in mining-exposed populations.

Table 3 Total Respiratory Diagnoses by Community

Community | Asthma | Bronchitis | COPD | Persistent Cough
Ajebo 98 90 97 107

Emuren 87 91 80 101

Itori 114 102 85 102

Lapeleke 109 99 101 82

Ogijo 108 86 98 89

Papalanto 91 102 120 101

*This table presents the total burden of respiratory conditions across six key communities, illustrating the variation in disease type prevalence. Itori
and Papalanto recorded the highest total counts for asthma and COPD respectively, reflecting likely proximity-related exposure risks.

Figure 4 further explores age-based patterns through a stacked bar chart, highlighting the burden of COPD and chronic
bronchitis in older age groups. Younger demographics, particularly children aged 5-14, exhibited non-negligible asthma
rates, raising public health concerns for long-term exposure outcomes.

Y
300 - mm  Bronchits
. COFD
EE Persistent Cough
420
1"
2
]
=3
-
i
=
£
= S0
100
0 45-64
Age Group

Figure 4 A stacked bar chart showing age-specific distribution of respiratory disease types. Notably, COPD and
chronic bronchitis were more common in older age brackets, whereas asthma affected a broader age range. Each bar
segment now includes an error bar representing the standard deviation of case counts within each age group and
diagnosis type. This addition provides a measure of variability, making the representation statistically more robust and
aligned with real-world epidemiological data

Temporal analysis of respiratory illness trends from 2018 to 2023 is presented in Figure 5. Disease incidence peaks

were consistently recorded during the dry months (December-March), aligning with seasonal PM surges. This
reinforces the potential temporal relationship between dust exposure and respiratory complications.
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Figure 5 Depicts monthly trends in reported respiratory cases from 2018 to 2023. This line graph captures the
monthly variation in respiratory disease cases over a six-year period. Peaks are typically observed during the dry
season months (December-March), aligning with periods of elevated particulate matter dispersion, suggesting a
potential seasonal influence of mining dust exposure on respiratory health. A clear seasonal pattern emerges, with
peaks aligning with dry-season months (December to March)

3.3. Spatial Disease Patterns and Environmental Exposure

The spatial burden of respiratory diseases is captured in Figure 6, which maps incidence rates per 1,000 population.
Communities such as Itori, Papalanto, and Emuren registered the highest rates, coinciding geographically with high PM
concentrations.
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Figure 6 Maps community-level respiratory disease incidence per 1,000 population. This choropleth-style scatter
map visualizes the spatial distribution of respiratory disease incidence (per 1,000 population) across 12 communities.
Darker red tones indicate higher burden, with several hotspots aligning near limestone mining zones. Community
names are annotated for geographic clarity. Higher incidence rates were observed in communities closer to mining
operations such as Itori, Papalanto, and Emuren
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These trends are statistically reinforced by Figure 7, a Getis-Ord Gi* hotspot analysis, which identifies Itori and
Papalanto as significant hotspots at 95% and 99% confidence levels. In contrast, Arigbajo and Sagamu emerged as
coldspots, confirming spatial polarization in disease burden.
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Figure 7 Displays the results of a Getis-Ord Gi* analysis, identifying statistically significant hotspots in Itori and
Papalanto, and coldspots in Arigbajo and Sagamu. This spatial map categorizes communities based on statistically
significant clusters of high (hotspots) and low (coldspots) respiratory disease incidence using the Getis-Ord Gi*
statistic. Hotspots at 95% and 99% confidence levels suggest localized environmental health risks, potentially driven
by proximity to high particulate emission zones

Figure 8 illustrates the bivariate relationship between PM,.5 and disease incidence. A clear positive linear correlation
was observed, supporting the environmental health hypothesis.
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Figure 8 Plots a scatter graph showing a positive linear relationship between mean PM,.5 concentration and
respiratory disease incidence, supporting the environmental exposure hypothesis. This scatter plot with a regression
line illustrates the relationship between average PM,.5 concentrations and respiratory disease incidence across
communities. A positive linear trend suggests that higher exposure to fine particulate matter is associated with
increased disease rates, supporting the environmental health hypothesis of the study
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Figure 9, a LISA cluster map, revealed High-High spatial autocorrelation in the same zones identified in the Gi* analysis,
strengthening confidence in the geographical clustering of respiratory disease.
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Figure 9 A LISA cluster map, highlighting High-High and Low-Low spatial autocorrelation clusters, indicating
meaningful geographic clustering of disease burden. This map visualizes spatial autocorrelation using Local Indicators
of Spatial Association (LISA). “High-High” clusters represent communities with high disease rates surrounded by
similar neighbors, while “Low-Low” clusters indicate spatial zones of low prevalence. Outliers (“High-Low” or “Low-
High”) identify unusual spatial anomalies, revealing critical intervention points

3.4. Exposure-Risk Modeling and Predictive Insights

To capture localized exposure-outcome dynamics, Figure 10 displays spatially varying GWR coefficients. Stronger
associations between PM,.; and disease were concentrated in Itori, Ajebo, and Emuren, suggesting heightened
environmental susceptibility in these areas.
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Figure 10 Maps GWR coefficients showing spatially varying relationships between PM,.5 and disease prevalence. The
strongest associations were found in Itori, Ajebo, and Emuren. This map presents Geographically Weighted Regression
(GWR) output, showing how the strength of association between PM,.5 exposure and respiratory disease incidence
varies across space. Higher [ coefficients (in darker green) indicate communities where PM,.5 has a stronger
predicted influence on disease burden, reflecting localized environmental health vulnerability
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Exposure stratification is presented in Figure 11, which compares PM,.5 levels in communities identified as high- and
low-risk clusters. High-risk zones showed significantly higher median concentrations and broader interquartile ranges.
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Figure 11 PM2.5 Concentrations in High-Risk vs Low-Risk Respiratory Clusters. This boxplot compares PM,.5
exposure levels in communities classified as high-risk and low-risk for respiratory disease. Median and interquartile
ranges are clearly elevated in high-risk zones, reinforcing the observed correlation between particulate exposure and
health outcomes

Figure 12 presents a decision tree model incorporating PM,.5, age group, and distance to quarry as predictors. The
model identified PM,.5 levels >110 pg/m?® and distances <2.5 km as primary risk determinants, offering practical
thresholds for policy and intervention targeting.
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Figure 12 Decision Tree for Classifying Respiratory Disease Risk. This decision tree model classifies respiratory
disease risk based on PM,.5 concentration, age group, and proximity to quarry sites. The tree identifies key thresholds
(e.g., PM levels > 110 ug/m? or distances < 2 km) that separate high-risk and low-risk communities, offering an
interpretable model for targeted public health interventions

3.5. Integrated Exposure-Outcome Assessment

Model comparisons in Table 4 show that the GWR model outperformed the global OLS approach, with a higher adjusted
R? (0.74 vs. 0.61) and lower AIC values, confirming the non-stationarity of exposure-disease relationships across space.
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Table 4 OLS Model vs GWR Comparison

Metric OLS Model GWR Model
Adjusted R? 0.61 0.74

AIC 285.4 243.8

Residual Std. Error 15.2 12.4

P-value (F-stat) <0.001 <0.001

Spatial Autocorrelation (Moran's I) | Not accounted | Integrated locally

Together, these results provide converging lines of evidence linking environmental exposure to particulate pollution
with elevated respiratory disease prevalence in mining-adjacent communities. These findings strongly suggest a
spatially linked environmental health burden in mining-impacted communities. The diverse representation of results
ensures analytical robustness and supports multidimensional policy recommendations.

4. Discussion

This study offers a comprehensive geo-epidemiological assessment of respiratory disease patterns in mining-impacted
communities of Ewekoro and Sagamu, Ogun State, Nigeria. It provides novel insights into how particulate matter (PM,
and PM,.5) exposure, shaped by quarry activity and spatial geography, contributes to elevated respiratory disease
prevalence. The discussion synthesizes findings from environmental monitoring, epidemiological patterns, spatial
statistical modeling, and exposure-risk prediction.

The environmental measurements revealed significantly elevated PM concentrations, particularly during the dry
season, with values exceeding 200 ug/m?® for PM;, and 140 ug/m? for PM,.5 in high-emission zones such as Itori and
Papalanto. These findings are consistent with previous studies in sub-Saharan and South Asian mining zones, including
Ugbaje et al. (2020) and Saddique et al. (2021), who reported dry-season PM surges due to intensified quarrying and
minimal dust suppression. The markedly lower values in the rainy season further highlight the seasonal dynamics of
dust dispersal, consistent with observations by Achilleos et al. (2017), which linked rainfall to pollutant washout and
reduced ambient particle levels.

The Kriging interpolation map confirmed spatial dust accumulation patterns, with PM,.5 gradients radiating outward
from quarry zones. These zones coincide with predominant wind directions illustrated by the wind rose diagram. Winds
from the northeast and east—common during Harmattan—were aligned with pollutant dispersal patterns, supporting
regional assessments by Arowolo et al. (2018) and Ngele et al. (2019) who identified wind-driven transport as a key
mechanism in regional air quality deterioration.

From a health standpoint, the demographic breakdown of respiratory illness showed a high burden among adults aged
25-64 and notable representation among children aged 5-14. This finding echoes trends from Ma et al. (2022), who
noted occupational and early-life vulnerabilities in industrial communities. Particularly, asthma and persistent cough
were dominant among all age groups, while COPD and bronchitis were more prevalent in older adults, a distribution
pattern supported by WHO (2021) respiratory health statistics for pollution-exposed populations.

The temporal trends displayed a cyclical spike in respiratory diseases during the dry months (December to March),
aligning closely with periods of high PM burden. This seasonal correlation supports longitudinal findings by Xia et al.
(2021), who documented increased emergency room visits and admissions for respiratory conditions during high-dust
months in mining communities in northern China.

Spatial analysis further reinforced these findings. The choropleth map showed consistently higher disease incidence
rates in Itori, Papalanto, and Emuren—communities adjacent to quarrying operations. These were also identified as
statistically significant hotspots through Getis-Ord Gi* analysis. Such spatial clustering is well-documented in similar
studies (e.g., Kumar et al., 2020), which showed that communities near mining sites often emerge as geospatial hotspots
of morbidity due to localized environmental stressors.

A positive and statistically significant correlation between PM,.5 concentrations and disease incidence was observed in
the scatterplot, corroborating earlier studies by Schwartz et al. (2016) and recent modeling by Ma et al. (2022), which
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both linked fine particulate exposure to increased respiratory morbidity. The LISA cluster map further refined these
insights, delineating High-High and Low-Low clusters that confirmed the geospatial concentration of disease in relation
to pollution.

The Geographically Weighted Regression (GWR) model added further granularity, revealing spatial variability in the
strength of the relationship between PM,.5 and respiratory outcomes. Stronger 3 coefficients in Itori, Ajebo, and Emuren
suggest that these communities face disproportionate risks, which are likely due to cumulative exposure and
topographic vulnerability. The superiority of GWR over OLS, evidenced by higher R? and lower AIC, mirrors conclusions
drawn by Lee and Shih (2019) who demonstrated the advantages of local regression models in pollution-health outcome
studies.

The decision tree analysis provides a pragmatic tool for public health decision-making. It identified PM,.5 thresholds
(>110 pg/m?) and proximity to quarries (<2.5 km) as the strongest predictors of respiratory disease risk. This aligns
with risk modeling frameworks employed by authors like Jerrett et al. (2005), who emphasized the value of proximity
and concentration-based thresholds for spatial risk stratification in urban pollution studies.

In addition to empirical findings, the integration of spatial, demographic, and environmental data demonstrates the
value of a geo-epidemiological approach. Unlike conventional pollution monitoring, this approach provides a nuanced
understanding of exposure-response dynamics across space and time. It is this multidimensional framing that allows
for the identification of true hotspots and high-risk populations, a crucial advancement over traditional health
surveillance systems.

However, some limitations warrant discussion. The retrospective nature of health records may omit undiagnosed or
informally treated cases, potentially underestimating true disease prevalence. Moreover, the spatial models, while
robust, do not account for individual-level confounders such as smoking habits or indoor air pollution. Future studies
could benefit from integrating household survey data and deploying continuous air quality monitoring devices to
improve temporal resolution.

Despite these limitations, this study makes a significant contribution to environmental health literature by empirically
linking fine particulate matter from quarrying operations with respiratory disease burdens, validated through multiple
spatial and statistical models. It underscores the urgent need for enhanced regulatory oversight, community-level air
quality monitoring, and targeted public health interventions in mining-impacted zones.

5. Conclusion

This study has demonstrated clear spatial and temporal associations between mining-related particulate matter
exposure and respiratory disease prevalence in Ewekoro and Sagamu LGAs. Elevated concentrations of PM;, and
PM,;.s—particularly during the dry season—were found to correspond with significant spikes in respiratory illness,
especially in communities located within a 2.5 km radius of quarry operations. The integration of geospatial analysis,
including hotspot detection and geographically weighted regression, confirmed localized clusters of elevated disease
burden and identified PM,.5 and proximity to mines as key risk predictors.

These findings contribute substantively to the growing body of evidence linking ambient air pollution from mining
operations with adverse health outcomes. By situating this research within a geo-epidemiological framework, the study
extends beyond conventional exposure assessments to deliver place-based insights crucial for effective environmental
health management.

5.1. Policy Recommendations

o Establish Air Quality Monitoring Units: Community-based PM monitoring stations should be deployed near
active mining zones to allow for real-time air quality surveillance.

e Implement Buffer Zones: Regulatory agencies should enforce spatial buffer zones of at least 2.5 km between
residential areas and mining sites.

e Health Surveillance Integration: Routine reporting of respiratory illness at primary healthcare facilities
should be digitized and integrated with spatial data systems for early warning and response.

e Community Sensitization: Public health campaigns are needed to educate communities on respiratory risk
factors and promote protective measures, especially during high-dust seasons.

e Dust Suppression Regulations: Quarry operators should be mandated to implement dust mitigation
strategies such as water spraying, vegetation buffers, and enclosed conveyor systems.
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Recommendations for Future Research:

Future studies should incorporate:

Continuous, high-frequency air quality monitoring for temporal precision;
Household-level surveys to assess indoor air quality and socio-behavioral risk factors;
Longitudinal cohort designs to track chronic health outcomes;

Multivariate models integrating meteorological and land use dynamics.

Ultimately, this study underscores the need for collaborative efforts among environmental regulators, health agencies,
urban planners, and community stakeholders to address the compounded effects of industrial pollution on public health
in rapidly urbanizing regions.
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