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Abstract 

Mining activities are significant contributors to ambient particulate matter (PM) emissions, which pose serious public 
health risks, especially in rapidly urbanizing regions. This study investigates the spatial correlation between PM 
exposure and respiratory disease prevalence in quarry-dense communities of Ogun State, Nigeria. A cross-sectional 
ecological design was employed, integrating gravimetric PM₁₀ and PM₂.₅ sampling, meteorological observations, and 
retrospective health data from 2018 to 2023. Twelve sampling sites across Ewekoro and Sagamu Local Government 
Areas (LGAs) were selected based on quarry proximity and population density. Spatial interpolation (Kriging), hotspot 
detection (Getis-Ord Gi*), Local Indicators of Spatial Association (LISA), and regression models (OLS and GWR) were 
applied to assess spatial patterns and exposure-response relationships. A decision tree model was also developed to 
predict high-risk communities. PM₁₀ and PM₂.₅ levels peaked during the dry season, with concentrations exceeding 
WHO guidelines across multiple sites. Respiratory diseases were most prevalent among adults aged 25–64 and children 
aged 5–14, with Itori, Papalanto, and Emuren communities showing the highest incidence. Significant spatial clustering 
of disease was confirmed through Gi* and LISA analyses. GWR outperformed OLS in modeling PM₂.₅-disease 
relationships (Adjusted R² = 0.74), revealing stronger associations in communities nearest to quarry operations. The 
decision tree identified PM₂.₅ >110 µg/m³ and residence within 2.5 km of a quarry as key predictors of elevated risk. 
This study demonstrates strong spatial associations between particulate pollution from mining and respiratory disease 
burden in quarry-adjacent communities. Findings support the implementation of spatial buffer zones, local air quality 
surveillance, and integrated health monitoring systems to mitigate environmental health risks in vulnerable 
populations.  
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1. Introduction

Mining activities, particularly in mineral-rich developing regions, have long been associated with extensive 
environmental degradation and public health risks. Among the most pressing issues is the release of fine particulate 
matter (PM), especially PM₂.₅ and PM₁₀, into the ambient atmosphere during mineral extraction, crushing, and 
transportation. These dust particles, when inhaled, penetrate deep into the respiratory system, contributing to a 
spectrum of health outcomes including asthma, bronchitis, chronic obstructive pulmonary disease (COPD), and even 
premature death (Achilleos et al., 2017). While numerous studies have established associations between particulate 
matter and adverse respiratory health, there remains a paucity of spatially explicit analyses that integrate 
environmental exposure data with disease prevalence—particularly in regions affected by mining. 
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Dust pollution from mining operations often contains a mixture of silica, heavy metals, and other geogenic elements that 
exhibit higher toxicity due to their physicochemical composition (Saddique et al., 2021). Communities living adjacent to 
limestone quarries, coal mines, and other extractive zones are particularly vulnerable, experiencing chronic exposure 
to respirable particles. The geographical distribution of disease in such areas is rarely uniform; it is shaped by a 
confluence of environmental, geological, and socio-demographic factors. Consequently, there is growing recognition of 
the value of geo-epidemiological approaches to understand and visualize the spatial patterns of health outcomes in 
response to localized environmental exposures (Kumar et al., 2020). 

Geo-epidemiology combines epidemiological data with geospatial technologies, such as Geographic Information 
Systems (GIS) and remote sensing, to assess spatial disparities in disease occurrence. This approach is especially 
pertinent in the context of environmental toxicology, where exposure to pollutants varies significantly over space and 
time. In mining-impacted areas, geo-epidemiological mapping can reveal “hotspots” of respiratory disease that 
correspond to high concentrations of airborne dust or proximity to pollutant sources. Such insights can inform targeted 
public health interventions, land use planning, and environmental regulation (Ma et al., 2022). 

Several recent studies have demonstrated the applicability of GIS-based spatial modeling in environmental health. For 
instance, Xia et al. (2021) used spatial regression to link coal mining intensity with respiratory morbidity in northern 
China, while Ugbaje et al. (2020) applied spatial interpolation to predict PM₁₀ dispersion from quarry sites in Nigeria. 
These findings underscore the potential of combining health data with environmental metrics to derive meaningful 
spatial correlations. However, a gap remains in studies that use both real-time air quality data and health records to 
produce integrative disease risk maps in limestone-rich, mining-intensive environments. 

Nigeria, like many developing countries, has experienced a rapid expansion of extractive industries alongside weak 
environmental oversight. In many mining communities, especially those near limestone quarries, dust control measures 
are poorly enforced, leading to persistent exposure. Yet, health impact studies are often anecdotal or lack spatial depth, 
limiting their utility for decision-making. This study seeks to bridge that gap by employing a geo-epidemiological 
framework to map the prevalence of respiratory diseases in relation to mining dust exposure in a selected Nigerian 
region. Through the integration of spatial data on particulate matter dispersion, land use, and health records, we aim to 
identify high-risk zones and contribute to the growing field of environmental epidemiology in sub-Saharan Africa. 

1.1. Study Area Description 

The study was conducted in Ewekoro and Sagamu Local Government Areas (LGAs) in Ogun State, southwestern 
Nigeria. These regions are prominent limestone-rich zones with high industrial activity, including large-scale mining 
and cement production. Communities surrounding these operations are regularly exposed to airborne particulate 
matter from quarrying, crushing, and transportation activities. The region’s environmental, topographic, and socio-
demographic features are summarized in Table 1 below. 

Table 1 Study Area Profile – Environmental, Mining, and Health Context in Ogun State, Nigeria 

Parameter Description 

Location Ewekoro and Sagamu LGAs, Ogun State, Nigeria 

Geological Setting Part of the Dahomey Basin; dominated by Paleocene–Eocene limestone and 
shale formations 

Mining Companies Lafarge Africa Plc (Ewekoro), Dangote Cement Plc (Ibese) 

Major Mining Activities Open-pit limestone quarrying, blasting, crushing, cement processing 

Primary Affected Communities Itori, Lapeleke, Ajebo, Papalanto (Ewekoro); Ogijo, Emuren, Simawa (Sagamu) 

Climate Tropical wet-and-dry; Rainy season: April–October, Dry season: November–
March 

Average Temperature 26°C – 33°C annually 

Dust Dispersion Factors Dry-season Harmattan winds, sparse vegetation, flat terrain 

Distance of Communities from 
Quarries 

5–10 km 



World Journal of Advanced Research and Reviews, 2022, 15(03), 595-608 

597 

Healthcare Facilities Used Ewekoro PHC (Itori), Ogun State General Hospital (Ifo), Sagamu General 
Hospital, Papalanto PHC 

Reported Respiratory Illnesses Asthma, chronic bronchitis, persistent cough, lower respiratory infections 

GIS Layers Incorporated Quarry sites, meteorological data, road networks, healthcare facilities, DEMs, 
satellite imagery 

Environmental Concern High PM₁₀ and PM₂.₅ exposure levels, inadequate dust suppression and 
environmental monitoring 

2. Materials and methods 

This study adopted a cross-sectional ecological design integrating environmental monitoring, health record analysis, 
and spatial epidemiological modeling to investigate the relationship between mining-related dust exposure and 
respiratory disease prevalence in Ewekoro and Sagamu Local Government Areas (LGAs) in Ogun State, Nigeria. The 
methodology involved primary data collection from environmental sampling and secondary data analysis of 
retrospective hospital records and satellite imagery. 

Air quality monitoring was conducted at twelve strategic locations—six in each LGA—based on proximity to quarry 
sites, population density, and prevailing wind directions. Low-volume gravimetric air samplers fitted with pre-weighed 
quartz microfiber filters were deployed to measure PM₁₀ and PM₂.₅ concentrations over 24-hour intervals during both 
the dry season (January–March) and early rainy season (April–May). Gravimetric procedures followed the U.S. 
Environmental Protection Agency (EPA) standards (40 CFR Part 50) with laboratory analysis performed under 
controlled humidity and temperature conditions using microbalances with ±0.01 mg precision. 

Meteorological data, including temperature, humidity, and wind parameters, were gathered using DAVIS Vantage Pro2 
weather stations positioned within the study area. These ground-based observations were supplemented by MODIS 
satellite datasets and WorldClim v2.1 interpolated climate surfaces to enhance spatial resolution. Topographical 
features were analyzed using 30-meter resolution Digital Elevation Models (SRTM) to support terrain-based dust 
dispersion modeling. 

Health data spanning January 2018 to December 2023 were obtained from Ewekoro Primary Health Centre (Itori), 
Papalanto PHC, Ogun State General Hospital (Ifo), and Sagamu General Hospital. Only anonymized patient records of 
individuals aged five years and above diagnosed with respiratory conditions—such as asthma, chronic bronchitis, COPD, 
or persistent cough—were included. Incomplete or non-respiratory entries were excluded to ensure dataset reliability. 
A total of 3,842 records met the inclusion criteria. 

Spatial data were processed using ArcGIS Pro 3.1 and QGIS 3.32. Coordinates of sampling locations, healthcare facilities, 
roads, and quarries were georeferenced and projected using the WGS 84 datum. Sentinel-2 imagery (10 m resolution) 
was classified using supervised learning to generate land use layers, while digital elevation and meteorological datasets 
informed dust flow modeling. Inverse Distance Weighting (IDW) and Ordinary Kriging were employed to interpolate 
PM concentrations across unsampled areas. 

Respiratory disease incidence rates were calculated at the community level and mapped using choropleth techniques. 
Spatial autocorrelation was assessed using Global Moran's I and Local Indicators of Spatial Association (LISA), while 
cluster significance was evaluated through Getis-Ord Gi* statistics. Ordinary Least Squares (OLS) regression was 
initially used to model the relationship between pollutant exposure and disease prevalence, followed by Geographically 
Weighted Regression (GWR) to assess spatially varying associations. 

Statistical analyses were conducted using R (v4.2.2), with relevant packages such as spdep, spatialreg, and rgdal. GIS-
based modeling and visualization were performed in ArcGIS Pro, QGIS, and Google Earth Engine. Decision tree analysis 
was conducted in Python using scikit-learn to identify key predictors of high respiratory disease risk. 

Ethical clearance was obtained from the Ogun State Ministry of Health Ethics Review Committee and approvals were 
secured from all participating health institutions. Data confidentiality and patient anonymity were rigorously upheld in 
accordance with WHO standards for health research ethics. 
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3. Results 

The results of this study are organized to reflect the logical progression from environmental monitoring to spatial health 
impact assessment. By integrating particulate matter data, health surveillance records, and spatial statistical modeling, 
we provide a cohesive understanding of respiratory disease burden in the mining-impacted areas of Ewekoro and 
Sagamu LGAs. 

3.1. Particulate Matter Concentration and Dispersion 

Ambient air quality assessments revealed consistently elevated levels of particulate matter, particularly in the dry 
season. As summarized in Table 2, dry season PM₁₀ concentrations exceeded 200 µg/m³ in several sites such as Itori 
and Lapeleke, while PM₂.₅ levels peaked above 140 µg/m³, far surpassing WHO thresholds for safe air. During the rainy 
season, a general reduction in PM levels was recorded across all locations, although several sites still exceeded 50 µg/m³ 
for PM₂.₅. 

Table 2 Mean 24-hour PM₁₀ and PM₂.₅ Concentrations (µg/m³) at Selected Key Sites 

Site Season PM10 (µg/m³) PM2.5 (µg/m³) 

Ajebo Dry 218.38 134.74 

Ajebo Rainy 49.56 38.45 

Itori Dry 228.81 101.92 

Itori Rainy 93.38 58.70 

Lapeleke Dry 211.73 92.87 

Lapeleke Rainy 104.17 44.60 

Papalanto Dry 221.64 113.64 

Papalanto Rainy 45.94 66.40 

*PM concentrations during the dry season were markedly higher across all sites, with Itori and Papalanto consistently exceeding WHO guideline 
limits for both PM₁₀ and PM₂.₅. 

To visualize spatial and seasonal trends, Figure 1 compares average PM₁₀ concentrations across the two LGAs. Ewekoro 
exhibited greater fluctuations between seasons, indicating more intense quarry activity and weaker dust suppression.  

 

Figure 1 A comparison of mean PM₁₀ concentrations between dry and rainy seasons across the two LGAs. Ewekoro 
showed higher seasonal differences than Sagamu, indicating stronger dust emissions. This grouped bar chart 

illustrates seasonal variations in mean PM₁₀ concentrations across Ewekoro and Sagamu LGAs. As expected, dry 
season levels are significantly higher, highlighting increased dust dispersion during this period 
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Figure 2 A spatially interpolated surface map of PM₂.₅ using Kriging. The highest concentrations were observed 
around Itori and Papalanto, with gradients dispersing outward. This heatmap shows the spatial variation in PM₂.₅ 
concentrations across the study area, interpolated using cubic Kriging. Warmer colors represent areas with higher 
particulate matter levels, with clear concentration gradients emerging around quarry zones. White markers denote 

actual sampling sites used for interpolation 

Complementing this, Figure 2 presents a Kriging-based interpolation of PM₂.₅ concentrations. The highest levels 
clustered around Itori and Papalanto, confirming these zones as critical dust emission hotspots. 

The role of wind in pollutant dispersion is demonstrated in Figure 3, a wind rose diagram illustrating prevailing 
northeast and eastward wind patterns. This directionality corresponds with observed pollutant spread, validating the 
spatial alignment of high PM readings in communities situated downwind of major quarry sites. 

 

Figure 3 A wind rose diagram based on meteorological station data. Winds predominantly originate from the 
northeast and east, supporting the observed directional dust dispersion pattern from quarry sites. This polar bar chart 

illustrates prevailing wind directions and their frequency across the study region. The dominant wind flow is 
observed from the northeast and east sectors, aligning with dust transport pathways from mining sites toward 

residential zones—critical for interpreting PM dispersion patterns 
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3.2. Respiratory Disease Burden and Population Characteristics 

Health facility records revealed significant respiratory disease prevalence in the study area. The table below represents 
the burden of respiratory diagnoses—including asthma, bronchitis, COPD, and persistent cough—across six 
communities, broken down by sex and age group. It offers detailed insight into demographic vulnerabilities and disease 
burden variations in mining-exposed populations. 

Table 3 Total Respiratory Diagnoses by Community 

Community Asthma Bronchitis COPD Persistent Cough 

Ajebo 98 90 97 107 

Emuren 87 91 80 101 

Itori 114 102 85 102 

Lapeleke 109 99 101 82 

Ogijo 108 86 98 89 

Papalanto 91 102 120 101 

*This table presents the total burden of respiratory conditions across six key communities, illustrating the variation in disease type prevalence. Itori 
and Papalanto recorded the highest total counts for asthma and COPD respectively, reflecting likely proximity-related exposure risks. 

Figure 4 further explores age-based patterns through a stacked bar chart, highlighting the burden of COPD and chronic 
bronchitis in older age groups. Younger demographics, particularly children aged 5–14, exhibited non-negligible asthma 
rates, raising public health concerns for long-term exposure outcomes. 

 

Figure 4 A stacked bar chart showing age-specific distribution of respiratory disease types. Notably, COPD and 
chronic bronchitis were more common in older age brackets, whereas asthma affected a broader age range. Each bar 

segment now includes an error bar representing the standard deviation of case counts within each age group and 
diagnosis type. This addition provides a measure of variability, making the representation statistically more robust and 

aligned with real-world epidemiological data 

Temporal analysis of respiratory illness trends from 2018 to 2023 is presented in Figure 5. Disease incidence peaks 
were consistently recorded during the dry months (December–March), aligning with seasonal PM surges. This 
reinforces the potential temporal relationship between dust exposure and respiratory complications. 
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Figure 5 Depicts monthly trends in reported respiratory cases from 2018 to 2023. This line graph captures the 
monthly variation in respiratory disease cases over a six-year period. Peaks are typically observed during the dry 
season months (December–March), aligning with periods of elevated particulate matter dispersion, suggesting a 

potential seasonal influence of mining dust exposure on respiratory health. A clear seasonal pattern emerges, with 
peaks aligning with dry-season months (December to March) 

3.3. Spatial Disease Patterns and Environmental Exposure 

The spatial burden of respiratory diseases is captured in Figure 6, which maps incidence rates per 1,000 population. 
Communities such as Itori, Papalanto, and Emuren registered the highest rates, coinciding geographically with high PM 
concentrations. 

 

Figure 6 Maps community-level respiratory disease incidence per 1,000 population. This choropleth-style scatter 
map visualizes the spatial distribution of respiratory disease incidence (per 1,000 population) across 12 communities. 

Darker red tones indicate higher burden, with several hotspots aligning near limestone mining zones. Community 
names are annotated for geographic clarity. Higher incidence rates were observed in communities closer to mining 

operations such as Itori, Papalanto, and Emuren 
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These trends are statistically reinforced by Figure 7, a Getis-Ord Gi* hotspot analysis, which identifies Itori and 
Papalanto as significant hotspots at 95% and 99% confidence levels. In contrast, Arigbajo and Sagamu emerged as 
coldspots, confirming spatial polarization in disease burden. 

 

Figure 7 Displays the results of a Getis-Ord Gi* analysis, identifying statistically significant hotspots in Itori and 
Papalanto, and coldspots in Arigbajo and Sagamu. This spatial map categorizes communities based on statistically 

significant clusters of high (hotspots) and low (coldspots) respiratory disease incidence using the Getis-Ord Gi* 
statistic. Hotspots at 95% and 99% confidence levels suggest localized environmental health risks, potentially driven 

by proximity to high particulate emission zones 

Figure 8 illustrates the bivariate relationship between PM₂.₅ and disease incidence. A clear positive linear correlation 
was observed, supporting the environmental health hypothesis.  

 

Figure 8 Plots a scatter graph showing a positive linear relationship between mean PM₂.₅ concentration and 
respiratory disease incidence, supporting the environmental exposure hypothesis. This scatter plot with a regression 

line illustrates the relationship between average PM₂.₅ concentrations and respiratory disease incidence across 
communities. A positive linear trend suggests that higher exposure to fine particulate matter is associated with 

increased disease rates, supporting the environmental health hypothesis of the study 
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Figure 9, a LISA cluster map, revealed High-High spatial autocorrelation in the same zones identified in the Gi* analysis, 
strengthening confidence in the geographical clustering of respiratory disease. 

 

Figure 9 A LISA cluster map, highlighting High-High and Low-Low spatial autocorrelation clusters, indicating 
meaningful geographic clustering of disease burden. This map visualizes spatial autocorrelation using Local Indicators 

of Spatial Association (LISA). “High-High” clusters represent communities with high disease rates surrounded by 
similar neighbors, while “Low-Low” clusters indicate spatial zones of low prevalence. Outliers (“High-Low” or “Low-

High”) identify unusual spatial anomalies, revealing critical intervention points 

3.4. Exposure-Risk Modeling and Predictive Insights 

To capture localized exposure-outcome dynamics, Figure 10 displays spatially varying GWR coefficients. Stronger 
associations between PM₂.₅ and disease were concentrated in Itori, Ajebo, and Emuren, suggesting heightened 
environmental susceptibility in these areas. 

 

Figure 10 Maps GWR coefficients showing spatially varying relationships between PM₂.₅ and disease prevalence. The 
strongest associations were found in Itori, Ajebo, and Emuren. This map presents Geographically Weighted Regression 

(GWR) output, showing how the strength of association between PM₂.₅ exposure and respiratory disease incidence 
varies across space. Higher β coefficients (in darker green) indicate communities where PM₂.₅ has a stronger 

predicted influence on disease burden, reflecting localized environmental health vulnerability 
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Exposure stratification is presented in Figure 11, which compares PM₂.₅ levels in communities identified as high- and 
low-risk clusters. High-risk zones showed significantly higher median concentrations and broader interquartile ranges. 

 

Figure 11 PM2.5 Concentrations in High-Risk vs Low-Risk Respiratory Clusters. This boxplot compares PM₂.₅ 
exposure levels in communities classified as high-risk and low-risk for respiratory disease. Median and interquartile 

ranges are clearly elevated in high-risk zones, reinforcing the observed correlation between particulate exposure and 
health outcomes 

Figure 12 presents a decision tree model incorporating PM₂.₅, age group, and distance to quarry as predictors. The 
model identified PM₂.₅ levels >110 µg/m³ and distances <2.5 km as primary risk determinants, offering practical 
thresholds for policy and intervention targeting. 

 

Figure 12 Decision Tree for Classifying Respiratory Disease Risk. This decision tree model classifies respiratory 
disease risk based on PM₂.₅ concentration, age group, and proximity to quarry sites. The tree identifies key thresholds 

(e.g., PM levels > 110 µg/m³ or distances < 2 km) that separate high-risk and low-risk communities, offering an 
interpretable model for targeted public health interventions 

3.5. Integrated Exposure–Outcome Assessment 

Model comparisons in Table 4 show that the GWR model outperformed the global OLS approach, with a higher adjusted 
R² (0.74 vs. 0.61) and lower AIC values, confirming the non-stationarity of exposure-disease relationships across space. 
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Table 4 OLS Model vs GWR Comparison  

Metric OLS Model GWR Model 

Adjusted R² 0.61 0.74 

AIC 285.4 243.8 

Residual Std. Error 15.2 12.4 

P-value (F-stat) <0.001 <0.001 

Spatial Autocorrelation (Moran's I) Not accounted Integrated locally 

Together, these results provide converging lines of evidence linking environmental exposure to particulate pollution 
with elevated respiratory disease prevalence in mining-adjacent communities. These findings strongly suggest a 
spatially linked environmental health burden in mining-impacted communities. The diverse representation of results 
ensures analytical robustness and supports multidimensional policy recommendations. 

4. Discussion 

This study offers a comprehensive geo-epidemiological assessment of respiratory disease patterns in mining-impacted 
communities of Ewekoro and Sagamu, Ogun State, Nigeria. It provides novel insights into how particulate matter (PM₁₀ 
and PM₂.₅) exposure, shaped by quarry activity and spatial geography, contributes to elevated respiratory disease 
prevalence. The discussion synthesizes findings from environmental monitoring, epidemiological patterns, spatial 
statistical modeling, and exposure-risk prediction. 

The environmental measurements revealed significantly elevated PM concentrations, particularly during the dry 
season, with values exceeding 200 µg/m³ for PM₁₀ and 140 µg/m³ for PM₂.₅ in high-emission zones such as Itori and 
Papalanto. These findings are consistent with previous studies in sub-Saharan and South Asian mining zones, including 
Ugbaje et al. (2020) and Saddique et al. (2021), who reported dry-season PM surges due to intensified quarrying and 
minimal dust suppression. The markedly lower values in the rainy season further highlight the seasonal dynamics of 
dust dispersal, consistent with observations by Achilleos et al. (2017), which linked rainfall to pollutant washout and 
reduced ambient particle levels. 

The Kriging interpolation map confirmed spatial dust accumulation patterns, with PM₂.₅ gradients radiating outward 
from quarry zones. These zones coincide with predominant wind directions illustrated by the wind rose diagram. Winds 
from the northeast and east—common during Harmattan—were aligned with pollutant dispersal patterns, supporting 
regional assessments by Arowolo et al. (2018) and Ngele et al. (2019) who identified wind-driven transport as a key 
mechanism in regional air quality deterioration. 

From a health standpoint, the demographic breakdown of respiratory illness showed a high burden among adults aged 
25–64 and notable representation among children aged 5–14. This finding echoes trends from Ma et al. (2022), who 
noted occupational and early-life vulnerabilities in industrial communities. Particularly, asthma and persistent cough 
were dominant among all age groups, while COPD and bronchitis were more prevalent in older adults, a distribution 
pattern supported by WHO (2021) respiratory health statistics for pollution-exposed populations. 

The temporal trends displayed a cyclical spike in respiratory diseases during the dry months (December to March), 
aligning closely with periods of high PM burden. This seasonal correlation supports longitudinal findings by Xia et al. 
(2021), who documented increased emergency room visits and admissions for respiratory conditions during high-dust 
months in mining communities in northern China. 

Spatial analysis further reinforced these findings. The choropleth map showed consistently higher disease incidence 
rates in Itori, Papalanto, and Emuren—communities adjacent to quarrying operations. These were also identified as 
statistically significant hotspots through Getis-Ord Gi* analysis. Such spatial clustering is well-documented in similar 
studies (e.g., Kumar et al., 2020), which showed that communities near mining sites often emerge as geospatial hotspots 
of morbidity due to localized environmental stressors. 

A positive and statistically significant correlation between PM₂.₅ concentrations and disease incidence was observed in 
the scatterplot, corroborating earlier studies by Schwartz et al. (2016) and recent modeling by Ma et al. (2022), which 
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both linked fine particulate exposure to increased respiratory morbidity. The LISA cluster map further refined these 
insights, delineating High-High and Low-Low clusters that confirmed the geospatial concentration of disease in relation 
to pollution. 

The Geographically Weighted Regression (GWR) model added further granularity, revealing spatial variability in the 
strength of the relationship between PM₂.₅ and respiratory outcomes. Stronger β coefficients in Itori, Ajebo, and Emuren 
suggest that these communities face disproportionate risks, which are likely due to cumulative exposure and 
topographic vulnerability. The superiority of GWR over OLS, evidenced by higher R² and lower AIC, mirrors conclusions 
drawn by Lee and Shih (2019) who demonstrated the advantages of local regression models in pollution-health outcome 
studies. 

The decision tree analysis provides a pragmatic tool for public health decision-making. It identified PM₂.₅ thresholds 
(>110 µg/m³) and proximity to quarries (<2.5 km) as the strongest predictors of respiratory disease risk. This aligns 
with risk modeling frameworks employed by authors like Jerrett et al. (2005), who emphasized the value of proximity 
and concentration-based thresholds for spatial risk stratification in urban pollution studies. 

In addition to empirical findings, the integration of spatial, demographic, and environmental data demonstrates the 
value of a geo-epidemiological approach. Unlike conventional pollution monitoring, this approach provides a nuanced 
understanding of exposure-response dynamics across space and time. It is this multidimensional framing that allows 
for the identification of true hotspots and high-risk populations, a crucial advancement over traditional health 
surveillance systems. 

However, some limitations warrant discussion. The retrospective nature of health records may omit undiagnosed or 
informally treated cases, potentially underestimating true disease prevalence. Moreover, the spatial models, while 
robust, do not account for individual-level confounders such as smoking habits or indoor air pollution. Future studies 
could benefit from integrating household survey data and deploying continuous air quality monitoring devices to 
improve temporal resolution. 

Despite these limitations, this study makes a significant contribution to environmental health literature by empirically 
linking fine particulate matter from quarrying operations with respiratory disease burdens, validated through multiple 
spatial and statistical models. It underscores the urgent need for enhanced regulatory oversight, community-level air 
quality monitoring, and targeted public health interventions in mining-impacted zones.   

5. Conclusion  

This study has demonstrated clear spatial and temporal associations between mining-related particulate matter 
exposure and respiratory disease prevalence in Ewekoro and Sagamu LGAs. Elevated concentrations of PM₁₀ and 
PM₂.₅—particularly during the dry season—were found to correspond with significant spikes in respiratory illness, 
especially in communities located within a 2.5 km radius of quarry operations. The integration of geospatial analysis, 
including hotspot detection and geographically weighted regression, confirmed localized clusters of elevated disease 
burden and identified PM₂.₅ and proximity to mines as key risk predictors. 

These findings contribute substantively to the growing body of evidence linking ambient air pollution from mining 
operations with adverse health outcomes. By situating this research within a geo-epidemiological framework, the study 
extends beyond conventional exposure assessments to deliver place-based insights crucial for effective environmental 
health management. 

5.1. Policy Recommendations 

• Establish Air Quality Monitoring Units: Community-based PM monitoring stations should be deployed near 
active mining zones to allow for real-time air quality surveillance. 

• Implement Buffer Zones: Regulatory agencies should enforce spatial buffer zones of at least 2.5 km between 
residential areas and mining sites. 

• Health Surveillance Integration: Routine reporting of respiratory illness at primary healthcare facilities 
should be digitized and integrated with spatial data systems for early warning and response. 

• Community Sensitization: Public health campaigns are needed to educate communities on respiratory risk 
factors and promote protective measures, especially during high-dust seasons. 

• Dust Suppression Regulations: Quarry operators should be mandated to implement dust mitigation 
strategies such as water spraying, vegetation buffers, and enclosed conveyor systems. 
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Recommendations for Future Research: 

Future studies should incorporate: 

• Continuous, high-frequency air quality monitoring for temporal precision; 
• Household-level surveys to assess indoor air quality and socio-behavioral risk factors; 
• Longitudinal cohort designs to track chronic health outcomes; 
• Multivariate models integrating meteorological and land use dynamics. 

Ultimately, this study underscores the need for collaborative efforts among environmental regulators, health agencies, 
urban planners, and community stakeholders to address the compounded effects of industrial pollution on public health 
in rapidly urbanizing regions.  
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