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Abstract 

Introduction: Structural and geotechnical engineering are rapidly evolving fields driven by the integration of Artificial 
Intelligence (AI) and advanced digital technologies. In structural engineering, AI enhances multiple domains including 
design optimization, structural analysis, material selection, seismic design, smart structure monitoring, project 
management, and education. The rapid expansion of telecommunication and energy infrastructure across diverse 
geological environments has heightened the need for reliable and sustainable foundation systems. Despite technological 
progress in geotechnical engineering, foundation failures in tower installations continue to occur, largely due to 
inadequate subsurface characterization and the limitations of conventional soil testing methods. Traditional techniques 
such as the Cone Penetration Test (CPT), Standard Penetration Test (SPT), and laboratory analyses are invasive, time-
consuming, and restricted in spatial coverage, rendering them unsuitable for real-time decision-making during field 
operations. 

Material and Method: To address these challenges, this study proposes the development of an AI-driven geophysical 
field data acquisition system designed for real-time, high-resolution onsite soil assessment. The system integrates 
Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), and Seismic Refraction methods with 
advanced Artificial Intelligence (AI) and Machine Learning (ML) algorithms, such as Convolutional Neural Networks 
(CNNs) and Random Forests, to enhance data interpretation accuracy and reduce human subjectivity. The proposed 
framework operates across three functional layers data acquisition, AI analytics, and decision support enabling 
autonomous noise filtering, pattern recognition, and predictive modeling of soil stability parameters. 

Result: This comprehensive bibliometric review examines global advancements, challenges, and trends in post-disaster 
building damage assessment and reconnaissance methods, emphasizing the growing role of Artificial Intelligence (AI) 
and emerging technologies. Analysis of publications from major databases highlights the increasing global collaboration 
and interdisciplinary integration that are driving innovation in disaster research. Such cooperation enhances 
knowledge sharing, strengthens regional resilience, and improves the global capacity to respond to and recover from 
disasters. 

Discussion: The study underscores the transformative impact of remote sensing technologies including satellite 
imagery, UAVs, LiDAR, and Synthetic Aperture Radar (SAR) in delivering rapid, high-resolution damage assessments. 
However, challenges persist in data fusion, real-time processing, and the harmonization of diverse data sources. 
Machine learning and deep learning models, particularly Convolutional Neural Networks (CNNs) and transfer learning, 
have significantly improved the accuracy and speed of damage detection and prediction. 
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Conclusion: In parallel, AI’s expanding role in structural and geotechnical engineering through design optimization, 
seismic assessment, and risk prediction demonstrates its potential to enhance infrastructure resilience. The findings 
also reveal emerging trends in earthen site protection, where digital and AI-assisted tools are increasingly applied for 
sustainable conservation. 

Keywords: AI-Driven Field Data Acquisition; Real-time Geophysical Soil Assessment Methods 

1. Introduction 

Public engineering, with its array of sub-disciplines, holds a key role in shaping the physical environment we inhabit. 
Whether it involves designing sturdy structures, efficient transportation systems, managing water resources, or 
addressing environmental concerns, civil engineers navigate a broad and intricate set of responsibilities. Successful 
project outcomes hinge on effective communication, precise problem-solving (Hu, D.et al., 2019), and adaptability to 
evolving challenges. In recent times, Artificial Intelligence has emerged as a transformative force capable of enhancing 
these foundational aspects of civil engineering. Geotechnical engineering, crucial for understanding and managing soil-
structure interaction, plays a pivotal role in ensuring the safety and stability of civil infrastructure (Xiao et al., 2018). 

As vital material carriers of human civilization, earthen sites have become a central topic in the implementation of the 
United Nations Sustainable Development Goals (SDGs) (Jokilehto, 1998) and the Convention Concerning the Protection 
of the World Cultural and Natural Heritage under the global sustainable  

development agenda (Jokilehto, 1998, Deng and Wang 2014). Their conservation must strictly adhere to the principles 
of “authenticity, integrity, and minimal intervention” as established in the Venice Charter (EM-DAT: 2019), not only 
because the survival status of earthen sites is directly linked to the preservation of global cultural diversity but also 
because it directly affects the implementation effectiveness of SDG Target 11.4 (Gómez-Martín, et al., 2019): “Strengthen 
efforts to protect and safeguard the world’s cultural and natural heritage”. Earthquakes are among the most destructive 
occurrences in the natural world. Despite large-scale improvements in geophysical research, scientists have not yet 
been able to ensure proper or accurate prediction of earthquakes (Goodfellow, et al., 2016). Geological faults, seismic 
waves, and movements of tectonic movements that indicate about the possibility of occurring earthquakes have proved 
less successful. Indeed, in recent years, this cross-road opened up vast new possibilities in earthquake prediction since 
it provides data driven approaches which could analyze large amount of information with unprecedented speed and 
precision. The need for earthquake prediction cannot be overemphasized (Laohaviraphap, and Waroonkun, 2019).  
Historical instances of the major seismic events have led to catastrophes in loss of life and wide-scale destruction of 
infrastructure, causing overall economic loss. Early warning systems are important because it would help minimize the 
impact of such disasters by giving precious minutes to prepare and evacuate vulnerable areas. However, seismicity is 
an extremely complex process where many interacting variables behave in non-linear and partially unpredictable ways, 
leaving traditional seismology unable to develop reliable predictive models (Pal, 2005). 

In the wake of natural disasters, researchers are increasingly leveraging advanced technologies to meticulously gather 
information about buildings affected by such calamities. This critical task of identifying damaged structures is essential 
for ensuring public safety, as it informs residents about the condition of their homes and supports decisions on whether 
they can safely reoccupy their living spaces (Hu et al., 2019). Given the fundamental role of a home as a place of safety, 
accurately determining whether a building remains structurally sound after a disaster is paramount. To achieve this, 
researchers utilize a suite of state-of-the-art techniques, including remote sensing and aerial drone surveillance, to 
deliver precise and comprehensive assessments (Abbaspour et al., 2007). These technologies enable rapid evaluation 
of damage extent and critical structural weaknesses, providing residents with the information needed to feel secure and 
confident about the safety of their environments (Acharyya, et al., 2018). Furthermore, the application of these 
advanced technologies extends beyond immediate post-disaster assessments. They are instrumental in shaping long-
term urban planning and improving disaster response strategies. By integrating data-driven insights from current and 
past events, urban planners can design more resilient infrastructures, and disaster response teams can refine their 
strategies to enhance efficacy and safety (Gopalakrishnan, 2018). 

Jones and colleagues (2019) states that AI earthquake prediction relies mainly on massive datasets containing both 
historical and real-time information regarding seismic events. These datasets are often collected through large sensor 
networks located around boundaries for tectonic plates, providing valuable insight into the subsurface movements on 
Earth. Traditional ways of analysis are hindered by the interpretive skills required from the human mind and the ability 
to process only a small fraction of available information (Zhang  and Wang, 2020).  
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Consequently, no singular optimal solution exists that fulfils all Decision Maker (DM) observations. MCDM assists adults 
in making decisions aligned with their preferences when confronted with variances (Bhatt et al., 2024) and application 
forms. Individuals seek to select the optimal solution when making decisions. It may be most advantageous to select 
only one. In most real-world decision- making processes, it is not enough to make a decision based on a single measure. 
Instead, many conflicting and contradictory goals must be considered. Therefore, the best solution that meets all DM 
requirements has not yet been developed. MCDM can help people make decisions based on their preferences when faced 
with conflicts (Boggia et al., 2018). 

System integration analysis technology and energy management, encompassing climate change, environmental 
assessment, construction, and environmental management. (Antunes, 2020). Preliminary integration employing hybrid 
multi-criteria decision- making and fuzzy multi-criteria decision- making. Energy management issues related to rapid 
economic, political, technological, ecological, social and economic expansion have long been a concern for governments 
in countries and regions around the world (Boggia et al., 2018).; 

Ultimately, environmental assessment was chosen as the initial domain to implement the decision-making process. 
Individuals endeavor to select the optimal solution when making decisions. In fact, analyzing just one measure can 
actually yield a good decision. In most real- world decision- making processes, it is not enough to derive a conclusion 
based on a single measure. Instead, multiple competing and inconsistent objectives must be evaluated (Phoon, 2008). 

The rapid expansion of telecommunication and energy infrastructure across diverse geological terrains has increased 
the demand for reliable foundation systems. Despite advances in geotechnical engineering (Shen, et al. 2018)., 
foundation failures of telecommunication and energy towers remain a recurring challenge, often resulting from 
inadequate soil characterization and delayed or inaccurate subsurface assessment. Traditional soil testing methods 
such as cone penetration tests (CPT), standard penetration tests (SPT), and laboratory analyses are often time-
consuming, site-limited, and invasive, making them unsuitable for real-time decision-making during field operation (Ojo 
et al., 2023).  

Engineering geophysics provides non-invasive techniques for subsurface characterization, yet its effectiveness is 
constrained by data interpretation complexity, field noise, and human subjectivity. Recent developments in Artificial 
Intelligence (AI) and machine learning (ML) have opened opportunities to enhance geophysical data acquisition and 
interpretation, offering real-time, high-resolution insights into subsurface properties (Jordan and Mitchell. 2015). By 
integrating AI algorithms with geophysical sensors, it becomes possible to develop smart field systems capable of 
autonomous data analysis and immediate soil stability evaluation (Hu et al., 2012). 

This research proposes the development of an AI-driven geophysical field data acquisition system for real-time, high-
resolution soil assessment, specifically targeting the prevention of foundation failures in telecommunication and energy 
tower installations (Das and Basudhar, 2008). 

1.1. Problem Statement 

Telecommunication and energy towers are highly susceptible to structural failures resulting from inadequate 
understanding of subsurface conditions. Factors such as soil heterogeneity, high moisture content, collapsible soils, and 
shallow groundwater fluctuations contribute to instability and uneven settlement. Existing geophysical surveys, while 
effective, rely heavily on post-processing and expert interpretation, which introduce time delays and uncertainty in field 
decision-making. 

Aim and Objectives 

Aim 

To develop and validate an AI-driven engineering geophysics framework for real-time, high-resolution onsite soil 
assessment to prevent telecommunication and energy tower foundation failures. 

Specific Objectives 

To integrate Artificial Intelligence algorithms with selected geophysical sensors (ERT, GPR, and seismic refraction) for 
enhanced soil property characterization. 

• To design and implement a real-time field data acquisition and processing platform using edge-AI technology. 
• To train and validate predictive models that correlate geophysical signatures with soil mechanical parameters. 
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• To evaluate the system’s performance through controlled laboratory and field trials. 
• To establish a risk-based assessment model linking soil stability indicators to foundation failure probabilities. 

1.2. Research Questions 

• How can AI improve the accuracy and speed of geophysical data interpretation in field conditions? 
• What geophysical parameters are most predictive of soil strength and foundation stability? 
• Can real-time AI analytics reliably classify subsurface materials and detect weak soil zones? 
• What is the comparative accuracy of AI-based assessments versus traditional geotechnical tests? 
• How can AI-driven geophysics be adopted as a standard for foundation risk assessment in infrastructure 

development? 

1.3. Justification 

Natural disasters are characterized by their sudden onset, immense destructive power, and inherent unpredictability, 
posing significant threats to human life and the security of property. These catastrophic events can strike with little to 
no warning, leading to substantial loss of life, extensive damage to infrastructure, and profound economic disruptions. 
Between 2000 and 2019, there were 510,837 deaths and 3.9 billion people affected by 6681 climate-related disasters 
(Alexander, 2002). In 2020 alone, disaster events attributed to natural hazards affected approximately 100 million 
people, accounted for an estimated USD 190 billion in global economic losses, and resulted in 15,082 deaths. These 
staggering figures underscore the critical importance of effective disaster management and mitigation strategies Hu et 
al., 2019). The increasing frequency and severity of natural disasters, exacerbated by climate change and urbanization, 
necessitates robust methodologies for assessing and responding to building damage post-disaster. Identifying critically 
affected areas and delivering essential aid to disaster-impacted regions is a pivotal component of effective disaster 
management. 

Significance of the Study 

This study holds considerable significance for both academic research and practical applications in engineering 
geophysics, Artificial Intelligence, and infrastructure development. It seeks to bridge the existing gap between 
conventional geophysical methods and advanced computational intelligence by introducing a real-time, AI-assisted 
framework for subsurface soil assessment. The significance of this research can be viewed from several dimensions 
technological, engineering, economic, and societal. 

Firstly, the study will provide a novel approach to integrating Artificial Intelligence (AI) into geophysical field 
operations. Traditional geophysical investigations often rely on manual interpretation, which can be time-consuming 
and prone to human error. By embedding AI-driven analytics directly into the field data acquisition process, this 
research will establish a smart, adaptive, and automated system capable of improving the accuracy and efficiency of soil 
characterization. 

Secondly, the research is expected to enhance the speed, precision, and reliability of onsite soil characterization. 
Through real-time processing of data obtained from electrical resistivity tomography, ground-penetrating radar, and 
seismic surveys, the AI system will generate immediate feedback on subsurface conditions. This advancement will 
enable engineers to make timely and well-informed decisions during site investigations, minimizing uncertainties and 
reducing the time between data collection and interpretation. 

Thirdly, the study aims to reduce the incidence of foundation failures in telecommunication and energy tower 
infrastructure. By developing predictive models that assess soil stability and detect weak zones, the system will help 
identify high-risk areas before construction. This proactive approach will prevent costly structural failures, improve 
public safety, and extend the service life of critical infrastructure. 

Furthermore, the research will contribute to the ongoing digital transformation of geotechnical and geophysical 
engineering. The integration of AI, real-time data analytics, and intelligent sensors aligns with global trends toward 
Industry 4.0 and Smart Infrastructure technologies. The study’s outcomes will therefore promote innovation, data-
driven practices, and sustainable engineering solutions. 

Lastly, the study will support national development goals by improving the resilience and sustainability of 
telecommunication and energy networks. Reliable infrastructure is essential for economic growth, security, and 
connectivity. By enhancing foundation stability through AI-assisted soil assessment, this research contributes to 
building a more robust and sustainable technological infrastructure capable of supporting national and regional 
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development agendas. This study will not only advance the frontiers of engineering geophysics but will also provide 
practical tools for enhancing safety, reducing costs, and promoting innovation in infrastructure development. 

Scope and Delimitation of the Study 

This study is designed to focus on the application of Artificial Intelligence (AI) in enhancing geophysical field operations 
for real-time soil assessment and foundation stability analysis. The scope defines the specific areas covered by the 
research, while the delimitations clarify the boundaries and limitations within which the investigation will be 
conducted. And will primarily concentrate on shallow subsurface soil characterization, extending to a maximum depth 
of 30 meters. This depth range is selected because most telecommunication and energy tower foundations are typically 
embedded within this zone, where soil behavior critically influences structural stability. The research will therefore 
emphasize the identification of weak or unstable soil layers, moisture variations, and other subsurface anomalies that 
could contribute to differential settlement or foundation failure. 

To achieve these objectives, the research will integrate three complementary geophysical methods; Electrical Resistivity 
Tomography (ERT), Ground Penetrating Radar (GPR), and Seismic Refraction. These techniques were chosen for their 
ability to provide distinct yet interrelated information about the subsurface. Cortes  and  Vapnik  (1995) exert that ERT 
will be used to determine soil resistivity and moisture distribution; GPR will offer high-resolution imaging of shallow 
subsurface structures; and seismic refraction will provide information on soil stiffness and stratification. The 
integration of these methods will ensure a comprehensive and multidimensional assessment of soil conditions. 
Analytical aspect of the study will employ AI modeling techniques, particularly Convolutional Neural Networks (CNNs) 
and Random Forest algorithms, for pattern recognition and parameter estimation (ASTM D5778–20. 2020). CNNs will 
be utilized to analyze spatially distributed geophysical data and detect complex subsurface patterns, while Random 
Forest models will be applied for predictive analysis and feature importance ranking. These AI tools will facilitate the 
transformation of raw geophysical data into meaningful geotechnical indicators such as bearing capacity, compaction, 
and stability indice (Catbas and Malekzadeh, 2016). 

Furthermore, the developed AI–geophysics framework will undergo field validation at selected telecommunication and 
energy tower sites located in varied geologic terrains. This ensures that the system’s performance and reliability are 
tested under different soil conditions, ranging from lateritic soils to sandy, clayey, and weathered rock formations. The 
validation phase will compare AI-based predictions with conventional geotechnical test results to assess the system’s 
accuracy and practical applicability (Chen et al., 1996). 

In terms of delimitation, the study will not cover deep foundation systems, marine or offshore installations, or non-
tower infrastructure such as bridges or buildings. The focus will remain strictly on shallow foundations associated with 
telecommunication and energy towers. Additionally, the research will be limited to the use of the selected geophysical 
methods and AI algorithms specified above; other advanced sensing technologies or alternative machine learning 
models fall outside the scope of this investigation. 

1.4. Conceptual Model of the Study 

The conceptual model developed for this study illustrates the interaction between Artificial Intelligence, geophysical 
data acquisition, and engineering decision-making in the context of soil assessment and foundation stability analysis. It 
is designed to translate theoretical principles into a structured operational framework capable of delivering real-time, 
high-resolution insights into subsurface conditions (Das and Sivakugan, 2018). 

The model is composed of three main functional layers; the Data Acquisition Layer, the AI Analytics Layer, and the 
Decision-Support Layer. Each layer performs a distinct but interdependent role, ensuring that data collection, 
processing, and application are seamlessly integrated to achieve accurate and timely soil characterization (Das and 
Sivakugan, 2018). 

1.5. Data Acquisition Layer 

The first layer involves the collection of geophysical data from the field using advanced, non-invasive instruments. 
Specifically, Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), and Seismic Refraction methods 
are employed to obtain complementary information about the subsurface (LeCun et al., 2015). 

The ERT technique measures the electrical resistivity of soil materials to identify variations related to moisture content, 
porosity, and clay content. GPR provides high-resolution imaging of shallow subsurface structures, enabling the 
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detection of voids, fractures, and buried objects. Seismic refraction, on the other hand, determines the velocity of seismic 
waves through soil layers, which correlates with density and stiffness (Das, and Sivakugan, 2018). 

Together, these methods generate a rich dataset that captures the electrical, mechanical, and structural properties of 
the soil. The layer is designed to operate in real-time, feeding continuous data streams to the next analytical phase. This 
setup represents the foundation of the model, as the quality of the collected data directly influences the accuracy of the 
AI-driven analysis. 

1.6. AI Analytics Layer 

The second layer forms the core of the intelligent system, where Artificial Intelligence (AI) and Machine Learning (ML) 
algorithms process and interpret the data collected from the field. Guided by systems theory and information theory, 
this layer ensures that the flow of information is efficient, adaptive, and self-correcting (Das, and Sivakugan, 2018). 

The analytical process begins with data preprocessing, which includes noise filtering, normalization, and feature 
extraction to enhance signal quality. Thereafter, machine learning models, such as Convolutional Neural Networks 
(CNNs) and Artificial Neural Networks (ANNs), are applied to detect complex patterns and relationships within the 
geophysical datasets (LeCun et al., 2015). 

These models learn from training data to identify correlations between geophysical signals (e.g., resistivity or seismic 
velocity) and soil mechanical properties (e.g., shear strength, bearing capacity, and moisture level). Through continuous 
learning, the AI system can generate predictive models that assess soil stability and highlight potential failure zones. 
The real-time analytical capability of this layer allows for immediate interpretation and feedback during field operations 
(Malmgren-Hansen et al., 2020). 

1.7. Decision-Support Layer 

The third and final layer focuses on transforming the AI-generated analytical results into practical, engineering-relevant 
insights. This stage integrates AI outputs with geotechnical and soil behavior theories such as the Terzaghi Effective 
Stress Principle and the Mohr–Coulomb Failure Criterion to produce interpretable indicators of soil stability and 
bearing capacity (Malmgren-Hansen, et al., 2020). 

The outputs are presented in the form of soil stability maps, risk classifications, and foundation suitability scores, which 
provide engineers with clear, actionable information. The layer serves as a decision-support system, guiding site 
engineers and project managers in selecting appropriate foundation types, determining safe load capacities, and 
identifying zones that require additional soil treatment or reinforcement (Das, and Sivakugan, 2018). 

By linking AI analysis with established geotechnical frameworks, this layer ensures that technological innovation is 
firmly grounded in engineering science, enhancing both accuracy and reliability in field decision-making. 

2. Theoretical framework 

This study is grounded on several interrelated theories that explain how Artificial Intelligence (AI) can enhance 
engineering geophysics in achieving real-time, high-resolution soil assessments for preventing telecommunication and 
energy tower foundation failures. The framework draws upon principles from systems theory, information theory, 
machine learning and pattern recognition, artificial neural networks, geotechnical failure theories, and decision-support 
theory. Each theory provides a conceptual basis for the integration of AI and geophysical methods into a unified, 
intelligent field system capable of adaptive data acquisition and predictive interpretation.  

The theoretical framework provides the intellectual foundation for developing an AI-driven geophysical field system 
that is adaptive (Malmgren-Hansen, et al., 2020), data-efficient, and decision-oriented. By combining scientific soil 
behavior theories with modern AI and systems concepts, this study contributes to a new paradigm in engineering 
geophysics where subsurface investigations are no longer static or retrospective, but intelligent, real-time, and 
predictive (Mitchell, 1997). 
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Figure 1 AI driven geophysical field system 

2.1. Geotechnical Failure and Soil Behavior Theories 

Core Theories includes the the following; Terzaghi’s Effective Stress Principle (1943), Mohr–Coulomb Failure Criterion, 
Elastic–Plastic Soil Models. 

The classical soil mechanics theories explain how soils respond to applied loads, moisture variations, and environmental 
stresses. Terzaghi’s principle emphasizes that effective stress (the difference between total stress and pore-water 
pressure) controls soil strength and compressibility. The Mohr–Coulomb criterion provides a mathematical model for 
predicting shear failure based on internal friction and cohesion. These geotechnical theories provide the physical 
foundation for translating AI-derived geophysical parameters into meaningful engineering indicators. For example, 
changes in resistivity or seismic velocity may correspond to changes in effective stress or pore-water pressure. By 
linking AI interpretations to these theoretical principles, the model can produce quantitative predictions of soil stability 
and bearing capacity. This integration bridges the gap between data-driven AI approaches and physics-based soil 
behavior models, ensuring that the proposed system remains scientifically valid and practically applicable to tower 
foundation engineering. 

2.2. Machine Learning and Pattern Recognition Theory 

Machine Learning (ML) theory was formally established by Vladimir Vapnik and Alexey Chervonenkis in the 1970s, and 
later popularized by Tom Mitchell in 1997. It posits that a system can automatically learn from data and improve its 
performance without explicit programming. Pattern recognition, a subset of ML, focuses on identifying relationships, 
correlations, or structures within complex datasets. In this exploration, ML theory provides the foundation for designing 
algorithms that can recognize patterns between geophysical signatures (resistivity, seismic velocity, radar reflections) 
and soil mechanical properties (shear strength, bearing capacity, cohesion). Through supervised and unsupervised 
learning, AI models can classify soil types and predict subsurface stability conditions. For instance, during field 
acquisition, the ML model can instantly classify regions of the subsurface as “stable,” “moderately stable,” or “unstable,” 
based on learned relationships from prior datasets. Pattern recognition enables the model to detect early warning 
signals of potential foundation failure, even when such anomalies are subtle or buried under noise. This makes ML 
theory central to the automation of geophysical interpretation and real-time decision-making (Pregnolato, et al., 2012). 

2.3. Artificial Neural Network (ANN) Theory 

The theory of Artificial Neural Networks (ANNs) was introduced by McCulloch and Pitts in 1943 and further advanced 
by Rumelhart, Hinton, and Williams (1986) through the backpropagation algorithm. ANNs are computational models 
inspired by the structure of the human brain, consisting of interconnected “neurons” that process input data through 
layers of weighted connections. ANN theory underpins the development of the AI model used for interpreting 
geophysical data. By training the network on a large dataset of soil-geophysical correlations, the ANN can generalize 
learned patterns and make nonlinear predictions about subsurface properties from new input data. For example, the 
ANN can predict soil bearing capacity, moisture content, or the likelihood of differential settlement directly from field 
measurements. Its ability to adapt and self-correct through iterative learning allows it to continuously improve accuracy 
over time. This makes ANN theory ideal for dynamic field environments where soil conditions vary rapidly and 
unpredictably. In addition, deep learning architectures (e.g., Convolutional Neural Networks, CNNs) extend the ANN 
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concept by performing spatial feature extraction, enabling the generation of high-resolution 2D and 3D subsurface 
models in real time. 

2.4. Systems Theory 

Systems theory was first introduced by Ludwig von Bertalanffy in the 1950s. It postulates that every system is composed 
of interrelated and interdependent components that interact to achieve a specific objective. A system’s behavior cannot 
be fully understood by analyzing its parts in isolation; rather, the interconnections and feedback mechanisms between 
the components determine overall performance. In the context of AI-driven engineering geophysics, the soil 
environment, geophysical sensors, AI algorithms, and human operators form an integrated system. The sensors act as 
input components that collect subsurface data; the AI algorithms serve as the processing component that interprets and 
analyzes the data; and engineers represent the control and feedback element that acts based on system output. Applying 
systems theory ensures that the design of the AI-geophysics framework incorporates feedback loops, where real-time 
data influence subsequent acquisition parameters. For example, if AI detects anomalies in resistivity data indicating 
potential weak zones, the system can automatically adjust its scanning resolution or depth of investigation. This 
promotes efficiency, adaptability, and continuous system optimization key attributes for real-time soil assessment. 

2.5. Information Theory 

Developed by Claude Shannon in 1948, information theory explains how information is transmitted, encoded, and 
decoded through a communication system with minimal loss or distortion. It deals with the quantification of 
information and focuses on minimizing uncertainty (entropy) in data processing (Pregnolato, et al. 2012). 

Geophysical data, such as signals from Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), or 
seismic refraction, are inherently noisy and complex. Applying information theory principles allows the AI model to 
function as an information optimizer, separating meaningful patterns (signals) from background noise. By minimizing 
entropy, AI algorithms can enhance signal-to-noise ratios (SNR) and improve the accuracy and clarity of subsurface 
images (Raghavesh et al., 2018). In practical terms, this means that soil anomalies such as voids, weak zones, or moisture 
variations can be detected more precisely. The theory thus supports the development of efficient algorithms for data 
compression, transmission, and real-time interpretation in field conditions (Seyed Hakim et al., 2011). 

2.6. Decision Support Theory 

Herbert Simon (1960) introduced the decision support theory, which focuses on how technology and computational 
tools can assist human decision-making processes. Decision Support Systems (DSS) are designed to analyze data and 
provide actionable insights that enhance the quality, speed, and reliability of decisions. In this research, the AI-driven 
geophysical system serves as a decision-support tool for engineers. It processes large volumes of geophysical data, 
interprets them through AI models, and outputs easy-to-understand indicators such as soil stability maps, risk indices, 
and foundation suitability scores. By providing these insights in real time, the system assists engineers in making 
informed decisions about tower placement, foundation type, and depth of anchorage. The decision-support theory 
ensures that human expertise remains integral to the system, with AI functioning as a complement rather than a 
replacement (Pregnolato et al., 2012). 

2.7. Methodology of the Research 

Disaster reconnaissance is a vital and complex field that utilizes a range of advanced technologies to perform its 
functions. To ensure the inclusion of the most relevant research works in this area, it is essential to follow a clear and 
systematic methodology. This research adopts a structured approach beginning with the collection of data by retrieving 
relevant publications from a selected database. The research paper employs a methodology centered around two 
primary components: an extensive literature review and a bibliometric analysis. This initial step is followed by a 
meticulous data-sorting process to identify additional pertinent research articles for comprehensive analysis. The final 
stage involves conducting a bibliometric analysis to construct a detailed science map of the existing literature. This plan 
provides an in-depth understanding of the current research landscape, highlighting significant trends and gaps, and 
ultimately offering suggestions for future research directions. 

For this study, the Scopus database has been chosen due to its extensive range of high-quality publications, particularly 
those related to interdisciplinary and technologically advanced aspects of disaster reconnaissance. Leveraging Scopus 
ensures a robust foundation for our bibliometric analysis. The following subsections describe the methodology in detail. 
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2.8. Article Collection from Sources 

This study conducts a multifaceted analysis of academic research related to the earthen site surface conservation using 
the core collections of the Web of Science and Scopus databases as the primary data sources. These two databases were 
selected because they offer broad disciplinary coverage, large-scale data repositories, high-quality literature, and 
comprehensive citation information. Additionally, both platforms provide robust technical support and user-friendly 
retrieval experiences, coupled with powerful analytical functions. Their authoritative status in the field and high level 
of academic recognition make them particularly well suited for bibliometric research. These characteristics ensure that 
the data extracted for this study are both comprehensive and reliable, thereby laying a solid foundation for the analysis. 
To more accurately capture cutting-edge developments in the field of earthen site surface conservation, this study 
focuses on the literature published before 2020. The quality of input data is crucial for any literature review, 
necessitating a comprehensive database and a rigorous search strategy before proceeding to bibliometric analysis and 
discussion. For this research, the literature has been derived from the Scopus database, as it has a wider range of disaster 
reconnaissance-related research articles and provides a broader scope for interdisciplinary research topics. Articles 
featured in the Scopus database have undergone peer review, ensuring they meet established criteria for research 
quality.  The related publications were chosen with certain keywords. However, at first, some research questions were 
developed and then keywords were selected. 

• What are the comparative strengths and limitations of remote sensing (satellite, UAV) versus ground-based 
sensing technologies in the detection and assessment of building damage following various types of disasters 
(e.g., earthquakes, floods, hurricanes)? 

• How can Artificial Intelligence and deep learning techniques (e.g., CNNs) improve the accuracy and efficiency 
of building damage assessment from diverse data sources? 

• Considering the challenges in real-time data collection and analysis in post-disaster scenarios, what are the 
most effective AI-driven strategies for rapidly assessing building damage to support immediate response and 
recovery efforts? 

• How do machine learning models compare in their ability to detect, segment, and classify different types of 
building damage in disaster-affected areas? 

Based on the above research questions, the following keywords were chosen for final data collection: 

Publications that include the specified keywords in their titles, abstracts, or designated keyword sections are identified 
using the Scopus database keyword search tool. The search criteria involve selecting the title/abstract/keywords option 
within the database. This comprehensive search covers a decade, specifically from 2014 to 2020, ensuring a robust 
collection of the relevant literature over this period. The goal is to capture a wide array of studies and articles that align 
with the research focus, providing a solid foundation for analysis and review within the chosen timeframe 

3. Result 

Structural engineering, a convergence of science and art, holds a crucial role in shaping the built environment through 
design, analysis, and construction. The field is rapidly advancing with the integration of advanced technologies, and 
Artificial Intelligence (AI) is progressively becoming an integral aspect of structural engineering research. 

3.1. Design Optimization and Generative Design 

In the pursuit of efficient and cost-effective structures, design optimization is paramount in structural engineering. AI 
can enrich generative design processes by assisting engineers in exploring diverse design possibilities. By inputting 
constraints, material properties, and relevant parameters, AI generates creative and varied design suggestions (Huang 
and Li, 2020). Such iterative process allows for the discovery of novel and optimized designs not immediately apparent 
through traditional methods. Additionally, AI aids in creating design 

3.2. Structural Analysis and Simulation 

Ensuring the safety and reliability of structures relies heavily on accurate structural analysis. AI enhances structural 
analysis software by providing natural language interfaces, making interactions more intuitive and accessible for 
engineers. Moreover, it assists in interpreting simulation results, analyzing complex output data, and presenting insights 
comprehensibly. This empowers engineers to make informed decisions based on simulation outcomes, even without 
expertise in data analysis. 
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3.3. Material Selection and Research Material selection is pivotal for the longevity and performance of 
structures.  

AI aids in material research by processing vast amounts of data, including properties, environmental factors, and 
sustainability considerations. It assists in identifying new materials or combinations that offer improved performance 
or reduced environmental impact. Furthermore, it facilitates communication between structural engineers and 
materials scientists, translating technical information and fostering collaboration. 

3.4. Seismic Design and Retrofitting 

AI contributes to seismic design by simulating earthquake scenarios, analyzing vulnerabilities, and 

proposing retrofitting strategies. Through conversation, engineers explore different retrofitting options and evaluate 
their impact on structural integrity. In post-earthquake scenarios, AI aids in rapid damage assessment, analyzing data 
and providing insights into structural conditions, recommending immediate actions for safety and recovery. 

3.5. Smart Structures and Sensor Integration 

In smart structures, AI interprets sensor data and aids decision-making based on real-time information. Engineers 
engage in conversations to discuss sensor readings, analyze trends, and make informed decisions regarding structural 
health. Additionally, it contributes to predictive maintenance strategies, processing historical data to predict potential 
issues and allowing proactive maintenance to minimize downtime. 

3.6. Collaborative Project Management 

For large-scale projects, AI serves as a virtual assistant, aiding in scheduling, documentation, and 

information retrieval. It facilitates communication and collaboration by providing a centralized platform for team 
discussions. AI organizes and summarizes conversations, ensuring important decisions and insights are easily 
accessible to all team members. 

3.7. Education and Knowledge Transfer 

AI plays a significant role in educating and training engineers, serving as a virtual tutor for explanations and interactive 
learning experiences. It aids in knowledge transfer within organizations by capturing and storing institutional 
knowledge, making it easily accessible to new team members (Deng and Wang, 2014). Through conversations, it 
simulates interactions with professionals, providing valuable insights and practical wisdom. 

3.7.1. Basic Protection Stage (2000–2010) 

Due to severe natural disasters and human-induced damage, earthen sites were in urgent need of protection during this 
period. Archaeologists began to explore the fundamental scientific issues related to earthen sites. The main focus was 
on the architecture and material mechanics of earthen sites, using simulation experiments to identify weak points in 
site walls and earthen structures. A pioneering “risk factor” quantitative assessment framework was proposed, and 
univariate analyses on material mechanical properties were conducted (Deng and Wang, 2014). However, a 
comprehensive protection system had yet to be established, and policy interventions were largely absent. 

3.7.2. Policy Foundation Stage (2011–2015) 

This stage followed China’s endorsement of The Nara Document on Authenticity (Asia–Pacific region). During this time, 
the principle of authenticity was officially established, and earthen sites were incorporated into the legal framework of 
“cultural heritage” protection. The research focus shifted from individual surface restoration to systematic protection 
(Jones, et al., 2019). Emphasis was placed on minimal intervention techniques based on the theoretical principles of 
authenticity and reversibility. Efforts were made to build international standard protection procedures and cooperation 
models, although the field was still in the early stage of multidisciplinary integration. 

3.7.3. Transformation and Response Stage (2016–2017) 

With increasingly extreme global weather, earthen sites faced intensified damage from water erosion, salt corrosion, 
and thermal expansion and contraction. “Climate change,” “water,” and “temperature” became key research topics in 
surface protection. Disaster modeling was introduced, and weather-resistant reinforcement materials were developed 
alongside on-site emergency response plans (Gómez-Martín et al., 2019). The research emphasis shifted from static 
protection to dynamic prevention, following a multidisciplinary research path. 
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3.7.4. Conceptual Expansion Stage (2017–2018) 

The Paris Agreement emphasized synergizing carbon reduction with local development. The keyword “resilience” 
surged in 2018 and became a central topic. This stage marked a shift beyond traditional protection concepts, 
incorporating approaches such as vegetation-based protection and microclimate regulation to enhance system 
robustness (Bishop, 2006). 

3.7.5. Innovation and Cooperation Stage (2018–2019) 

Advanced digital technologies rapidly developed during this period, with 3D laser scanning and BIM technology being 
widely applied in the surface protection of earthen sites. At the same time, the Belt and Road Initiative facilitated 
international cooperation in the protection of earthen site surfaces, promoting a shift from traditional material 
improvement to intelligent monitoring enabled by digital technology (Bonaccorso, 2017). 

3.7.6. Integrated Protection Stage (2019–2020) 

Following advances in frontier technologies and updates in conservation philosophy, earthen site surface protection 
has centered on “sustainable strategies,” “living conservation,” and “dynamic monitoring” (Deng and Wang, 2014).  The 
focus has turned to integrated approaches combining conservation, heritage transmission, and development, with tools 
such as VR virtual displays enabling the continuation of living heritage and transformation of its value. Generally, the 
current research trend in earthen site surface protection is evolving from qualitative to quantitative approaches and 
from single-method studies to multi-method interdisciplinary collaboration (Lin et al., 1997). With the continuous 
development of frontier digital technologies, significant progress has been made in the scientific understanding and 
practical implementation of earthen site surface protection. 

3.8. Role of AI in Geotechnical Engineering 

Geotechnical engineering, a subset of civil engineering, concentrates on comprehending the behavior of earth materials 
and leveraging this understanding in the formulation and execution of infrastructure projects. In recent times, Artificial 
Intelligence (AI) has made notable advancements across various disciplines (Xiao et al. 2018), with geotechnical 
engineering being no exception. The state-of-the-art language model, AI, developed by AI, has been instrumental in 
cutting-edge geotechnical research, transforming the approach to intricate problems. 

3.9. Data Analysis and Interpretation 

A primary application of AI in geotechnical research lies in data analysis and interpretation. Geotechnical data involves 
intricate soil properties, site conditions, and environmental factors. AI proves valuable in processing extensive datasets, 
extracting meaningful insights, and discerning patterns that conventional methods might find challenging. Its natural 
language processing capabilities empower researchers to engage in dialogues with the model, posing questions and 
receiving detailed responses that aid in deciphering complex geotechnical data. For instance, researchers can employ 
AI to scrutinize soil composition data, geophysical survey findings, or laboratory test results (Solanki Pattanayak et al. 
2014). Through interactive sessions with the model, they can gain insights into the correlations between different 
parameters, assisting in making well-informed decisions during the design and construction phases of geotechnical 
projects. 

3.10. Decision Support Systems 

AI plays a pivotal role in crafting decision support systems for geotechnical engineering applications. These systems 
guide engineers in making informed decisions by delivering pertinent information and insights. Integrating AI into these 
systems enhances their ability to comprehend and respond to user queries, ultimately refining decision-making 
processes. For instance, engineers can interact with AI to receive real- time recommendations for foundation design 
based on site-specific conditions (Jiang et al., 2020). The model's grasp of complex engineering concepts and contextual 
information makes it a valuable asset in developing decision support systems tailored to the distinctive challenges of 
geotechnical projects. 

3.11. Risk Assessment and Prediction 

Geotechnical projects inherently harbor uncertainties and risks associated with ground conditions. AI contributes to 
risk assessment and prediction by assimilating historical project data, factoring in various risk elements, and offering 
insights into potential challenges. Researchers leverage the model to simulate different scenarios and evaluate the 
likelihood of adverse events, facilitating proactive risk management. In areas prone to landslides, AI can analyze 
historical landslide data, weather patterns, and soil characteristics to predict potential landslide risks (Guo et al., 2017). 
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Through dialogues with the model, engineers can explore diverse mitigation strategies and assess their effectiveness, 
ultimately enhancing the resilience of infrastructure in vulnerable regions. 

3.12. Geotechnical Design Optimization 

Optimizing geotechnical designs is a critical facet of engineering projects. AI aids in this optimization process by 
generating design suggestions, considering diverse constraints and objectives. The model's capacity to comprehend and 
generate human-like text facilitates communication of complex design concepts, fostering collaboration between 
engineers and the AI system (Jiang et al., 2020). For example, researchers can collaborate with AI to explore innovative 
foundation designs for tall structures in seismic regions. The model suggests design modifications based on seismic 
data, soil conditions, and structural requirements, leading to more efficient and resilient designs. 

3.13. Natural Language Interface for Geotechnical Software 

Traditionally, engineers interact with geotechnical software through graphical user interfaces or command-line inputs. 
Introducing a natural language interface powered by AI simplifies the interaction process, making geotechnical software 
more accessible to a broader audience, including those without extensive technical expertise (Jiang et al., 2020). 
Engineers can instruct AI to perform specific analyses, generate reports, or provide educational insights on geotechnical 
principles. This user-friendly interface streamlines workflows, reduces the learning curve for new software, and 
enhances collaboration among interdisciplinary teams working on geotechnical projects  

4. Conclusion 

This comprehensive bibliometric review of post-disaster building damage assessment and reconnaissance methods 
highlights the significant advancements and challenges within this critical field. The findings on global collaboration and 
scholarly impact in the field of disaster reconnaissance highlight several key benefits. Firstly, the comprehensive 
analysis of the global citation network and the geographical distribution of publications underscores the 
interconnectedness of research efforts worldwide. This interconnectedness facilitates the sharing of knowledge, 
technologies, and methodologies, thereby accelerating advancements in disaster reconnaissance. Moreover, the 
collaboration across different regions allows for a diverse range of perspectives and expertise, which enhances the 
robustness and applicability of research findings. In structural engineering, AI assumes a pivotal role. 

Its aptitude for comprehending intricate structural designs, analyzing load-bearing capacities, and proposing optimized 
solutions positions it as a collaborative ally for engineers. The ability to generate design alternatives and conduct virtual 
simulations facilitates swift iteration and optimization, resulting in cost-effective and resilient structures. This not only 
accelerates the design phase but also ensures the safety and dependability of infrastructure projects. In geotechnical 
engineering, AI's proficiency in processing extensive geological data and providing insights into soil behavior is 
invaluable. By assisting in site selection, foundation design, and risk 

assessment, AI empowers geotechnical engineers to make informed decisions, mitigating potential hazards and 
streamlining construction processes.  Disaster is a global phenomenon, affecting millions of people each year and 
resulting in significant economic losses worldwide. Understanding the geographical distribution of publications helps 
researchers and policymakers identify regions with significant contributions and those that may require more attention 
and support. This awareness can guide targeted efforts to strengthen research capabilities and disaster response 
strategies globally. Additionally, such analyses help to understand different approaches around the world to fight 
disasters and improve preparedness. The global citation network will help identify critical papers, and the distribution 
of publications will help understand the study areas and affected regions. Ultimately, the enhanced global collaboration 
fosters a more resilient and prepared international community, better equipped to mitigate the impacts of natural 
disasters and improve recovery efforts. 

At present, the surface protection of earthen sites is shifting toward a preventive paradigm, yet there remain significant 
gaps in data integration, the application of cutting-edge technologies, and the coordination between ecological and 
cultural dimensions. This study systematically analyzes the technological evolution of earthen site surface protection 
since the 21st century through bibliometric analysis and AI-assisted semantic mining. 

The increasing frequency and severity of natural disasters necessitate robust and efficient methodologies for assessing 
building damage, which is pivotal for effective disaster management and mitigation strategies. This appraisal 
underscores the importance of leveraging advanced technologies such as satellite imagery, and UAVs in conjunction 
with machine learning and deep learning techniques. These technologies have revolutionized the way researchers 
collect and analyze data, providing high-resolution, accurate, and timely information crucial for disaster response. 
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Optical satellite imagery, despite its limitations under adverse weather conditions, remains a widely used tool due to its 
extensive coverage and frequent revisit times. Synthetic aperture radar (SAR), with its all-weather and night-time 
operational capabilities, offers a reliable alternative, especially in detecting structural deformations. LiDAR, known for 
its precise 3D mapping capabilities, proves invaluable for detailed structural analysis and damage assessment. The 
integration of these diverse data sources presents significant challenges, particularly in terms of data fusion and 
processing. Developing sophisticated algorithms that can effectively merge data from optical, infrared, LiDAR, radar, 
and ground-based observations is essential for creating comprehensive damage assessment models. Moreover, this 
review highlights the need for real-time data processing capabilities to provide immediate insights for emergency 
responders, thereby enhancing the effectiveness of disaster response efforts. 

One of the standout insights from this review is the evolving role of machine learning and deep learning technologies in 
enhancing the accuracy and efficiency of building damage assessments. Innovative applications of convolutional neural 
networks (CNNs) and transfer learning have demonstrated significant potential in processing large datasets and rapidly 
adapting to unfamiliar disaster scenarios. These advancements facilitate more precise damage evaluations in real-time, 
which are critical for effective response and recovery operations. They also play a crucial role in long-term urban 
planning and resilience building, offering tools that can predict potential damage and optimize urban layouts to mitigate 
future disaster impacts. Future research directions should focus on overcoming the challenges identified through this 
review and exploring groundbreaking solutions. There is a particular need to enhance UAV capabilities, such as 
extending flight durations and increasing payload capacities, which would revolutionize data collection, especially in 
areas that are difficult to access following a disaster. Moreover, the development of user-friendly software tools and 
platforms for data fusion and real-time processing is essential. These tools would democratize the use of advanced 
technologies, making them accessible and practical for a broader range of stakeholders, including local governments, 
emergency responders, and community planners. 

In conclusion, although significant strides have been made in the field of post-disaster building damage assessment, 
there remains a wealth of opportunities for further research and technological innovation. Addressing the highlighted 
challenges and leveraging the potential of emerging technologies will enable the development of more effective and 
efficient disaster management practices. Such progress is vital for enhancing the resilience and safety of communities 
worldwide, equipping them with the necessary tools and knowledge to better predict, respond to, and recover from 
disastrous events. 
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