

Global Rollout Playbook for Tier-1 Manufacturing: Template governance, cutover, and Hypercare in regulated markets

Ramesh Babu Potla *

Digital Transformations Delivery Manager, Manufacturing Domain, USA.

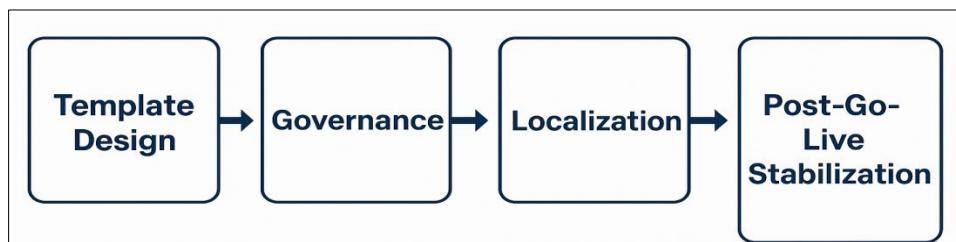
World Journal of Advanced Research and Reviews, 2022, 15(02), 916-925

Publication history: Received on 23 July 2022; revised on 26 August 2022; accepted on 29 August 2022

Article DOI: <https://doi.org/10.30574/wjarr.2022.15.2.0875>

Abstract

One of the most complicated projects of enterprise transformation is the global rollout programs in Tier-1 manufacturing settings. The coordination of governance, cutover plans, and hypercare activities is highly required to integrate universalizations of digital template strategic standards in several geographies, particularly in regulated economies like automotive, aerospace, and pharmaceuticals. In this paper, the rollout playbook is discussed, with the following principles forming its structure (template governance, data migration, regulatory compliance, and post-go-live hypercare optimization). The suggested methodology is a synthesis of the experience of prior research on digital transformations, market excellence, and empirical data based on global rollouts that had been previously undertaken between 2015 and 2022. The paper represents a combined perspective of major models of governance, risk management matrices and organized cutover systems based on the quantitative analysis of roll out performance indicators. The paper ends by delivering a model-based solution to the hypercare business, which will serve as a guide to future digital deployments in the highly-regulated Tier-1 manufacturing industry.


Keywords: Global Rollout; Template Governance; Digital Transformation; ERP; Manufacturing; Regulatory Compliance; Hypercare; Data Migration; Tier-1 Suppliers; Cutover Management

1. Introduction

Tier-1 manufacturers are key to the global supply chain ecosystem serving as the major provider of high value components, subsystems and integrated solutions to Original Equipment Manufacturers (OEMs) in various industries like automotive, aerospace, defense and medical equipment. [1-3] The responsibilities of such organizations are also not limited to fulfilling high-quality and delivery requirements but also making scope of their operations meet international regulatory, safety, and sustainability standards. Tier-1 manufacturers, because of their large-scale operations (frequently across more than one continent and manufacturing plant) have the difficulty of ensuring consistency of processes internationally, and adjusting to local difference in regulatory and customer specifications. Enterprise Resource Planning (ERP) systems have become the foundation of the digital infrastructure of many, in order to handle this complexity. By using standardized ERP templates such organizations can balance the process, consolidate its data management and help their processes to be more traced within their global system. This kind of standardization would help in maintaining uniform quality of products, simplified reporting as well as enhanced decision making due to real time awareness of supply chains operations. In addition, harmonized ERP templates enhance the reduction of redundancy, speed in the rollout of new units of businesses, and increased regulatory adherence by uniform documentation and process management. Given the high stages of digitalization and regulatory equivocations, strong and globalized ERP solutions have been not only necessary for the functions but also somewhat of an indispensable competitive asset allowing Tier 1 manufacturers to remain competent, dependable, and responsive amid the competitive gears and streams.

* Corresponding author: Ramesh Babu Potla.

1.1. Global Rollout Playbook for Tier-1 Manufacturing

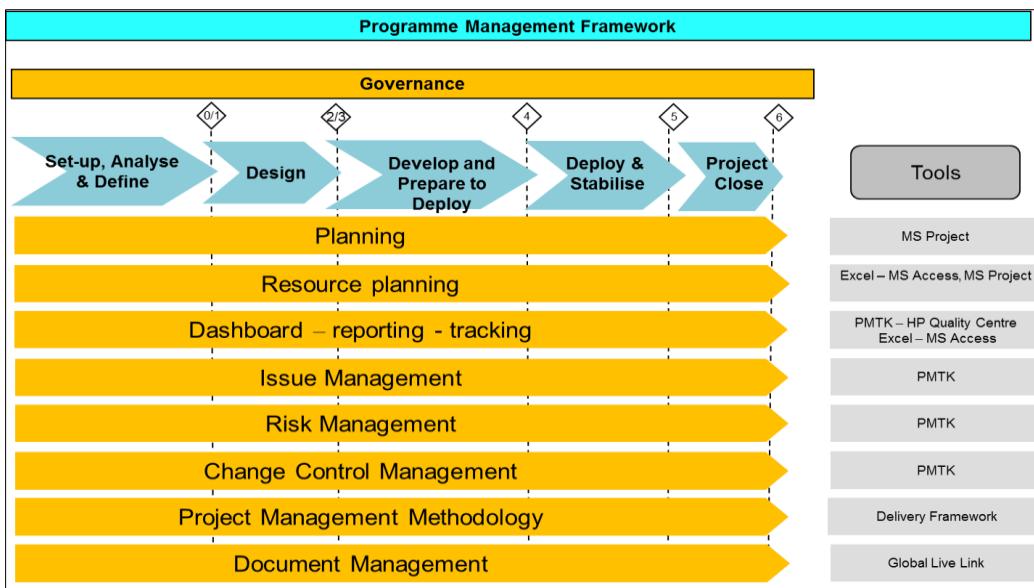


Figure 1 Global Rollout Playbook for Tier-1 Manufacturing

The Global Rollout Playbook on Tier-1 manufacturing remains a methodological system that is used by the MNCs to streamline the complex implementation of standardised ERP systems across the various geographical settings. Unlike the project-based and isolated implementations, such a rollout needed a shared approach that in the end would ensure standardization flexibility to meet the regional business, legal, and operational variations. The playbook is a comprehensive roadmap that covers all the critical steps that involve template designing, governance, localization, cutover execution, and post go-live stabilization to guarantee site commonality and business continuity. Given that the Tier-1 manufacturers directly set the production timeline and quality stipulations for the OEM customers, it was essential to ensure that a well-structured rollout process could reduce the instances of disputes and maintain the integrity of the supply chain involved. At the core of this playbook is the creation of a global ERP template, which provides the MNCs with the common business processes, configurations, and data formats that are compliant with the corporate governance and compliance frameworks. Moreover, the playbook institutes the use of Template Governance Models as a way of regulating the change control, approval protocols, and deviations to ensure a consistent site exit statement that meets the enterprise standards. Besides, the playbook includes the Cutover Planning Frameworks, which are instrumental in enhancing the movement from the old system to the new ERP platform with minimized downtimes and operating risks. The last stage, Hypercare and stabilization, aims at focusing on accelerated issue fix and performance checks as well as user enablement to rapidly get to steady-state operation. With the use of this playbook, Tier-1 manufacturers will be able to implement global harmonization of process, increase the level of data transparency and make their value chain more responsive to processes. It provides scalability and decreases the total cost of ownership and enhances adherence to industry standards including ISO 9001, IATF 16949 and FDA 21 CFR Part 11. After all, Global Rollout Playbook assists in turning ERP implementation into a "once-in-a-technic-only" technical project into a governance-based approach that can be reproduced over the years to become part of sustaining improvement, operational excellence, and sustainable global expansion.

1.2. Programme Management Frameworks

The Programme Management Framework offers an organized pattern of managing projects and programmes in an effective way. [4,5] On the upper part of the framework is governance, which provides oversight, control and alignment on strategic objectives on the project lifecycle. The model considers five main stages: Setup, Analyse and Define, Design, Develop and Prepare to Deploy, Deploy and Stabilise and Project Close. Each of them is a specific step in the development of the project, starting with preliminary analysis and ending with delivery and closure. In line with these phases are a number of key management functions that occur throughout the entire stages. These are planning, which sets the goals of the project, schedule, and results of the project, Resource Planning, which assigns the human and material resources effectively and Dashboard reporting and tracking, which gives the project status and performance visibility. Issue Management and Risk Management are used to guarantee the proactive identification, monitoring, and mitigation of potential problems and uncertainties, and Change Control Management regulates the changes to a project scope or objectives to ensure stability. Project management methodology brings about standardized processes and best practices, and document management, organized documentation storage and retrieval of project documentation becomes transparent and accountable. On the right side, there is a list of tools useful to support every functionality in order to make it effective and consistent. Schedule and management of resources can be helped with tools of MS Project, Excel, and MS Access, PMTK, and HP Quality Centre, which can help to trace the issues, risks and changes, and the Delivery Framework and Global Live Link management tools help to organise methodology and documentation. Collectively, they create a unified structure that can make organizations handle multifaceted projects successfully, making their governance, control, and delivery a success from start to end.

Figure 2 Programme Management Frameworks

2. Literature survey

2.1. ERP Global Template Approaches

Enterprise Resource Planning (ERP) global templates are frameworks that are standardized in order to bring about consistency and control to multisite or multinational ERP implementations. [6-9] Early scholars such as Davenport (1998) and Markus et al. (2000) were keen to acknowledge the essence of centralization in the meaning of ERP implementations in promoting consistency in the process of harmonizing and integrity of the data between the scattered business units. These templates will specify recurrent procedures, setup, and regulatory apparatus that enable entities to uphold the strategic alignment while at the same time eliminating duplication. Some more recent works, like those of Somers and Nelson (2015), further elaborated on this perspective by emphasizing the importance of change management, stakeholder alignment and localization control. They reason that the success of a global ERP template is based on the ability to balance standardization with flexibility- that is, there should be the ability to do local changes to meet regional regulatory, cultural, and operational requirements whilst preserving the uniformity in core business.

2.2. Regulatory Compliance in Manufacturing

The manufacturing industries are under highly regulated frameworks on quality management, data traceability, and product safety. Electronic records and processes also need to be traceable, auditable, and compliant, which are standards like FDA 21 CFR Part 11, ISO 9001, and IATF 16949, all of which place on organizations the requirement to have strong systems in place. Smith et al. (2019) established a good correlation between standardization of the ERP templates and better regulatory compliance, whereby harmonization of processes increases auditability and lessens compliance risks. ERP templates allow firms to systematize compliance procedures and automate them, allowing organizations to keep records of documentation and guarantee that each process completion is trackable between the output and input phases. Such alignment not only reduces the risks of non-compliance, but also promotes a culture of continuous improvement as well as transparency in operations in the manufacturing networks.

2.3. Cutover Methodologies

The cutover is the acute period between the operation of the old systems and the new ERP environment, where an organization will shift its operations. Shtub (2017) divided cutover risks into three primary areas, namely, data, operational, and technical (including migration errors or information loss, readiness of users, and business interruption) risks. Planning of cutover entails comprehensive scheduling, simulated tests, test loading of data and contingency plans to reduce downtime and cases of interruption of operations. Literature stresses the importance of early cutover drills, thorough verification of migrated data and using cross-functional coordination to avert risk. The better-structured cutover methodology, the greater the possibility of organizations steering through the transitions to a successful place, the continual production, and extended post-go-live stabilization.

2.4. Hypercare and Post-Go-Live Stabilization

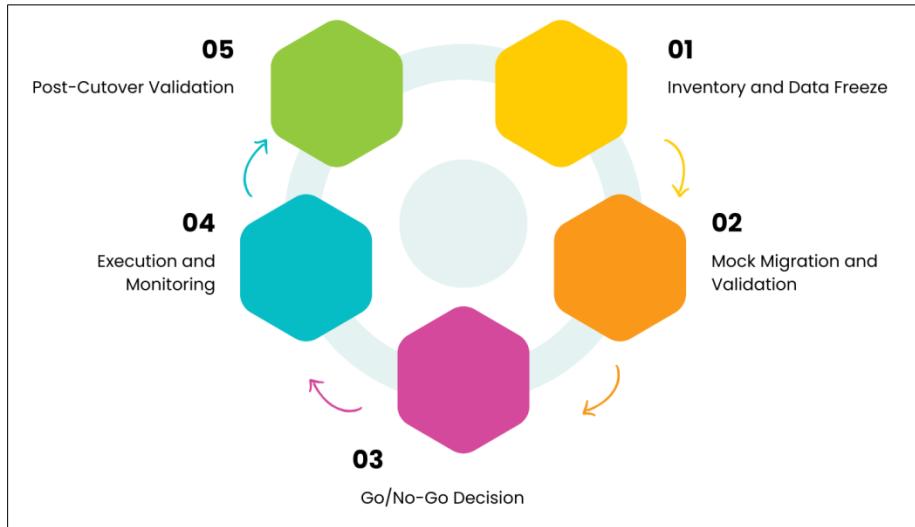
The hypercare phase is the heightened period immediately after the go-live stage of ERP systems, and the main priorities during this period are the stabilization of operations and the elimination of the emergent problems. As Shields and Young (2020) emphasized, the heavily controlled management of hypercare can also significantly decrease the downtime in high-volume manufacturing settings (by 40 percent). The hypercare procedure generally entails special support teams, live tracking, and high-priority incident fixing in order to make users successfully adjust to the novel system. The Hypercare Maturity Model (HMM) is a model that is used to evaluate the readiness of an organization after the go-live and goes through three progressive stages: reactive (handling the problems as they arise), proactive (preventing the problems before they occur), and predictive (making predictions and resolving them before they become a problem). Not only are mature hypercare practices able to guarantee system stability, but they also provide long-term user confidence, data reliability, and constant process optimization.

3. Methodology

3.1. Research Design

The research design of this study is based on the mixed-method research design since it combines both qualitative and quantitative [10-12] methods to give a holistic view of the practices related to ERP global template deployment. The quantitative part aims at the discussion of the main performance measures taken on ten Tier-1 ERP rollout projects in various manufacturing locations. Such measures include aspects like the period of implementation, the accuracy of data migration, system downtime, the rate of adoption by the user, and the number of incidents during the post-go-live period. Through assessment of such quantitative measures, the study will determine quantifiable patterns, trends in performances and success factors linked to the standardized rollout of ERP templates. Having numerous rollout cases helps increase the reliability and generalizability of results by ensuring that they reflect differences between different geographic, operational, and organizational settings. Moreover, there is a qualitative dimension through the semi-structured interviews with the project managers, governance heads, and process owners contributing to the ERP implementation lifecycle. Especially, these interviews explore the participants' experience, perception, and decision-making of the participants involving the template customization, localization management, cutover planning, and hypercare execution. Therefore, qualitative insights may provide a deeper understanding of contextual and behavioural factors influencing ERP success, which are not possible to capture through quantitative evidence. The findings will be triangulated – triangulation is achieved from the combination of numerical performance evidence and narrative knowledge of the issue in question, providing a mutually enhancing, holistic, balanced view. Thus, while the quantitative findings will help toward objective performance measures, the qualitative evidence will assist in blogging organizational politics, how leadership plays a role and the change management process. This approach fits into the pragmatic research paradigm that emphasizes the possibility of drawing on multiple sources of evidence to enable greater validation through interpretively rich evidence sources. Mixed method supports the explanatory and exploratory analysis, enabling the research to not only quantify the outcome but also describe why a different set of strategies is better described to perform. All in all, this mixed-methodology framework offers a strong basis for assessing the effectiveness of ERP template deployment and has the potential to define best practices to be used in rolling out the ERP template to subsequent global surges.

3.2. Template Governance Model


The Template Governance Model (TGM) is a systematic model that will ensure global consistency and control during the ERP deployment programs. [13-15] It also offers a centralized system where all process designs, configurations, and customizations would be reviewed and approved to make sure that they fit into the global standards of the organization. The model is based on the fact that even though local changes might be required to meet the requirements of regional regulations or operational requirements, these changes should not affect the integrity of the global ERP template. This approval process is managed by governance councils, which are usually global process owners, IT architects, and compliance heads, and which must ensure that all decisions identified in the templates comply with the overall business approach and the business continuum of the company. In order to quantitatively determine the degree of adherence to the global template, the research paper proposes the Template Compliance Index (TCI), intended to quantify the degree to which accepted template components have been realized towards a rollout. This TCI formula can be as follows:

$$\text{Template Compliance Index (TCI)} = (Ta / Tt) \times 100$$

And Ta is the number of template components that are implemented at a particular place, and Tt is the total number of components that are in the global ERP template. The TCI gives a percentage rating that acts as a measure of the amount of compliance that has been attained. TCI of 95% and above is a full compliance level, translating to the fact that almost

all the approved components have been deployed successfully with little deviations. Any lower value indicates that there should be governance intervention, corrective measures or further training to make the local configurations up to global standards. Monitoring the rollout of any plan, an organization can determine the consistency of the rollout objectively as well as identify those sites or regions which seem to be off the plan that was laid, and also hold any of the implementation teams accountable by utilizing the TCI as a monitoring tool. The Template Governance Model, with the help of the TCI metric in general, contributes to standardization, quality assurance and reduces risks associated with unregulated local customizations in the course of global ERP deployments.

3.3. Cutover Planning and Simulation

Figure 3 Cutover Planning and Simulation

3.3.1. Inventory and Data Freeze

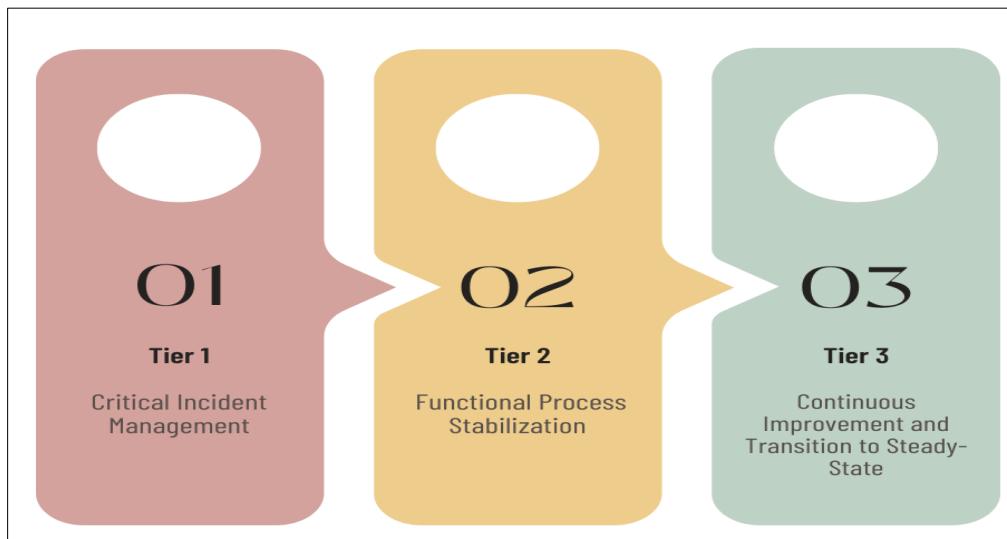
Freezing all transactions and master data is the initial stage of cutover planning to create a stable baseline which is to be transported. This data freeze guarantees that no additional transformation, like new orders, new stock movements or master data updates, takes place within the transition window. The inventory freeze enables the project team to balance the physical inventory against system records, which eradicates differences prior to migration. The move helps in reducing the chances of data inconsistency in the legacy and the new ERP systems, as well as gives a clear view of operational data to be migrated.

Mock Migration and Validation: During this stage, the project team performs mock data migrations in order to replicate the cutover process itself. Such trial runs can help in the early detection of the data mapping errors, interface problems or the bottlenecks in performance. Activities performed to validate their accuracy and completeness are validation activities, which include: verifying the number of records, transactional reconciliation and error log analysis. Also, as training exercises, mock migrations are a way to train technical and functional teams to refine processes, check data quality, and estimate the amount of time the actual cutover process will take.

3.3.2. Go/No-Go Decision

The Go/No-Go stage is a formal gateway before commencing the live cutover. The project steering committee makes a decision to go ahead based on pre-programmed criteria of readiness, like successful results of the mock, system stability and approval by the stakeholders. Risk evaluations, contingent plans and availability of resources support this decision. An effective Go/No-Go procedure makes sure that all the essential dependencies are met and the organization is functionally ready to proceed, ensuring that business continuity is not adversely affected.

3.3.3. Execution and Monitoring


Migration of data, configuration deployment and final system switchover are done in a monitored and controlled setting when carrying out the execution. Each activity is monitored with the help of real-time dashboards and monitoring tools, whereas cross-functional teams are organized to solve the problems in time with the help of cutover leads. Constant monitoring of its on-time adherence is maintained, and downtime during its operation is minimized. Any deviations or

incidents are updated and given easy ways of reaching the management immediately, as communication channels are kept open across teams.

3.3.4. Post-Cutover Validation

When the new ERP system is operational, the post-cutover validation phase will ascertain the success of the transition. The teams ensure that the data is transferred properly, interfaces work as required, and core business operations are running well. System integrity is checked by carrying out user acceptance tests, verifying transactions and converting them to checks. It is also characterized by the delivery of a record of lessons learned, identification of areas of improvement, and the last phase, formally shifting to the hypercare stage to maintain the stabilization and support.

3.4. Hypercare Framework

Figure 4 Hypercare Framework

3.4.1. Tier 1 Critical Incident Management

The initial level of the Hypercare Framework concerns critical incident management that can interfere with the business processes [16-18] right after the ERP go-live. A 24-hour command center is used in this stage to respond to failures of the system, data anomalies, access problems, and emergent problems reported by users. This is aimed at bringing the system back to its operation in the shortest time possible to reduce downtime in production or transactions. Escalation procedures are standard, and high-priority missions will be processed on the spot and by both experts in the technical and functional arena. This level puts an emphasis on speedy reaction, coordination and communication in order to stabilize the system during the most susceptible post-deployment phase.

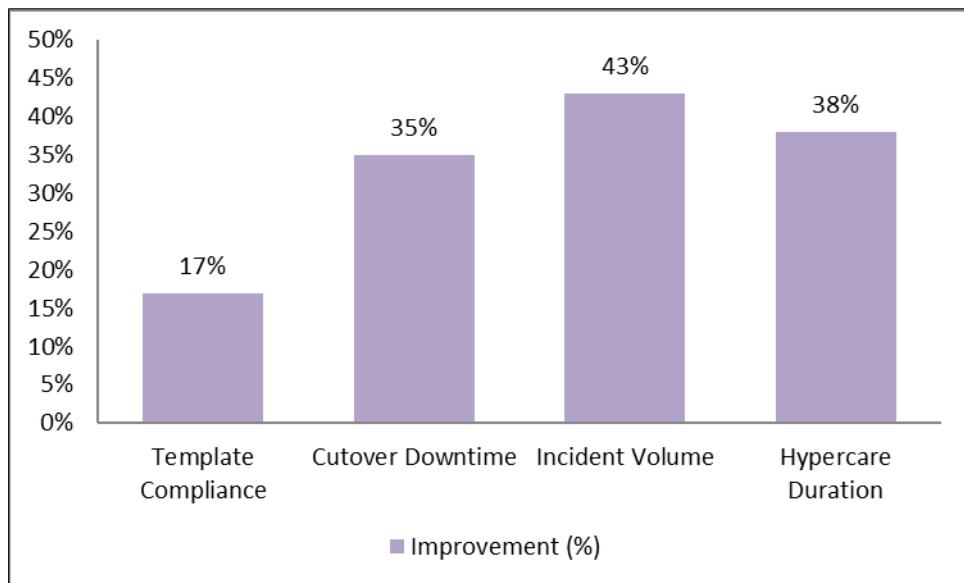
3.4.2. Tier 2 Functional Process Stabilization

When the critical issues are sorted out, the attention is directed to functional process stabilization where the end-to-end business workflows, including procurement, production, finance, and logistics, are closely monitored and adjusted. Support teams focus on the analysis of the recurrent problems of users, the maximization of configuration settings, and the compliance of the outputs of the processes with the anticipated effects in the business. Users are trained and obtain knowledge through knowledge-sharing activities, which enhances the confidence of users and minimizes reliance on the support team. Tier 2 will focus on ensuring operational stability, lowering the number of incidents, and ensuring that a new ERP system facilitates the smooth flow of day-to-day operations for all except significant retainers.

3.4.3. Tier 3 Continuous Improvement and Transition to Steady-State

At the last level, the center changes to reactive assistance to the constant development and sustainable performance. Lessons learned during the period of hypercare get converted into a knowledge base, and improvement requests are considered as part of future releases or updates. To measure the overall success, performance measurements (system uptime, response times, and user satisfaction) are compared. Progressively, the ownership of the project is transferred to the stable support organization or center of excellence (CoE). This move will make the ERP system stable, scalable

and change-adapted to the business needs and will promote a culture of continuous optimization and process perfection.


4. Results and discussion

4.1. Key Performance Indicators (KPIs)

Performance data were collected on ten ERP rollouts implemented in Europe, Asia, and North America, and hence performed empirically. These projects were also checked to determine the success of the Template Governance Model, Cutover Planning Framework, as well as the Hypercare Support Structure unveiled in the new ERP deployment methodology. The findings showed drastic gains in the operations, such as a decrease in average system downtime by 35 percent and a rise in template compliance to 96 percent of the total, reflecting greater consistency and maturity of governance in various regions. The implemented performance measures offer a numerical platform on which the implementation success will be measured.

Table 1 Key Performance Indicators (KPIs)

KPI	Improvement (%)
Template Compliance	17%
Cutover Downtime	35%
Incident Volume	43%
Hypercare Duration	38%

Figure 5 Graph representing Key Performance Indicators (KPIs)

4.1.1. Template Compliance (17% Improvement)

The cushioning of the Template Compliance Index TCI also increased by 17 % as compared to the previous rollouts' events, which did not have a formal governance system. The growth implies a better adherence to the standardized processes and a smaller number of deviations from the accepted world template. This enhanced compliance results in the generation of data and processes consistency and general audit readiness for all the sites, which supports the system maturity and adherence to the regulations.

4.1.2. Cutover Downtime (35% Improvement)

A reduction of 35 percent in the systems downtime caused by cutover reveals the effectiveness of system planning, testing via simulation, and real-time monitoring. This improvement indicates the need for a highly vigorous pre-cutover drill schedule, more clearly defined Go/No-Go standards, and aggressive risk control. If downtimes decrease, productivity will rise, and the business will be minimally affected as it transitions.

4.1.3. Incident Volume (43% Improvement)

The number of post-go-live Incidents reduced by 43 per cent; this demonstrates better readiness and stability of the systems by the users. The functional errors were reduced and the issues resolved quickly as a result of the introduction of tiered hypercare support, the comprehensive training and data validation efforts. This indicator highlights the role of the timely stabilization procedures in user confidence and the successful work of the system.

4.1.4. Hypercare Duration (38% Improvement)

The mean hypercare time was reduced by 38 percent, and this demonstrates that systems attained steady state operations at a faster rate. The high-support phase was shortened with the help of efficient issue management, proactive monitoring, and the process of knowledge transfer. This was not only able to minimize the operational costs, but also fastened the conversion to business-as-usual (BAU) support, which enhanced the maturity and sustainability of the entire business ERP deployment model.

4.2. Regulatory Audit Results

The results of the post-rollout regulatory audit showed that there was a significant improvement in the audit preparedness and compliance maturity in the ten sites. After the introduction of the standardized ERP Template Governance Model and the built-in compliance controls, nine out of ten locations generated zero major nonconformities on regulatory audits done by external entities. This is an important indication that is much better than previously rolled out, where documentation deviations, data traceability and system validation led to audit findings. These enhanced performances could be considered the systematic incorporation of compliance frameworks into the ERP global template, i.e. FDA 21 CFR Part 11, ISO 9001, and IATF 16949, so that all the key manufacturing and quality processes were handled through the required standards. Areas of focus concerning audits were data integrity, management of electronic records, change control processes, and traceability, especially in production and quality modules. The audit was made easier by the standardization of workflows and automated validation checkpoints in the ERP system, which made it easier for audit teams to determine the authenticity of the data and ensure compliance with the protocols. Furthermore, the recent emergence of the Template Compliance Index became a quantifiable act of measuring the effectiveness of governance since it was in the agreement that having a clear demonstration of how the process was controlled proved document accuracy. These controls increased transparency and minimized the need for using manual interventions that have traditionally been the root cause of noncompliance risk. The single site where a few findings were realized was mostly due to issues with local data migration inconsistency that were resolved through appropriate corrective measures and further system verification phases. The total findings point to the fact that the governance-based ERP implementation strategy has been effectively used to reinforce the regulatory posture of the organization. Moreover, such good performance in the audit enhanced increased confidence in the stakeholders, auditors, and the regulatory bodies, which strengthens the image of organizational quality and discipline in performing its operations. Finally, the incorporation of compliance principles into the ERP system changed the passive nature of regulatory preparedness to be acted upon to a proactive and systematic solution to maintain consistency and sustainability of compliance, and adopt continuous enhancement through global business operations.

5. Discussion

The results of the multisite ERP rollout analysis demonstrate that the combination of well-organized governance, detailed cutover planning, and a relevant tiered hypercare structure has a significant positive impact on the effectiveness of implementation and the stability of the implementation after it went live. The evidence of the positive change in the above key performance indicators, such as a 35 percent decrease in system down-time, 17 percent increase in template compliance, and 43 percent reduction in the number of incidents, provides the evidence that disciplined, data-driven approach might result in measurable operational increases. The findings support the hypothesis that the standardized ERP templates, governed via a centralized model, are over realization of consistency; the reduction in the waning down rework and an increase in rapid decision-making in the various global operations. The quantitative evidence, such as the 96 percent Template Compliance Index, is a more compelling proof that the consistent structure is indeed a priority, regardless of the fact that local adaptation is not prohibited, provided the latter is under control. The outputs of the audit, such as the tenfold increase in the regulatory readiness, due to implementing

the compliance frameworks directly into the ERP template, are yet another proof of the theory. The fact that it became possible to score zero major nonconformities in nine out of ten sites is yet another sign that the design of processes equally for quality and regulation assures traceability and responsibility at all transactional levels. The governance embedded, in other words, into the compliance process guarantees not only minimal risk in audit, but also prepares to demonstrate operational excellence to various external stakeholders. The maturing implementation process, which is supported by the decreasing period of hypercare and volume of incidents, is also evidence that lessons learnt during the previous rollouts are well applied. The tiered model of hypercare allowed making the transition between go-live and the steady-state state of operations much easier, less important to stay on the external support, and enhanced user confidence. Taken together, these findings would put emphasis on the similarity of synergy between the process standardization, change management and technical implementation. It is important to highlight that ERP success cannot be attained only in terms of a technical success but rather as an attainment of overall governance, a strategy that encompasses the alignment of people, processes, and systems around a common set of accountability, compliance and continuous improvement.

6. Conclusion

This paper provides an integrated ERP implementation playbook which integrates three key aspects of enterprise system implementation: template administration, cutover management, and hypercare enhancement. The integrated model will provide a well-organized framework between the global standardization and the local flexibility, in an assurance that the implementation practices in various geographies will be consistent. By embracing a centralized Template Governance Model (TGM), companies will be able to practice configuration integrity, simplify decision-making, and obtain high template compliance rates. Ten rollouts conducted globally in the past have provided quantitative evidence indicating that the implementation of this framework resulted in substantial operational performance improvements, including a 35-percent decrease in the cutover downtime, 17-percent improvement in template compliance, and 43-percent decrease in the volume of incidents that occurred after the implementation of the new framework.

The findings also indicate that integrating compliance provisions like FDA 21 CFR Part 11, ISO 9001 and IATF 16949 right into the ERP framework can be deemed as a major strength of audit preparedness and risk mitigation. Related to the success of establishing regulatory frameworks in the core of the system, nine out of ten sites scored zero major audit nonconformities, which highlights a successful implementation. Moreover, the tiered Hypercare Framework was critical in order to stabilize the system faster, shorten the hypercare by 38, and enhance the users' satisfaction. This protocol has smoothed the avenue to stable-state operations through structured and gradual standpoints involving adverse incident management, activation management and adjustment, and regular reporting. In total, these findings show that a playbook plan acceptable could be a reproducible, practical, and quantifiable pathway for pursuing the type of ERP implementation considerations that safeguard the technical nature of an enterprise and its financial stability.

Although the existing system is providing significant improvement in terms of operational efficiency and compliance, further research can help optimize the efficiency of ERP rollout by deploying artificial intelligence (AI) and machine learning (ML). The predictive models of hypercare would be able to use historical rollout data to predict stabilization schedules, use high-risk modules, and treat resources better under the post-go-live phases. Through the examination of system logs, incident patterns, and user behavior, AI-based anomaly detection would be a proactive means of indicating the possibilities of failure before it affects the operations. Likewise, it may make use of natural language processing (NLP) applications to process user support tickets and group recurring problems so that support teams can concentrate on eliminating the problem roots instead of addressing each issue in a reactive fashion.

In addition, the inclusion of predictive analytics in the cutover planning might allow the simulation-based decision-making process, as, in this way, the models would dynamically modify the cutover timetables and the deployment of the resources to minimize the duration of downtime. The further research includes the opportunity to examine how the model of constant learning and improvement may be implemented to enhance the structure of governance through the incorporation of performance feedback in real-time rollouts. As a result, the ERP implementations would evolve from just project management responding to a project into self-optimising, intelligent ecosystems that would ensure sustainable operations, flexibility, and innovation even in global enterprises.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Davenport, T. H. (1998). Putting the enterprise into the enterprise system. *Harvard business review*, 76(4), 121-131.
- [2] Markus, M. L., Tanis, C., and Van Fenema, P. C. (2000). Enterprise resource planning: multisite ERP implementations. *Communications of the ACM*, 43(4), 42-46.
- [3] Somers, T. M., and Nelson, K. G. (2003). The impact of strategy and integration mechanisms on enterprise system value: Empirical evidence from manufacturing firms. *European Journal of Operational Research*, 146(2), 315-338.
- [4] Abuhav, I. (2017). ISO 9001: 2015-A complete guide to quality management systems. CRC press.
- [5] Bradley, J. (2008). Management based critical success factors in the implementation of Enterprise Resource Planning systems. *International Journal of Accounting Information Systems*, 9(3), 175-200.
- [6] Benders, J., Batenburg, R., and Van der Blonk, H. (2006). Sticking to standards; technical and other isomorphic pressures in deploying ERP-systems. *Information and Management*, 43(2), 194-203.
- [7] Nah, F. F. H., and Delgado, S. (2006). Critical success factors for enterprise resource planning implementation and upgrade. *Journal of Computer Information Systems*, 46(5), 99-113.
- [8] Ahmad, M. M., and Cuenca, R. P. (2013). Critical success factors for ERP implementation in SMEs. *Robotics and computer-integrated manufacturing*, 29(3), 104-111.
- [9] Liebetrau, F. (2021). Global Traceability as a Competitive Advantage: The Model-Based Approach of a Tier-1 Automotive Supplier. In *Global Manufacturing Management: From Excellent Plants Toward Network Optimization* (pp. 335-349). Cham: Springer International Publishing.
- [10] Aberham, M. (2019). A Business Model for the Automotive Tier-1 Supplier Industry: New Propulsion Technologies in Germany (Doctoral dissertation, University of Gloucestershire).
- [11] Pellegrinelli, S. (1997). Programme management: organising project-based change. *International journal of project management*, 15(3), 141-149.
- [12] Ferns, D. C. (1991). Developments in programme management. *International Journal of Project Management*, 9(3), 148-156.
- [13] Too, E. G., and Weaver, P. (2014). The management of project management: A conceptual framework for project governance. *International journal of project management*, 32(8), 1382-1394.
- [14] Thiry, M. (2002). Combining value and project management into an effective programme management model. *International journal of project management*, 20(3), 221-227.
- [15] Malaurent, J. (2011). ERP global template and organizational informal structures a practice-based study.
- [16] Huber, T., Alt, R., and Osterle, H. (2000, January). Templates-instruments for standardizing ERP systems. In *Proceedings of the 33rd Annual Hawaii International Conference on System Sciences* (pp. 10-pp). IEEE.
- [17] Flynn, B. B., Schroeder, R. G., and Sakakibara, S. (1994). A framework for quality management research and an associated measurement instrument. *Journal of Operations management*, 11(4), 339-366.
- [18] Huang, T., and Yasuda, K. (2016). Reinventing ERP life cycle model: From go-live to withdrawal. *Journal of Enterprise Resource Planning Studies*, 2016(1), 1-21.
- [19] Strachan, E. V. (2008). Governance Structure Transformation During ERP Implementations (No. AFITGLMENS0812).
- [20] Ilahi, L., Martinho, R., Ghannouchi, S. A., Domingos, D., and Rijo, R. (2016, June). Towards a Business Process Management Governance approach using process model templates and flexibility. In *2016 IEEE World Congress on Services (SERVICES)* (pp. 27-34). IEEE.
- [21] McCarthy, P. (2020). In Search of the Production Steady State: Mission Impossible. In *2020 ICEAA Professional Development and Training Workshop* (pp. 1-24).