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Abstract 

This paper provides a comprehensive survey of Federated Learning (FL), an emerging paradigm in machine learning 
that allows multiple clients such as mobile devices or distributed data centers to collaboratively train shared models 
without exchanging raw data. By localizing data and transmitting only model updates, FL ensures data privacy, enhances 
security, and reduces the risks and costs associated with traditional centralized learning methods. The paper analyzes 
FL from five key dimensions: data partitioning strategies, privacy-preserving mechanisms, machine learning models, 
communication architectures, and system heterogeneity. In addition to exploring foundational concepts, the paper 
highlights enabling technologies and platforms that support FL, reviews widely used protocols, and presents real-world 
applications across industries such as healthcare, finance, and IoT. The authors also delve into the challenges of 
deploying FL in heterogeneous and large-scale environments, including issues related to communication efficiency, 
device reliability, and algorithmic fairness. Finally, the survey outlines open research directions and provides practical 
insights to help data scientists and engineers design more robust and privacy-preserving FL systems suitable for critical 
real-world deployments. 
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1. Introduction

With the evolution of big data, privacy and data security have become critical concerns, driven by regulations like the 
EU’s GDPR [4] and China’s Cyber Security Law [5]. These laws prohibit unauthorized data use and require strict user 
consent, making centralized data collection and traditional machine learning increasingly impractical due to privacy 
risks and data silos [1–3], [6]. Federated Learning (FL) offers a promising solution by enabling decentralized model 
training across user devices without transferring raw data to a central server, thus ensuring compliance with privacy 
laws [7]. FL utilizes secure mechanisms such as homomorphic encryption, secure aggregation, and differential privacy 
to protect sensitive information during training [8,9]. FL is categorized based on data distribution: horizontal (shared 
features), vertical (shared users), and federated transfer learning (no overlap). Unlike conventional distributed 
learning, FL ensures complete user control over local data and supports privacy-preserving collaboration [10–13]. With 
advancements in edge computing and AI hardware, FL can now efficiently utilize client-side resources to train models 
across various domains including healthcare, IoT, defense, and mobile apps [14–16]. Despite its benefits, FL still faces 
technical challenges related to platforms, protocols, and privacy-preserving implementations [17–19]. This paper 
explores these aspects in depth and presents adaptable FL architectures for diverse industry applications [20–22]. 
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2. Challenges  

Federated Learning (FL) faces three main challenges: ensuring user privacy during model training, dealing with limited 
data on individual devices, and handling statistical heterogeneity, as data across devices is often non-IID, making global 
model training more difficult. 

3. Contributions 

This paper provides a comprehensive overview of Federated Learning (FL), focusing on its development, core 
components, challenges, and real-world applications. Unlike prior surveys, this work delves deeper into FL 
architectures, platforms, hardware, and software, aiming to give researchers and data scientists a practical blueprint 
for developing FL-based solutions. It highlights current use cases—particularly in healthcare—and outlines key 
technical challenges, best design practices, and future research directions to facilitate broader and more effective 
adoption of FL across industries. Figure-1 representing the general architecture of FL is shown below. 

 

Figure 1 Federated learning architecture 

4. Related works 

Federated Learning (FL) is an encrypted distributed machine learning approach that enables participants to 
collaboratively build models without sharing their local data. By exchanging encrypted parameters, a shared virtual 
model is created, helping to overcome data silos. Though still emerging, FL is often compared to distributed, parallel, 
and deep learning, with several studies already exploring it in depth. Table 1 summarizes various works that tackle FL, 
along with other topics focusing on use-cases for FL.  

Table 1 Summary of related works  

Ref. No Author(s) Article Topic(s) 

[23] Y. Xia   

[24] Tal Ben-Nun, T. Hoefler Deep Learning 

[25] M.G. Poirot, et al.   

[26] P. Vepakomma, et al. HIPAA Guidelines for FL 

[27] P. Vepakomma, et al. Drawbacks of FL 

[28] Kevin Hsieh Traditional ML Methods 

[29] Qinbin Li, et al. Data Privacy and Protection Future Direction of FL Challenges of FL 

[30] V. Kulkarni, et al. Personalization techniques for FL 

[31] J. Geiping, et al. Privacy of FL 

[32] Y. Liu, et al. FL for 6G 
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5. Categorizations of federated learning 

5.1. This section outlines five key categorizations of Federated Learning (FL) 

Data partitioning, privacy mechanisms, applicable machine learning models, communication architecture, and methods 
to address heterogeneity. For easy understanding, we list the advantages and applications of these categorizations in 
Table 2. 

Table 2 Categorizations of federated learning 

Categorization Methods Advantage Applications 

Data partitioning 

  

  

Horizontal 
federated learning 

Increase user sample size Android phone model update; 
logistic regression 

Vertical federated 
learning 

Increase feature dimension Decision tree; neural network 

Federated 
transfer learning 

Increase user sample size and 
feature dimension 

Transfer learning 

Privacy mechanism 

  

  

Model aggregation Avoid transmitting the original data Deep network federation 
learning; PATE method 

Homomorphic 
encryption 

Users can calculate and process the 
encrypted data 

Ridge regression; federated 
learning 

Differential 
privacy 

Can successfully protect user privacy 
by adding noise 

Traditional machine learning; 
deep learning 

Applicable machine 
learning model 

  

  

Linear models Concise form, easy to model Linear regression; ridge 
regression 

Tree models Accurate, stable, and can map non-
linear relationships 

Classification tree; regression 
tree 

Neural network 
models 

Learning capabilities, highly robust 
and fault-tolerant 

Pattern recognition, intelligent 
control 

Methods for solving 
heterogeneity 

  

  

  

Asynchronous 
communication 

Solve the problem of communication 
delay 

Device heterogeneity 

Sampling Avoid simultaneous training with 
heterogeneous equipment 

Pulling Reduction with Local 
Compensation (PRLC) 

Fault-tolerant 
Mechanism 

Can prevent the whole system from 
collapsing 

Redundancy algorithm 

Heterogeneous 
Model 

Can solve the corresponding 
heterogeneous device 

(LG-FEDAVG) algorithm 

5.2. Data partitioning 

Based on the distribution of sample and feature spaces, FL can be classified into three types: horizontal FL, vertical FL, 
and federated transfer learning [36]. 

5.2.1. Horizontal federated learning 

Horizontal FL applies when different datasets share similar features but involve mostly different users. It partitions data 
by user dimension aligning feature space while user identities differ allowing collaborative training without user 
overlap. This increases the training sample size and can enhance model accuracy. For example, two regional service 
providers may have different customer bases but similar user attributes, making them suitable candidates for horizontal 
FL. In this setup, each participant computes local gradients which are then sent to a central server for global model 
aggregation. Exchanging gradients can risk privacy breaches. To mitigate this, methods like homomorphic encryption 
[37], differential privacy [38], and secure aggregation [39] are commonly applied. A notable example is Google's 2016 
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federated model update system for Android devices [8,10], where users update model parameters locally and upload 
them to the cloud. This system leverages differential privacy [38] and secure aggregation to protect user data. Kim et al. 
[40] introduced BlockFL, a horizontal FL framework where devices update their local models through a blockchain 
network. Smith et al. [41] proposed MOCHA, a federated multitask learning framework that enables collaboration across 
sites while ensuring privacy and improving fault tolerance and communication efficiency. In approaches such as those 
in [11, 42], data is retained on the client side. Each client computes local gradients and sends them to the server, where 
the global model is updated—preserving data privacy and supporting distributed training 

 

Figure 2 The distinct ways, in which data is divided in horizontal federated learning, vertical federated learning, and 
federated transfer learning 

5.2.2. Vertical federated learning 

Vertical federated learning is applicable when datasets share many of the same users but have largely different feature 
sets. In this approach, data is split vertically based on features, aligning on common users while combining different 
feature attributes from various sources. For instance, a local bank and an e-commerce platform may both serve the same 
regional user base. While the bank records financial and credit information, the e-commerce platform logs browsing 
and purchase behavior. By securely aggregating these distinct features, vertical FL enhances model learning without 
compromising data privacy. Various machine learning methods support vertically partitioned data, including 
classification [43], statistical analysis [44], gradient descent [45], and privacy-preserving linear regression [46,47], as 
well as data mining techniques [48]. For example, SecureBoost [49] enables collaborative model training using shared 
user data without information loss. Another work by Hardy et al. [50] introduced a privacy-preserving logistic 
regression model using vertical FL. This model combines entity alignment and distributed logistic regression, employing 
Paillier homomorphic encryption [51] to maintain data confidentiality while enhancing classification accuracy. 

5.2.3. Federated transfer learning 

When both users and features across datasets have minimal overlap, federated transfer learning becomes essential [9]. 
This method does not segment the data but instead applies transfer learning to address issues of limited data volume 
or sparse labels. For example, a Chinese e-commerce company and a U.S.-based social media platform may have little 
overlap in user base and feature data due to geographical and functional differences. In such cases, transfer learning 
enables knowledge sharing between these datasets, improving model performance despite data limitations. This 
approach is particularly useful when training data for a specific task is scarce but related data from other domains is 
available [52]. 
A practical example would be a hospital’s radiology department lacking sufficient X-ray scans to train a diagnostic 
model. Here, transfer learning from related image recognition tasks can boost performance while preserving privacy. 
Thus, federated transfer learning not only protects user data but also enhances learning in data-constrained 
environments by leveraging auxiliary task knowledge. 

5.3. Privacy mechanisms 

The most important feature of federated learning is that cooperative clients can keep their own data locally, and need 
to share model information to train the target model, but the model information will also disclose some private 
information [53]. The common means to protect federal privacy are model aggregation [39], homomorphic encryption 
[50] and differential privacy [41]. 
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5.3.1. Model aggregation 

Model aggregation is a widely used privacy-preserving strategy in federated learning, where a global model is trained 
by collecting and combining model parameters from participating devices rather than sharing raw data. This approach 
ensures data privacy during training. For example, Shashi et al. [54] introduced an incentive-driven framework that 
enables multiple devices to contribute to federated learning. To maintain efficiency, real-time optimization of 
communication during parameter exchange is essential. In contrast to incentive mechanisms, Yu et al. [55] emphasized 
enhancing both privacy and model performance through techniques such as local fine-tuning, multi-task learning, and 
knowledge extraction. These methods help users achieve better results than standalone local models while maintaining 
privacy. McMahan et al. [42] proposed a deep federated learning framework based on iterative model averaging, which 
updates the global model in cycles by aggregating local updates. Another technique, PATE (Private Aggregation of 
Teacher Ensembles) [56], aggregates knowledge from multiple teacher models trained on separate data sources and 
transfers it to a student model, providing privacy protection by using a black-box approach. Yurochkin et al. [57] 
introduced a Bayesian nonparametric approach for federated neural networks, constructing a global model by aligning 
neurons across local models. Additionally, federated multitask learning [41] enables different users to train task-specific 
models locally and combine them through aggregation. 

Lastly, studies such as [40, 58] have explored integrating blockchain with federated learning. In these systems, model 
updates are shared and aggregated through a blockchain network, ensuring secure and transparent parameter 
exchange under blockchain protocols. 

5.3.2. Homomorphic encryption 

Conventional encryption schemes primarily ensure the security of data during storage, preventing unauthorized users 
without the decryption key from accessing any information about the original data. These schemes do not allow for 
computations on the encrypted data, as attempting such operations typically results in failed decryption. In contrast, 
homomorphic encryption addresses this limitation by enabling secure data processing. Its key advantage is that it 
allows computations to be performed directly on encrypted data without revealing the underlying information. After 
processing, only the user with the appropriate decryption key can retrieve the final result, which matches the expected 
output. This capability makes homomorphic encryption particularly suitable for systems like Ridge regression [39,59], 
where privacy-preserving data processing is essential. Furthermore, it enhances both communication efficiency and 
computational performance. 

5.3.3. Differential privacy 

Differential Privacy [60], introduced by Dwork in 2006, offers a modern framework for protecting individual privacy in 
statistical databases. This approach ensures that the output of a computation remains largely unaffected by the inclusion 
or exclusion of any single data record. As a result, the presence of an individual record in the dataset has a minimal and 
controlled impact on the overall results, significantly reducing the risk of privacy leakage. An attacker, therefore, cannot 
accurately infer personal information by analyzing the output. In conventional machine learning [61] and deep learning 
[62] training processes, differential privacy is commonly implemented by introducing noise into the output during 
gradient iterations to safeguard user privacy. In practice, techniques such as the Laplace mechanism and the exponential 
mechanism are widely adopted to enforce differential privacy. Current research often focuses on balancing privacy 
protection with model utility, as excessive noise can compromise performance. One emerging trend is the integration 
of differential privacy with model compression techniques [63], aiming to enhance privacy while maintaining or even 
boosting performance. 

6. Applicable machine learning models 

Federated learning is increasingly being integrated with mainstream machine learning approaches, offering a means to 
preserve privacy while maintaining model efficiency. This section outlines three key categories of machine learning 
models commonly used within federated learning frameworks: linear models, decision trees, and neural networks. 

6.1. Linear models 

Linear models in federated learning are typically classified into three types: linear regression, ridge regression, and 
lasso regression. Du et al. [43] introduced a method for training linear models within a federated environment, 
effectively addressing security concerns related to entity parsing while maintaining accuracy comparable to non-private 
solutions. Nikolaenko et al. [64] developed a ridge regression system that incorporates homomorphic encryption and 
Yao’s protocol [65], achieving superior performance. Linear models are generally straightforward to implement and 
serve as an efficient foundation for federated learning applications. 
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6.2. Tree-based models 

Federated learning can be applied to train individual or ensembles of decision trees, including popular algorithms such 
as Gradient Boosting Decision Trees (GBDT) and Random Forests. GBDT has gained significant attention in recent years 
due to its strong performance across various classification and regression tasks. Zhao et al. [66] introduced a privacy-
preserving GBDT system tailored for regression and binary classification, which securely aggregates regression trees 
from different data owners while protecting user privacy. Cheng et al. [49] proposed a framework called SecureBoost 
to train GBDT models on both horizontally and vertically partitioned data, enabling collaborative learning across 
decentralized datasets. 

6.3. Neural network models 

Neural networks represent a powerful class of machine learning models capable of addressing complex tasks, and their 
integration with federated learning is gaining traction. In scenarios involving UAVs (Unmanned Aerial Vehicles), tasks 
such as trajectory planning, target identification, and localization often rely on deep learning. Due to intermittent 
connectivity between UAV groups and ground stations, centralized training is not always feasible in real-time 
applications. Zeng et al. [67] were pioneers in implementing a distributed federated learning algorithm for UAV swarms, 
optimizing power allocation, scheduling, and convergence speed. Their approach involves a lead UAV aggregating 
locally trained models from peer UAVs to form a global model, which is then shared via intra-swarm communication. 
Bonawitz et al. [68] developed a scalable federated learning system for mobile devices using TensorFlow, enabling 
training across numerous distributed datasets. Yang et al. [70] established a federated deep learning framework based 
on data partitioning, with applications in enterprise-level data processing. In the public sector, traffic data often contains 
sensitive user information. To address this, Liu et al. [69] integrated Gated Recurrent Units (GRUs) with federated 
learning to forecast traffic flow, proposing a clustering-based FedGRU model that not only captures spatio-temporal 
dependencies more effectively but also outperforms traditional non-federated methods, as demonstrated on real-world 
datasets. 

Although federated learning has achieved considerable progress across diverse machine learning models, the ongoing 
evolution of machine learning techniques continues to pose challenges in developing practical and high-performance 
federated learning solutions. 

7. Challenges in federated learning 

Federated Learning (FL) is an emerging branch of Artificial Intelligence developed for model training in distributed and 
heterogeneous edge environments. However, as illustrated in Fig. 3, FL is still in its early stages and has yet to gain 
strong trust within the research community, primarily due to several existing challenges and limitations. 

 

Figure 3 Challenges in Federated learning 

7.1. Systems heterogeneity 

Modern networks exhibit multiple layers of heterogeneity across hardware, network types (e.g., WLAN, WMAN, WWAN, 
WPAN), devices, applications, data storage, and battery levels. Device heterogeneity spans various platforms such as 
smartphones, tablets, laptops, and other mobile devices capable of intercommunication [71]. This complex 
heterogeneity presents significant challenges for federated learning (FL). In particular, the use of diverse data storage 
systems and the violation of the independent and identically distributed (I.I.D.) assumption complicate model training 
and analysis. Since devices generate data based on their unique usage and local environments, data distributions differ 
widely across participants [72]. For example, in tasks like next-word prediction, mobile users may use language 
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differently, leading to non-I.I.D. data. Additionally, the volume of data available on each device may vary, and 
relationships may exist among devices and their local data distributions, further diverging from the I.I.D. assumption. 

7.2. Scalability 

Scalability is a common challenge in federated learning, especially as the number of participating devices grows beyond 
a certain threshold. One approach to mitigate this is the use of a parameter server, which can limit communication 
between participants and the server to a single round, thereby lowering the communication overhead per client [73]. 
Despite this benefit, relying on a parameter server still poses difficulties for communication-efficient distributed 
training, as both uploading and downloading model updates require effective compression techniques to minimize 
communication cost, time, and energy usage. 

7.3. Power and resource constraints 

In federated learning, participants are typically mobile devices, which often struggle with limited battery life and 
computing resources. Deep learning models, in particular, are resource-intensive, making even a single training 
iteration costly in terms of energy and memory usage [74]. The limited memory capacity of mobile devices further 
complicates the training of models locally. To address this, fog computing can serve as an intermediary layer between 
data processing units and storage systems, enabling real-time data processing closer to the source [75]. 

7.4. Security 

Security remains a significant concern in federated learning (FL). Both the participants (clients) and the communication 
network can compromise core security principles such as authentication, integrity, and confidentiality. FL systems are 
vulnerable to various network threats, including malware, Trojan horses, viruses, spyware, worms, and phishing 
attacks. Moreover, malicious clients may expose sensitive information to unauthorized entities, such as intruders, third 
parties, or even impersonated central servers. 

To mitigate these risks, FL emphasizes protecting user privacy by transmitting model updates instead of raw data. 
Techniques like secure multiparty computation and differential privacy can enhance both data privacy and model 
performance while maintaining low operational costs.  

7.5. Number of clients 

In federated learning, the number of participating clients plays a crucial role in storing and evaluating the 
collaboratively trained models. However, clients may refuse to participate either intentionally—due to a lack of 
interest—or unintentionally, owing to issues such as weak network connectivity, limited resources, or low battery 
power. Managing a large and dynamic set of clients is inherently difficult, making it a significant challenge in FL [76]. 
Therefore, ensuring consistent participation from clients is essential for the effectiveness of the federated learning 
process. 

8. Future work 

To address the challenges outlined above, several potential directions for future research are worth exploring: 

8.1. Privacy restrictions 

Due to the diverse nature of devices within a network, each comes with its own unique privacy constraints. Therefore, 
it is essential to define privacy requirements at a more granular level for groups of devices to ensure the protection of 
individual data samples and provide robust privacy guarantees. Developing privacy-preserving techniques tailored to 
the specific privacy needs of individual devices represents a promising and ongoing area for future research. 

8.2. Optimization between communication efficiency and processing complexity  

Balancing communication cost and computational load is a key challenge in federated learning. Efficiency in 
communication can be improved primarily through two strategies: sending smaller updates iteratively or reducing the 
total number of communication rounds. For instance, model compression techniques can help decrease the size of 
transmitted data. Alternatively, communication frequency can be reduced by selectively transmitting only the most 
important model updates. A combination of these approaches can significantly lower communication costs between 
mobile devices and servers. This often leads to increased computational demands on the devices. Identifying an optimal 
trade-off between communication overhead and computational burden remains a crucial focus for future research. 
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8.3. Multi-center federated learning 

Heterogeneity remains a significant obstacle in federated learning. Recent studies [77–80] suggest that if device 
heterogeneity can be identified beforehand, mobile devices can be grouped based on their similarities, with a local 
central server assigned to each group. Models from devices within the same group can first be aggregated locally, and 
these intermediate models can then be sent to the main server for global aggregation. Exploring multi-center federated 
learning to address heterogeneity presents a promising avenue for future research [86]. 

8.4. Transitioning federated learning from research to production 

Bringing federated learning (FL) into production presents several experimental challenges. These include issues such 
as data drift, where device behavior changes over time, and the cold start problem, where new devices initially lack 
sufficient data [92, 93]. As FL is still in its early stages, these challenges offer valuable opportunities for further research. 
Tools like LEAF, a modular benchmarking framework, support experimentation in FL by providing open-source 
federated datasets for evaluation and development [81-85, 94]. 

8.5. Heterogeneity diagnostics 

Current approaches have quantified statistical heterogeneity using metrics such as neighborhood divergence and Earth 
Mover’s Distance [95]. However, these metrics are difficult to compute across a federated network before training 
begins. This raises several important questions for future exploration: 

• Can simple and efficient diagnostic tools be developed to quickly assess the level of heterogeneity in federated 
networks? 

• Is it possible to design diagnostics that measure system-related heterogeneity in a similar manner? 
• Can existing definitions of heterogeneity be leveraged to improve the design of federated optimization 

strategies? 
• Are there practical diagnostics that can evaluate both system and data heterogeneity prior to model training? 
• How can these diagnostics be effectively utilized to enhance the convergence of federated optimization 

methods? 

These questions highlight the need for further research into heterogeneity assessment to improve the performance and 
robustness of federated learning systems.  

Index Terms 

• UAV: Unmanned Aerial Vehicle,  
• GDPR: General Data Protection Regulation, 
• I.I.D.: Independent and Identically Distributed,  
• WWAN: Wireless Wide Area Network,  
• WMAN: Wireless Metropolitan Area Network,  
• WLAN: Wireless Local Area Network,  
• WPAN: Wireless Personal Area Network,  
• GBDT: Gradient Boosting Decision Tree,  
• GRU: Gated Recurrent Unit,  
• FedGRU: Federated Gated Recurrent Unit  

9. Conclusion 

Federated Learning (FL) is a decentralized machine learning approach that enables collaborative model training while 
preserving user privacy, making it highly relevant for sectors like healthcare, finance, and IoT. This paper provided a 
comprehensive overview of FL, including its types, privacy mechanisms, supported models, communication methods, 
and challenges such as heterogeneity, scalability, and security. Despite its advantages, FL faces obstacles like limited 
device resources, data variability, and complex client management. Future research should focus on optimizing privacy 
for heterogeneous devices, reducing communication costs, developing multi-center architectures, and improving 
diagnostic tools for heterogeneity. As FL moves toward real-world deployment, issues like data drift and cold starts 
must be addressed. Tools like LEAF and privacy-enhancing techniques offer promising solutions. Continued innovation 
is vital to realize FL’s full potential in secure and scalable AI applications. 
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