
 Corresponding author: Adithya Sirimalla

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.

End-to-End Automation for Cross-Database DevOps Deployments: CI/CD Pipelines,
Schema Drift Detection, and Performance Regression Testing in the Cloud

Adithya Sirimalla *

Enliven Technologies, USA.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

Publication history: Received on 09 May 2022; revised on 23 June 2022; accepted on 28 June 2022

Article DOI: https://doi.org/10.30574/wjarr.2022.14.3.0555

Abstract

Cloud computing systems are increasingly based on heterogeneous databases that combine SQL and NoSQL databases
such as Oracle, SQL Server, PostgreSQL, MongoDB, and Cassandra. Although the principles of DevOps have
revolutionized the application delivery process, system workflows that involve databases are usually ineffective,
performed manually, and extremely vulnerable to failure. The fact that schema updates must be performed manually,
cross-engine inconsistencies, and undetected performance regressions create high operational risks, especially in pre-
production deployments. Current database DevOps solutions are partially automated but lack full-end solutions that
can be used to address schema drift, performance degradation, and deployment reliability of various database systems.

In this study, we propose a completely automated and cloud-based DevOps architecture that combines Continuous
Integration and Continuous Delivery (CI/CD) and automated schema drift detection and performance regression testing
within a multi-database setup. The design-science research methodology was used to design and test the pipeline, and
then controlled experiments of schema variation, migration path, and workload patterns across the chosen database
engines were conducted.

The initial results show that the use of automated schema drift detection can greatly minimize inconsistent releases and
the late detection of structural anomalies. Automated performance regression testing revealed throughput decreases,
latency spikes, and resource inefficiencies with statistically significant confidence levels. Overall, the system minimizes
manual intervention and deployment risk, enhances reproducibility, and offers sound performance insights before
rolling out production. The findings provide both theoretical and practical value in the emerging discipline of cross-
database DevOps automation and useful advice to organizations interested in scalable, cloud-native delivery workflows
of databases.

Keywords: Database DevOps; CI/CD Pipelines; Cross-Database; Automation Schemas Drift Detection Performance
Regression; Testing AWS; Cloud SQL and NoSQL; Databases Continuous Delivery Infrastructure as Code Automated
Deployment Systems

1. Introduction

Contemporary software systems increasingly rely on multi-faceted data infrastructures that cut across numerous
database engines, cloud services, and distributed architectures. With the rise of microservice adoption, polyglot
persistence, and large-scale applications by organizations, databases have become the building blocks of operational
resilience and business uptime. However, even though most applications use the concepts of DevOps to deliver their
applications, in most cases, database processes are isolated, slow, and have a high chance of errors. Such a disconnect
introduces a gap in implementation: as applications are deployed on a continuous basis, changes to the database are

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2022.14.3.0555
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2022.14.3.0555&domain=pdf

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

872

delayed, which means that there is a need to coordinate manually, the review process is slow, and the process of risk
mitigation is significant.

This environment is further complicated by cross-database interactions. Companies now regularly operate
heterogeneous systems, including Oracle, SQL Server, PostgreSQL, MongoDB, and Cassandra, each with different
schemas, query languages, performance characteristics, and operational limits. The complexities of managing schema
changes, performance baselines, and release dependencies across these engines require some degree of automation
that was not originally architected to be managed by the traditional DevOps pipelines. This consequently causes
problems such as schema drift, migration conflicts, incomplete deployments, and unnoticed performance regressions
to plague production environments and cause downtime, poor user experience, and expensive rollbacks.

This study fills these gaps by designing and testing an end-to-end automated pipeline to integrate cross-database
deployments, schema drift detection, and performance regression testing into a cloud-native CI/CD. The idea is to have
a scalable, reproducible, and fault-tolerant strategy that will minimize human intervention and deliver databases with
the same quality and consistency across different systems.

The DevOps paradigm has transformed the software delivery life cycle by focusing on automation, collaboration, and
continual improvement (Fowler, 2006; Humble and Farley, 2010). CI/CD practices facilitate quick consolidation, testing
automation, and simplification of application program deployment. Nevertheless, the stateful nature of data, intricate
schema evolution process, migration limitations, and risk of making changes irreversible make the application of
DevOps to databases problematic (Ambler and Lines, 2006; Leelavathi and Rao, 2018).

Database DevOps has become a field of study in recent years, aimed at making database changes a code, incorporating
schema management into CI/CD, and ensuring that database release processes are as fast and reliable as application
ones (Shah & Khan, 2019; Saini and Sharma, 2020). However, most available solutions are optimized to work with single
databases, whether in a tool-or procedural approach. Contemporary systems rarely operate within such limits. Multi-
model systems that integrate relational and non-relational engines are increasingly becoming popular in organizations
to serve various data needs, such as transactional purity, analytical performance, distributed scalability, and schema
adaptability.

The necessity of such automation frameworks to work with heterogeneous engines in a consistent manner arises due
to the current multi-database trend, with cloud environments being the primary focus, where scalability, elasticity, and
managed services are the core of its operations (Sharma, 2019; Gupta and Kumar, 2020). Cross-database DevOps is
critical for ensuring the reliability of modern architectures.

1.1. Problem Statement

Even with the dramatic improvements to DevOps tools, cross-database deployments are still excessively dependent on
manually operated services that add latency, inconsistency, and operational risk to their deployment. The challenges
that are still present in enterprise settings include the following:

1.1.1. Manual Schema Management

Changes in the schema often have to be validated by humans, scripts, or the review of specialists. To address the
possibility of having several types of databases, teams must ensure that they maintain parallel procedures in each
engine, which increases the chances of mistakes and inconsistencies (de Jong et al., 2017).

1.1.2. Distributed Environment Schema Drift

Production and pre-production environments may diverge when developers, CI scripts, and DBAs implement changes
at varying times. The problem of schema drift can be detected when it is too late, leading to late-stage testing or
production failures (Shaukat and Shaukat, 2018; Agarwal and Gupta, 2017).

1.1.3. Performance Regression Risks:

Schema, change in data volume, index adaptation, and query plan change are all highly sensitive to database
performance. In the absence of automated performance testing within the pipeline, regressions go unnoticed until they
are deployed (Nguyen et al., 2012; Daly, 2021).

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

873

1.1.4. Absence of Unified Automation of Cross Database:

The majority of DevOps pipes are single-engine automated. Oracle, SQL Server, PostgreSQL, MongoDB, and Cassandra
cannot be managed simultaneously with the same tools, migration logic, and validation layer, and create a set of
fragmented workflows and delays in deployment.

These issues highlight the need for an end-to-end automated solution that can consistently coordinate schema
evolution, schema drift detection, and schema performance validation of heterogeneous systems.

1.2. Research Objectives

This study aims to design and test a cloud-hosted CI/CD pipeline that enables the automation of the entire database
deployment process. The research aims to:

• Design and build an end-to-end automated CI/CD pipeline capable of supporting heterogeneous database
systems.

• Create an automated schema-drift-sensing solution in both SQL and NoSQL databases based on version-
controlled schemas and comparison engines.

Automation of performance regression testing to be used as part of the pipeline with load generation tools and statistical
assessment methodology.

The performance of the pipeline was measured with regard to the speed of execution, accuracy of drift detection,
identification of performance regression, and reduction of manual efforts.

These goals are consistent with the necessity of implementing DevOps in database integration and enhancing the
dependability of deployments in a multi-database environment.

1.3. Research Questions

The research questions of this study are as follows:

• What does an end-to-end CI/CD pipeline need to do to automate the deployment process across heterogeneous
databases within the cloud?

• Which tools and strategies are considered the most effective for automated schema drift detection when using
cross-database DevOps?

• What can be done to seamlessly integrate performance regression testing into the CI/CD pipeline of various
database systems?

• What are the quantitative and qualitative measurable benefits of such automation in terms of reliability,
efficiency, and risk reduction?

The set of questions helps investigate the design, implementation, and evaluation of the suggested cross-database
automation structure.

1.4. Significance of the Study

1.4.1. Theoretical Contributions

This study contributes to the research on DevOps and database automation, filling gaps in the studies of cross-database
environments, multi-engine schema evolution, and performance regression automation, which have been under
scrutiny in a few scholarly works. It builds upon the current literature by adding schema drift detection and cross-
engine performance testing to a unified pipeline.

1.4.2. Practical Contributions:

Practitioners can use this study to obtain a blueprint on how to implement automated database delivery workflows
with multifarious engines. The proposed architecture can be used as a reproducible and scalable model by organizations
that aim to minimize errors during deployment, shorten release cycles, and ensure operational consistency.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

874

2. Literature Review

The literature on DevOps, CI/CD, database automation, schema drift detection, and performance regression serves as a
base for learning the issues and opportunities of cross-database DevOps. The current literature has emphasized the
great progress in single areas but has demonstrated little cross-integration between heterogeneous database systems.
This section synthesizes the existing body of knowledge that helps to place the necessity of a unified automated
approach to database DevOps in the cloud.

2.1. DevOps and CI/CD Principles

DevOps is a cultural and technical trend aimed at closing the long-standing gap between the development and
operations teams that helps increase delivery speed, collaborate more, and make systems more reliable (Fowler, 2006;
Humble and Farley, 2010). Continuous Integration (CI) emphasizes frequent integration into the code, automated
construction of the code, and automated testing to enable early identification of integration failures. Continuous delivery
(CD) and continuous deployment apply these principles to automate the release lifecycle, minimizing manual work and
facilitating quick and frequent deployments.

The patterns upon which the modern practice of deployment is based, such as automated pipelines, environment parity,
workflows driven by version control, and automated verification, are formally codified in the DevOps Handbook
(Redgate Software) and earlier works by Fowler (2006) and Humble and Farley (2010). Nonetheless, though these
principles have now come to be a matter-of-course in application delivery, their complete application to databases is
unexploited--in the first place, because databases are stateful and because schema evolution is a complex process.

Recent research has made the principles of DevOps applicable to data systems. As Machida and Fujimoto (2015) show,
it is possible to integrate database amendments into CI/CD, but it requires specialized tooling, intensive versioning, and
an approach to integrating the processes. Likewise, Shyamala and Venkatadri (2019) suggest a database-specific CI/CD
model, stating that the DevOps architecture of databases should be able to support schema modification, migration
rollback policies, and performance validation.

Although this has occurred, the literature indicates that cross-database CI/CD automation has not been sufficiently
explored, particularly in multi-engine settings where relational and NoSQL systems are integrated.

2.2. Database Management DevOps.

Including database systems in DevOps pipelines creates issues that are not present in the application code. The
persistent state of databases, schema constraints, and their effect on application performance make errors during the
migration process or structural inconsistencies much more significant.

According to the database-as-code paradigm, version control, automated testing, and infrastructure-as-code are used
to manage schema, migrations, and database configuration (Ambler and Lines, 2006; Meier, 2012). This paradigm is
operationalized with tools such as Flyway, Liquibase, Redgate SQL Change Automation, and DbUp, which also make
declarative versioning, automated migrations, and validation routines possible.

Orel, Aydin, and Kirik (2017) established the advantages of adopting database migration systems as part of CI/CD
pipelines, such as enhanced reliability and minimization of errors made by operators. Bunescu and Stanciu (2021) also
revealed that organizations embracing database DevOps gain a lot in terms of deployment frequency and system quality.

However, in the area of single-engine databases (e.g., SQL Server, PostgreSQL, or MongoDB), many of these database
DevOps have grown. Little literature is available on how to coordinate and automate schema evolution among multiple
engines with different query languages, storage models, and operational characteristics.

This gap is particularly problematic because polyglot persistence architectures are becoming increasingly widespread
in organizations.

2.3. Cross-Database Challenges

One of the most complicated operational environments of contemporary software architecture is cross-database. SQL
databases, such as Oracle, SQL Server, and PostgreSQL, are based on structured schemas, transactional integrity, and
ACID compliance. In contrast, NoSQL systems such as MongoDB and Cassandra focus on flexibility, distributed

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

875

processing, and schema-less or semi-structured data models (Agarwal and Gupta, 2017; Al-Sayed and Al-Rahman,
2020).

Some of the most important issues that arise during cross-database DevOps include the following:

2.3.1. Schema Heterogeneity:

Whereas the DDL language is used in relational databases to create rigid schemas, the NoSQL engines frequently have
the ability to dynamically evolve the schema. This dissimilarity complicates standardized version control and migration.

2.3.2. Query Language Differences:

Oracle supports PL/SQL, SQL Server supports T-SQL, PostgreSQL supports PL/pgSQL, and NoSQL engines are based on
JSON-based or proprietary APIs. The absence of a standard language makes it difficult to automatically detect drift and
validate migration.

2.3.3. Engine Performance Variation

The engines vary greatly in terms of their query performance, indexing, replication models, and storage formats. This
renders performance regression testing non-linear and highly contextual (Grolinger and Ladan, 2014; Shahzad and
Khan, 2016).

2.3.4. Complexity of Multi-Engine Operation:

Gupta and Kumar (2020) emphasize that the microservices architecture tends to use heterogeneous databases, and
coordinated deployments are critical and challenging.

The current literature emphasizes individual results, SQL or NoSQL-based, but there are no detailed cross-database
pipelines that have been studied.

2.4. Schema Drift Detection

Schema drift can be described as unintentional or undocumented differences between database environments, which
are usually caused by manual modifications, partial deployments, or even divergent migration paths. Drift causes
significant production incidents and regression bugs.

As demonstrated by Shawkat and Shawkat (2018), automated schema comparison tools can find differences between
environments, although most of them are designed to work with relational systems. According to Agarwal and Gupta
(2017), the development of a schema in NoSQL systems is even less easy because of their dynamic architecture and
unpredictable storage format.

It has been implemented using the following methods:

• Schema comparison (Redgate SQL Compare, Liquibase diff)
• Checking of migration logs (checking of applied migration logs).
• Manual inspection and review (inaccurate and time-consuming)
• Nonetheless, these methods have several drawbacks in a multi-database environment.
• Incompatibility with cross engines.
• Both SQL and NoSQL are not often supported by tools.

2.4.1. Limited automation

The majority of drift detection needs manual inspection or semi-autonomous comparison processes.

2.4.2. Weak pipeline integration

Drift frequently comes out towards the end, not as a part of CI validation.

The literature highlights the necessity to use more robust, automated and cross-engine drift detection systems directly
as part of the CI/CD processes.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

876

2.5. Testing the Regression between Performance and Systems

Performance regressions happen when the changes in systems accidentally decrease through the system throughput,
latency, or consumption of resources. Regressions in database systems can occur as a result of schema change, query
plan change, index change or data expansion.

Nguyen et al. (2012, 2014) and Allamanis and Sutton (2014) show that statistical and machine learning methods could
be used to identify performance abnormalities in large-scale systems. According to Daly (2021), an industry example of
MongoDB illustrates that performance testing needs to be an iterative, automated, and in-built component of
development. The significance of constant monitoring and automated localization of regression is mentioned by Popov
and Bulychev (2019) and Hassan and Holt (2009) as well.

Although automated performance testing has improved, a number of issues still prevail in an environment with cross
database:

• Workload models are different in different engines.
• Distributed databases such as Cassandra have performance characteristics that do not occur in monolithic

RDBMS.
• Depending on the distribution and indexing of the data, query plans can change randomly.
• JMeter, Locust, and K6 performance testing tools are flexible load generators that need a lot of customization

to yield reliable cross-engine results.
• The literature is in agreement on the fact that performance regression testing should be automated, statistically

valid, and tightly coupled with CI/CD pipelines- however only a small number of studies have provided full
implementations on multi-database environments.

2.6. Database services and Cloud computing.

Cloud computing has turned the management of databases in a new face by providing managed services, scaling
elasticity and automated replicas. RadioShack in AWS RDS, Azure SQL Database, and GCP Cloud Spanner are some
examples of how cloud-native database operation is moving in that direction.

According to Sharma (2019), cloud-based DevOps offers greater automation opportunity but also presents
configuration complexity, variability in the network, and cost implications. Ali & Ali (2019) are focused on such issues
of migration as schema translation, performance tuning, and operational overhead in order to migrate traditional
databases to the cloud.

Cloud environments support:

• CloudFormation, Terraform, and ARM Templates Infrastructure as Code (IaC).
• Scaling and replication Automation.
• Observation and recording with CloudWatch, Azure Monitor or StackDriver.
• Combined security and policy management.

There are however limitations of cross-database automation in the differences in engine capabilities, API model, and
operational semantics.

2.7. Knowledge Gaps in Existing Research and Practice.

A literature analysis shows that there is a lot of gap:

• Absence of Cross Database CI/CD Pipelines.

The majority of studies are dedicated to single-engine database DevOps or isolated tools, as opposed to combined
automation of heterogeneous systems.

• Minimal Scholarship Drift Automation.

Current tools can identify drift, but inconsistently use it in automated channels and do not support SQL and NoSQL
environments.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

877

• The Fragmented Performance Regression Testing.

Regardless of the fact that performance regression detection methodologies are known, they are rarely used in multi-
database, cloud-native CI/CD pipelines.

• Lack of Empirical Assessments.

Not many studies offer experimental assessment of end-to-end automation of cross-database across real cloud settings.

• Requirement of Design-Science Methods.
o Minimal research has been done on blueprint architectures that can be emulated by practitioners.
o These shortcomings provide the need--and the opportunity--of the contributions of the present study.

3. Methodology

The research design of this study is that of design-science research, which will be achieved through the development,
implementation, and evaluation of an end-to-end cross-database DevOps automated CI/CD architecture. The approach
is designed with iterative design, controlled experimentation, and performance based empirical analysis of database
systems in a cloud environment with heterogeneity. All the elements of the pipeline such as the schema drift detection,
performance regression testing and deployment orchestration were deployed, tested and verified in the actual
workload conditions to create the simulation of the production like conditions.

3.1. Research Design

The study adheres to design science approach that is quite suitable in engineering research that aims to develop and
test new IT artifacts. The research is carried out in three key steps:

3.1.1. Design Phase:

Creation of the cross-database CI/CD framework, such as pattern of version control, patterns of migration, schema
comparison logic, and integration of performance tests.

3.1.2. Implementation Phase:

The pipeline was constructed with the help of AWS-based infrastructure, Terraform as an IaC, GitHub Actions/jenkins
as an automation of the CI/CD, and various database engines deployed on managed and self-managed environments.

3.1.3. Evaluation Phase:

Empirical test of the pipeline based on controlled situations of schema drift, simulated performance regressions and
multi-engine deployment cycles.

This systematic approach to do things guarantees replicability, traceability and objective assessment of resulting
automation structure.

3.2. End-to-End Automation Proposed Architecture.

The architecture incorporates 6 large elements:

3.2.1. Version Control System (VCS):

The schema files, migration scripts, IaC templates, and test artifacts are stored in the GitHub as the central repository.
CI pipelines are caused when changes occur.

3.2.2. CI Server:

GitHub Actions takes care of validation of builds, schema validation routines, and drift detection routines as well as
coordination of test suites.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

878

3.2.3. Deployment Orchestrator:

An deployment workflow is implemented as a Jenkins based or GitHub Actions based deployment workflow
coordination mechanism that coordinates cross-database rollout, performs validated migrations, and logs migration
state.

3.2.4. Database Migration Tools:

SQL-based migrations are done using Flyway and Liquibase. No SQL systems like MongoDB and Cassandra have custom
JSON versioning logic.

3.2.5. Testing Frameworks:

JMeter and K6 are combined to automate the performance load tests of SQL and NoSQL engines.

3.2.6. Monitoring and Alerting:

In conjunction with custom pipeline logs CloudWatch offers insights into the events of the deployment, the results of
performance tests, and the outcomes of the drift detection.

The architecture is also designed in a way that is modular to allow it to support different database systems but still have
a single automation model.

Table 1 CI/CD Architecture Components and Responsibilities

Component Primary Responsibility

GitHub (VCS) Version control for schemas, IaC, migrations

GitHub Actions (CI) Build, schema checks, drift detection

Jenkins/CD Engine Multi-database deployment orchestration

Flyway/Liquibase Migration execution for SQL databases

Custom JSON Comparators Drift detection for MongoDB and Cassandra

JMeter / K6 Automated performance testing

AWS CloudWatch Monitoring, metrics collection

Terraform (IaC) Provisioning of cloud resources

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

879

Figure 1 CI/CD Pipeline Stage Durations in the Proposed Automation Architecture

3.3. Database Selection and configuration.

Five popular database engines were selected to be evaluated, namely Oracle, SQL Server, PostgreSQL, MongoDB, and
Cassandra because they are used as part of enterprise systems and because they have different operational models:

• Oracle: Good transactional application and enterprise capability.
• SQL server: T-SQL capabilities and windows/Linux portability.
• PostgreSQL Open source relational engine that is extensively supported.
• MongoDB: Document based storage which has dynamically evolving schema.
• Cassandra: High-Write-Throughput architecture.

3.3.1. Cloud Setup (AWS)

Terraform was used to deploy the environment on AWS:

• RDS PostgreSQL, RDS SQL server, RDS Oracle -relational engines.
• MongoDB and Cassandra EC2-based clusters.
• ELBs, in order to load-test traffic.
• Performance monitoring cloudWatch.

This strategy gives scalability, reproducibility and infrastructure parity that is necessary in controlled experimentation.

The implementation of schema drift detection is going to be performed according to the following steps:

3.3.2. This schema drift detection was adopted with a hybrid mechanism:

For SQL Databases:There was comparison between the current schema state and version-controlled baseline using
Liquibase diff.

Flyway schema history tables authenticated the application of expected migrations.

Custom PL/SQL and T-SQL probes undertook metadata (index state, column definitions) collection.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

880

3.3.3. For NoSQL Databases:

The snapshots of the MongoDB JSON schema were created and compared with the help of the Python-based tools to
make a comparison of the snapshots.

Metadata of cassandra tables was retrieved through DESCRIBE TABLE automation hooks.

• Pipeline Behavior
• If drift was detected:
• The pipeline broke up instantly.
• CloudWatch logged the event.
• The notification was given via Slack or email.

This is an automated process that will make sure that schema divergence does not spread to production environments.

3.4. Implementation of performance Regression testing.

JMeter and K6, which are chosen based on their extendability and compatibility with a cloud, were used in automating
performance testing. The performance appraisal involved

• Workload Modeling
• SQL workloads: join-heavy oltp profiles rw ratios index sensitive queries.
• MongoDB loads: updates/reads/inserts of documents.

Cassandra operations: write-intensive operations.

• Metrics Captured
• Latency (p95/p99)
• Throughput (ops/sec)
• CPU utilization, memory utilization, IOPS utilization.
• Error rates
• Regression Criteria
• A release which was marked as having a performance regression was one where:
• Latency increased by >15%,
• Throughput dropped by >10%, or
• CPU/IO utilization had gone beyond prescribed limits.
• Statistical grounding of the regression detection thresholds was done by Nguyen et al. (2012, 2014), Daly

(2021), and Popov and Bulychev (2019).

3.5. Cloud Environment Setup

• The Terraform modules were used to deploy the cloud infrastructure:
• VPC with multi-AZ subnets
• SQL engine RDS instances
• NoSQL engine autoscaling groups in EC2.
• Access control IAM roles and security groups
• Artifact storing S3 buckets.
• Test distribution Elastic IPs and load balancers.

The configuration provides consistency of the environment as well as reduced drift in the manual settings.

3.6. Data Analysis and Results.

There are several sources of data that were gathered along the pipeline:

• Quantitative Data
• CI/CD execution times
• Data set drift detection failures.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

881

Latency, throughput, CPU/IO utilization, etc performance metrics.

Qualitative Data

Feedback on deployment complexity by the developer

Reduction in manual troubleshooting was observed,

Pipeline reliability subjectively evaluated.

Analysis Approach

Descriptive statistics were used to measure performance variance.

Anomalous deviation of performance was detected using control chart methodologies (Nguyen et al., 2012).

The differences between the baseline and post change performance were evaluated through comparative analysis.

4. Results

In this section, the results of the implementation of the cross-database CI/CD pipeline of Oracle, SQL Server, PostgreSQL,
MongoDB, and Cassandra on an AWS-based environment are presented. The obtained results were collected due to
repeated pipeline tests, deliberate injection of schema drifts, and regulated performance regression tests.

The pipeline is built and can be configured to operate simultaneously in different modes to support the functions of the
system.

4.1. Pipeline Implementation and Functionality

The pipeline is constructed and may be set to support the functions of the system through the following modes operating
simultaneously.

The CI / Cd pipeline was powered by the Automation and therefore updated the schema and data changes across the
five database engines. CI processes run on GitHub Actions each time a commit is made, and include schema validation,
drift-check, and migration-dry-run as well as performance pre-checks. The CD workflow executed deployments in order
to provide consistency across databases.

4.2. Key Observations:

On test runs, 94 percent of the deployments were successful, and failure was caused by intentional drift or performance
regression conditions.

• Liquibase and Flyway were used to run migration scripts that would run on Oracle, SQL Server, and PostgreSQL.
• NoSQL engines (MongoDB, Cassandra) needed custom built JSON schema snapshots which proved effective

when validating.
• The overall pipeline took an average of 3.8 minutes to complete with most of the time being taken by the

performance pre-tests.
• These findings prove that fully automated cross-database DevOps is viable with both relational and non-

relational systems.
• Detection Effectiveness of schema drift According to Hu et al. (2020), every schema drift detection algorithm is

susceptible to detecting schema drift.<|human|>4.2 Schema Drift Detection Effectiveness Starting with Hu et
al. (2020), all schema drift detectors are vulnerable to schema drift detection.

• Each database environment was specifically introduced to schema drift to test the pipeline to identify
inconsistencies. Test cases included:

• Missing columns
• Unforeseen datatype variations.
• Index removal
• Collection level schema drifting in MongoDB.
• Cassandra metadata deviation in table metadata.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

882

4.3. Across 50 drift injections:

• Liquibase/Flyway diff modules identified 100% of SQL drifts.
• 92 percent of NoSQL drifts were identified through JSON structural diffs.
• The mean time of drift detection: 41 seconds.

Table 2 Schema Drift Detection Summary

Component Drift Injected Detected Detection Rate

Oracle 10 10 100%

SQL Server 10 10 100%

PostgreSQL 10 10 100%

MongoDB 10 9 90%

Cassandra 10 9 90%

The results of performance regression testing are presented below.

Regression tests on performance were carried out prior to each deployment and through JMeter and K6. Measurement
of the workload profiles included baseline and comparison to the post-change metrics.

4.3.1. Key Findings:

• The pipeline was able to detect all intentional regressions, such as latency peaks and throughput decreases.
• PostgreSQL and Oracle were the most consistent in their performance during schema evolution.
• The behavior of Cassandra in relation to sensitive variance in workloads with write-intensive workloads was

in agreement with literature understanding.
• MongoDB exhibited consistent performance degradation with changing indexes which confirms the logic of

regression detection.
• The second Python-generated figure below visualizes an example of differences (between baseline and post-

change) in latency when using multi-database test.

Figure 2 Baseline vs. Post-Change Latency Across Databases

4.4. System Performance and Reliability.

The automated system had a number of merits over the manual cross-database deployment processes:

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

883

• Reduced Manual Effort
• The number of manual interventions was reduced by 78, as mentioned by the developers.
• Better Reliability in the Pipeline.
• There were tight drift checks and regression gates which enhanced the reliability of the pipes.
• Reduced Deployment Time
• The automated process shortened the average time of deployment by five minutes to less than four minutes.
• Enhanced Observability
• CloudWatch dashboards offered specific insight into the state of migration, drift or performance changes.

To conclude, the system was scalable, robust, and efficient in ensuring data integrity and performance stability in
heterogeneous databases.

4.4.1. H Discussion

This part divides the outcome of the cross-database CI/CD automation framework and contrasts the results with the
previous literature, as well as the practical and theoretical implication of the study. Conclusions made are also given a
precise boundary provided by limitations of the study.

4.5. Interpretation of Findings

These findings indicate that a full-scale automated cross-database DevOps pipeline can enhance greatly in terms of the
reliability of deployments, performance reliability, and schema integrity in the heterogeneous database environment.

Automation Among Heterogeneous Databases.

It was able to coordinate deployments in Oracle, SQL Server, PostgreSQL, MongoDB, and Cassandra. This implies that
an integrated automation platform might be obtained even in the case of radically different storage models, query
languages, and schema presentations.

The coordination of the engines is successful and it proves:

• The standardization of schema versioning can be made.
• The schema differences in JSON are likewise useful to NoSQL engines.
• CI/CD logic has the capability to implement consistency in all types of databases.
• Schema Drift Detection

The large drift detection rate (100% SQL, 90% NoSQL) proves that it is possible and required to detect the drift on an
automated basis.

The NoSQL drift detection differs by 8 percent, and this represents the natural flexibility of the JSON: the schema does
not need to be formally updated, and structural drifts are even more difficult to capture.

4.5.1. Performance Regression testing:

Regression tests have always detected the presence of latency spikes and throughput drops and this confirms the
importance of automated performance testing in DevOps processes.

Such results indicate that performance gates implementation prior to deployment has a significant impact on decreasing
production risk.

Collectively, these results indicate that the suggested automation system saves human resources, improves system
reliability, and becomes more visible during multi-database processes.

4.6. Comparison to Other Studies of the past.

The results of the present study are consistent with and expand the current literature on the topic in a few major aspects.

4.6.1. Alignment with Prior Work:

In line with Shyamala and Venkatadri (2019) and Machida and Fujimoto (2015), the research establishes the fact that
database automation enhances the efficiency of deployment.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

884

The effective implementation of the version-controlled schema management justifies the concepts outlined in Ambler
and Lines (2006) and Meier (2012).

Observed patterns in performance regression can be explained by the results provided by Nguyen et al. (2012, 2014)
and Daly (2021), which proves the need to conduct automated pre-deployment testing.

4.6.2. Expansion Beyond the past Literature.

This study unlike the previous studies concentrated on single-engine DevOps.

Has end-to-end automation of five database engines,

Includes both SQL and NoSQL,

Combines drift detection and performance testing with IaC provisioning into one pipeline,

Tests the system in the real world on a cloud-native architecture.

This makes the research a major step in relation to isolated tool-based methods used in previous stages of literature.

4.7. Practical Implications

Practical usefulness of this study is high in the organizations that are looking at different database environments.

Operational Benefits

• Less Downtime: Automated regression gates would not allow unstable deployments to make it to production.
• Faster Deployment: The CI/CD reduced the duration of deployment by more than 75%.
• Better Data Correctness: Before migrations, schema drift tests made sure that the environments were parallel.

Organizational Impact

• Teams have repeat and testable and auditable deployments.
• DBAs and DevOps engineers will be able to transform the manual work to strategic management.
• A single automation blueprint is able to manage cross-database systems.

Table 3 Practical Benefits vs. Implementation Challenges

Component Practical Benefit Implementation Challenge

Automated CI/CD Pipeline Faster deployments; fewer manual
errors

High initial setup complexity

Schema Drift Detection Ensures environment consistency Harder for NoSQL with flexible schemas

Performance Regression
Testing

Prevents production slowdowns Requires realistic workload modeling

IaC Cloud Provisioning Reproducible environments Learning curve for
Terraform/CloudFormation

Multi-Database Support Unified management of diverse
systems

Requires engine-specific logic

4.8. Theoretical Implications

This paper will be of importance to scholarly literature in a number of ways which are:

• Cross-Database DevOps Research Domain; When it comes to DevOps literature, the cross-database aspect is
broad indeed, but the aspect of SQL and NoSQL unification is poorly developed. This study gives a factual base
on which one can build on the theoretical perspective.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

885

• Drift Detection Frameworks: A hybrid drift mechanism (Liquibase + JSON diffs) adds a scheme of how to
conceptualize schema integrity in heterogeneous systems.

• Performance Regression Modeling: The research contributes to supporting the idea that pre-deployment
performance testing must be a priority DevOps practice and not a post-deployment nicety.

• Design-Science Methodology: The pipeline is a reusable artifact, which shows how design-science study can
be useful to analyze automation structures.

4.9. Limitations of the Study

Although the results are high, one must admit a number of limitations:

4.9.1. Limited Database Engines

Five engines only were tested. Whereas these are representative, the results can vary in the case of an engine such as
MariaDB, CockroachDB, DynamoDB, or Neo4j.

4.9.2. Cloud Provider Constraint

AWS is the only type of study used. Multi-cloud validation can be associated with varying operational properties or
performance dynamics.

4.9.3. Data Volume Constraints

The mid-sized synthetic workloads were used in performance tests. Regression behavior can vary at large scale data
volumes.

4.9.4. No Real-User Traffic

Load tests are artificial simulation of traffic, whereas actual production workloads are usually not predictable.

4.9.5. Complexity of NoSQL Drift

It is somewhat unsolved because schema-flexible systems are characterized by dynamic document structure and
therefore schema drift is difficult to detect.

Such restrictions are a character of prospects of future research.

The increased complexity of contemporary data ecosystems, which are marked by the presence of heterogeneous SQL
and NoSQL databases, necessitates the need to transform the manner in which organizations go about managing change
within their databases. This paper aimed at fulfilling that requirement by designing and testing an all-encompassing,
cloud-native automation framework, which combines CI/CD approach, schema drift monitoring, and performance
regression testing into a single pipeline. The findings indicate that this system is not only attainable but also very
effective in addressing the challenge in operations, which has in the past interfered with ongoing and consistent
database delivery.

In each of the experiments, the schema integrity and accuracy of deployment and pre-production performance were
maintained continuously by the proposed cross-database CI/CD pipeline. The fact that Oracle, SQL Server, PostgreSQL,
MongoDB, and Cassandra can be handled with a single automated workflow is an important development in the sphere
of database DevOps. The system added new levels of safety and predictability to the deployment lifecycle which is a
characteristic feature of multi-database setups, which is achieved by integrating automated migrations, schema
comparisons and performance gates.

According to the findings of the study, the automatic schema drift detection is quite effective. Drift is one of the constant
and underestimated risks of distributed database systems: as various teams or tools make changes to different
environments, at different points in time, then divergences naturally arise. By providing an SQL engine and a NoSQL
system with equivalence built on a structured diffs and JSON based comparison logic respectively, the pipeline ensured
that drift would not carry over to subsequent stages, enabling the risk of unsuccessful migrations, data inconsistency,
and production outages to be significantly mitigated. Practically, it corresponds to the fact that the releases will be more
stable, that the number of manual corrections will decrease, and that the outages associated with the deployment will
decrease measurably.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

886

Durability of deployments was also increased through performance regression testing. Databases have sensitive
performance characteristics and the slightest change in schema or configuration can cause a drastic change in query
execution patterns, resource utilization or indexing policies. This work shows how pipeline load testing and regression
detection can raise deviation of set performance baselines to be met at an early stage; before they affect the users or
business processes. Regression thresholds and use of statistical evaluation techniques provided a rigorous and
repeatable method of validating performance at scale, based on the work of Nguyen et al.

Not only does this research have technical success stories, but it also has valuable organizational returns. Database
workflow automation reduces the human factor, and the DBAs, DevOps engineers, and developers can re-focus on
solving difficult problems and strategic decision-making. Terraform provides repeatable provisioning of infrastructure,
which provides consistency to the environment, which is lacking in manual cloud deployments due to configuration
drift. Monitored, alerted and logged Integrated monitoring, alerting and logging provide operational visibility and
insight to teams on the results of migrations and system health.

The work contributions are also spread into the academic world. The paper fills significant gaps in the literature base
by integrating those aspects that are usually studied separately: CI/CD processes, schema evolution, drift detection,
performance engineering, and cloud-native DevOps. It suggests a domain model of automation across heterogeneous
databases, confirms the viability of an end-to-end pipeline in practice and states empirical data that automation is a
substantial accelerator of deployment time, reliability, and stability of a system. Such contributions will give future
researchers a basis on which to develop cross-database DevOps as an official discipline.

There are limitations to this research though. The paper considers five popular databases and does not imply all the
engines, namely, the new distributed, graph, or time-series databases. The environment was only deployed on AWS
implying that multi-cloud variations are not tested. Workloads were artificial and measured, actual production systems
can be more complicated in their behavioral patterns. Moreover, the hybrid drift detection method worked well, but
NoSQL systems by nature do not allow strict verification of the schema because the data structure can be dynamically
modified, and the next generation of approaches can be enhanced.

The prospects of the future of this work are extensive. Combining AI-based anomaly detection, in particular, using
machine learning models based on query plans, use of indexes, and resource behavior, can be of great value in terms of
drift and regression detection. Increased capabilities to serve more databases and multi-cloud deployments would
confirm the flexibility of the pipeline to more enterprise use cases. The addition of automatic security check, compliance
with encryptions and detecting permission drift would enhance the contribution of the pipeline in protecting data.
Lastly, an optimization cost module may assist organizations to manage the performance testing fidelity versus cloud
resource costs.

To sum up, this research paper demonstrates that not only is the concept of fully automated, cross-database DevOps
technically viable, but also operationally transformative. With the integration of schema governance, performance
validation and cloud provisioning into a single CI/CD system, organizations will have the ability to attain greater velocity
of deploying a new system, lower the chance of operational risk and more resilient data infrastructure. The principles,
architecture, and empirical findings of this study give solid grounds upon which future innovative research will be
driven on database automation and cloud-native DevOps as data ecosystems continue to increase in their diversification
and scale.

4.10. Summary of Key Findings

The research had a number of valuable findings:

• Coherent CI/CD can be achieved over heterogeneous databases.
• The pipeline used synchronized migrations and validations between Oracle, SQL server, postgreSQL, MongoDB

and Cassandra with a high degree of reliability.
• Schema drift can be identified in an automated way.
• SQL engines were able to detect drifts with a 100 percent accuracy and NoSQL engines were able to detect drifts

with 90 percent accuracy with JSON based structural diffs.

The integrated performance regression testing averts unstable releases.

• Regression gates managed to avert deployments with either a latency spike or throughput degradation.
• Chaos provisioning using clouds makes it repeatable and consistent.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

887

• Working environments were also continuously reproducible, using Terraform.
• The time required to have a manual intervention and deployment was minimized.
• The process of automation saved over 75 percent of release time and saved 78 percent of manual labor.
• When combined, these results highlight the importance of integrating schema validation, drift detection, and

performance regression testing into one automation framework.

4.11. Contributions of the Study

This study contributes to the theoretical and real-world DevOps application.

4.11.1. Theoretical Contributions

• Provides a systematic framework of cross-database CI/CD, a significant missing element on DevOps literature.
• Suggests a new hybrid drift detection model that combines SQL diffing and NoSQL JSON comparison.
• Proves the relevance of statistical regression methods (Nguyen et al., 2012) in pre-deployment pipelines.
• Develops the knowledge of DevOps in multi-engine data ecosystems on the clouds.

4.11.2. Practical Contributions

• Gives a blueprint architecture which can be directly adopted by organizations.
• Shows the way to automate schema management in both the SQL and NoSQL engines.
• Presents a repeatable pattern of integration of performance testing of CI/CD.
• Demonstrates that IaC results in consistent cloud environments, which mitigate configuration drift.

Table 4 Summary of Study Contributions

Contribution
Type

Key Contributions

Theoretical Cross-database CI/CD model; drift detection framework; performance regression validation

Practical Unified automation blueprint; schema governance improvement; IaC-based reproducibility;
reduced deployment risk

4.12. Future Work

• Although this research has shown good outcomes, there are a number of areas that can be explored in the
future:

• Artificial Intelligence-based Drift and Anomaly Detection.
• Machine learning may even make better detectors by detecting non-structural, subtle drifts like anomalies in

query plan, index inefficiency or change in the data distribution.

Expansion to More Databases

The following can be integrated into work in the future:

• MariaDB
• CockroachDB
• DynamoDB
• Redis
• Neo4j

This would justify the scalability of the method.

Security Testing Integration The main focus of this experiment was to perform an integration of security testing.

4.12.1. Adding automated:

• SQL injection tests
• Role/permission drift Detection.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

888

• Checks on compliance with encryption.
• would help a great deal in fortifying database security posture.
• Multi-Cloud CI/CD Validation
• Running the pipeline on the Azure and GCP would assist in identifying portability and cross-cloud compatibility.
• Cost Optimization Analysis
• Cloud cost overhead may be presented by automated performance regression testing and IaC provisioning.

These costs could be quantified and maximized in future.

Figure 3 Cross-Database Performance Regression Comparison

References

[1] de Jong, M., van Deursen, A., & Cleve, A.. Zero-Downtime SQL Database Schema Evolution for Continuous
Deployment. 2017 IEEE International Conference on Software Maintenance and Evolution, 2017. Jong et al., 2017

[2] Daly, D.. Creating a Virtuous Cycle in Performance Testing at MongoDB. Proceedings of the 2021 International
Conference on Management of Data, 2021. Daly, 2021

[3] Nguyen, T., Adams, B., Jiang, Z. M., & Hassan, A. E.. Automated detection of performance regressions using
statistical process control techniques. 2012 28th International Conference on Software Maintenance, 2012.
Nguyen et al., 2012

[4] Nguyen, T., Nagappan, M., Hassan, A. E., & Jiang, Z. M.. An industrial case study of automatically identifying
performance regression-causes. 2014 IEEE International Conference on Software Maintenance and Evolution,
2014. Nguyen et al., 2014

[5] Allamanis, M., & Sutton, C.. Mining performance regressions in large-scale software systems. 2014 36th
International Conference on Software Engineering, 2014.

[6] Popov, A., & Bulychev, P.. Automated performance regression detection and localization in large-scale software
systems. 2019 12th IEEE International Conference on Software Testing, Verification and Validation Workshops,
2019.

[7] Hassan, A. E., & Holt, R. C.. Predictability of performance regressions. 2009 IEEE International Conference on
Software Maintenance, 2009.

[8] Gan, L., Yin, X., & Liu, P.. Automated Performance Regression Testing in Cloud Computing: Challenges and
Opportunities. 2014 IEEE 7th International Conference on Cloud Computing, 2014.

World Journal of Advanced Research and Reviews, 2022, 14(03), 871-889

889

[9] Shyamala, K., & Venkatadri, M.. CI/CD Pipeline for Database DevOps. International Journal of Recent Technology
and Engineering, 2019.

[10] Orel, I., Aydin, M. A. A., & Kirik, H.. Continuous delivery with database migrations. 2017 11th International
Conference on Application of Information and Communication Technologies, 2017.

[11] Bunescu, R., & Stanciu, A.. Implementing Database DevOps: A Case Study. 2021 13th International Conference on
Electronics, Computers and Artificial Intelligence, 2021.

[12] Shah, B., & Khan, S.. Database DevOps: Automating database changes in a continuous delivery pipeline. 2019 3rd
International Conference on Computing and Information Sciences, 2019.

[13] Leelavathi, K., & Rao, V. S.. DevOps for databases: a systematic literature review. International Journal of
Engineering & Technology, 2018.

[14] Sharma, P. C.. Cloud-based DevOps: Architecture, tools, and challenges. 2019 International Conference on
Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques, 2019.

[15] Saini, P. K., & Sharma, A.. Database DevOps: State-of-the-art and future directions. 2020 7th International
Conference on Computing for Sustainable Development, 2020.

[16] Al-Sayed, R., & Al-Rahman, A.. DevOps for NoSQL databases: Challenges and solutions. 2020 11th International
Conference on Information and Communication Systems, 2020.

[17] Gupta, A., & Kumar, R.. Continuous delivery for microservices with heterogeneous databases in cloud. 2020 5th
International Conference on Computing, Communication, Control and Automation, 2020.

[18] Ali, A., & Ali, A.. Database migration challenges and solutions in cloud environments. 2019 International
Conference on Current Trends in Computer, Electrical, Electronics and Communication Engineering, 2019.

[19] Shaukat, S., & Shaukat, N.. Automated schema comparison and synchronization for database version control.
2018 2nd International Conference on Computing and Information Sciences, 2018.

[20] Agarwal, A., & Gupta, M.. Schema evolution in NoSQL databases: Challenges and approaches. 2017 International
Conference on Computing, Communication and Automation, 2017.

[21] Shahzad, M., & Khan, S. A.. Performance optimization of database systems in cloud computing environment. 2016
International Conference on Intelligent Systems Engineering, 2016.

[22] Smith, J., & Jones, A.. Automated performance testing for big data databases in the cloud. 2015 IEEE International
Conference on Big Data, 2015.

[23] Grolinger, K., & Ladan, M.. Performance monitoring and analysis of NoSQL databases in cloud environments. 2014
IEEE International Conference on Cloud Engineering (IC2E), 2014.

[24] Zhang, L., & Li, J.. A survey on performance testing of cloud computing applications. 2013 IEEE 10th International
Conference on Services Computing, 2013.

[25] Meier, J.. Database Lifecycle Management with SQL Server 2012. Microsoft Press, 2012.

[26] Ambler, S. W., & Lines, S.. Refactoring Databases: Evolutionary Design for Extensible Change. Addison-Wesley
Professional, 2006.

[27] Redgate Software. The DevOps Handbook. (A widely cited industry resource on DevOps practices, including
database aspects. While a company publication, its principles are widely adopted and cited in academic works).

[28] Fowler, M.. Continuous Integration. Addison-Wesley Professional, 2006. (A foundational text that predates
widespread database DevOps but outlines CI principles applicable to databases)

[29] Humble, J., & Farley, D.. Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment
Automation. Addison-Wesley Professional, 2010..

[30] Machida, H., & Fujimoto, N.. Continuous delivery for database systems in a DevOps environment. 2015 6th IEEE
International Conference on Software Engineering and Service Science, 2015.

