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Abstract 

The continued emergence of new SARS-CoV-2 variants has significantly increased the complexity of forecasting and 
preventing subsequent COVID-19 waves. Nationwide pharmacy testing data, collected through extensive pharmacy 
networks, offers a novel and effective approach for real-time population testing, facilitating the rapid identification of 
emerging outbreaks. This study aims to evaluate the extent to which large-scale testing data can inform predictive 
models capable of anticipating increases in COVID-19 infections in response to the appearance of new viral variants. 

Specifically, the study incorporates test positivity rates, geographic spread, and demographic information, analyzed 
using machine learning and time series methods, to enhance outbreak forecasting. Results indicate that integrating 
external datasets such as vaccination coverage and population mobility data further improves model accuracy, thereby 
supporting more informed decision-making by public health authorities. 

Among the modeling approaches assessed, deep learning models particularly Long Short-Term Memory (LSTM) 
networks demonstrated superior performance in capturing long-term trends compared to traditional methods like 
ARIMA. Findings suggest that insights derived from pharmacy testing data can play a critical role in enabling 
policymakers to respond proactively to the emergence of new COVID-19 variants. 

The proposed framework offers a scalable alternative for epidemic prediction architectures within broader public 
health ecosystems. Future research should explore the integration of genomic surveillance data and consider the 
applicability of this predictive framework to other infectious diseases beyond COVID-19. 
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1. Introduction

1.1. Background and Motivation 

The recent emergence of the COVID-19 pandemic has further emphasized the critical role of surveillance and risk 
modeling in outbreak management. The continual evolution of SARS-CoV-2 variants necessitates persistent monitoring 
of infection dynamics and presents significant challenges in the timely identification and effective management of 
outbreaks within populations. Conventional epidemiological models exhibit several limitations in this context, 
particularly due to their static assumptions; consequently, there is an urgent need for more adaptive and responsive 
modeling approaches that can accommodate the virus's ongoing mutations [1–3]. 
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A growing body of literature highlights the importance of large-scale COVID-19 testing data to evaluate the efficacy of 
testing strategies, identify disproportionately affected subpopulations, and inform future disease prevention efforts. 
This study leverages datasets derived from pharmacy networks situated in high-incidence regions across the United 
States to support enhanced predictive modeling of infection surges. Such modeling aims to facilitate more informed 
containment strategies and to address the inherent challenges posed by heterogeneous and often unpredictable public 
behavioral responses. 

1.2. Importance of Predictive Modeling during COVID-19 Surges 

Predictive modeling plays a crucial role in the early detection of outbreaks, resource allocation, and the strategic 
planning of public health interventions. During COVID-19 surges, accurate forecasting of infection trends enables 
governments and healthcare systems to implement timely measures such as mobility restrictions, targeted vaccination 
campaigns, and increased diagnostic testing. 

Artificial intelligence (AI) and time series analysis have emerged as effective tools for interpreting the growing volume 
of COVID-19 testing data, offering more precise forecasts than traditional epidemiological models. Nevertheless, the 
reliability of these models is highly dependent on the availability and timeliness of data inputs. 

This study addresses this challenge by leveraging pharmacy testing data to identify optimal parameters for forecasting 
future waves of infection. The goal is to enable timely interventions that consider social determinants of health, 
ultimately strengthening the responsiveness and equity of public health systems in mitigating the impact of COVID-19. 

1.3. Role of National Pharmacy Testing Networks in Data Collection  

Pharmacies have played a pivotal role in COVID-19 testing by facilitating widespread and accessible testing across 
diverse regions of the United States. Unlike hospital-based testing, which primarily targets symptomatic or confirmed 
cases, pharmacy testing networks encompass a broader cross-section of the population, including asymptomatic 
individuals. This inclusive approach enhances their utility for population-level surveillance. Furthermore, pharmacy-
based testing offers consistent, high-quality, and timely data collection, which is essential for real-time analytics and 
predictive modeling. 

By utilizing data from pharmacy testing systems nationwide, this study monitors the geographic and temporal spread 
of COVID-19, identifies early indicators of potential surges associated with emerging variants, and contributes to the 
refinement of forecasting models for improved public health response. 

1.4. Research Objectives and Contributions 

The primary objective of this study is to develop a predictive modeling framework utilizing insights derived from low-
cost, large-scale testing conducted through a nationwide pharmacy network. This approach aims to accurately forecast 
infection surges during the emergence of new SARS-CoV-2 variants. The key contributions of this research are as 
follows: 

• Development of an outbreak detection system based on machine learning and time series analysis to enhance 
traditional epidemiological surveillance methods. 

• Exploration of real-time pharmacy testing data as a reliable and timely source for the early identification of 
COVID-19 surges. 

• Assessment of exogenous factors such as population mobility, vaccination coverage, and socio-demographic 
variables and their influence on the effectiveness of predictive strategies throughout different stages of 
infection spread. 

• Cross-validation of predictive techniques, comparing statistical models (e.g., ARIMA) with deep learning 
models (e.g., LSTM), to determine the most effective approach for forecasting COVID-19 surges. 

• Policy implications and strategic recommendations, emphasizing the utility of pharmacy-based testing data in 
strengthening national and global pandemic preparedness frameworks. 

To achieve these aims, the study sets forth the following objectives: 

• To propose a novel index for real-time risk assessment of infectious disease outbreaks. 
• To model the probability distribution of various infectious diseases using real-world testing data. 
• To develop a dynamic framework capable of updating predictive models as new data become available. 
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To provide a generalizable framework for the early prediction of COVID-19 outbreaks and similar infectious diseases, 
thereby supporting evidence-based decision-making and enhancing crisis management during and beyond the current 
pandemic. 

2. Related work 

2.1. Review of Existing COVID-19 Predictive Models 

In response to the COVID-19 pandemic, numerous predictive models have been developed to forecast new infection 
rates, estimate hospitalizations, and assess the effectiveness of public health interventions. Traditional models such as 
the Susceptible-Infected-Recovered (SIR) and the Susceptible-Exposed-Infected-Recovered (SEIR) frameworks have 
been widely employed [4–7]. However, these compartmental models are based on fixed assumptions about 
transmission dynamics and population behavior, which may not adequately capture the behavioral and epidemiological 
shifts that occur during the emergence of new viral variants. 

To enhance forecasting reliability, researchers have increasingly emphasized the integration of real-time surveillance 
data into model development. For example, the CDC’s COVID-19 Forecast Hub aggregates multiple models to generate 
probabilistic forecasts of case numbers. Similarly, platforms like the Johns Hopkins COVID-19 Dashboard and Google’s 
COVID-19 Mobility Reports utilize diverse datasets—including mobility patterns and testing rates—to improve 
outbreak predictions. Despite these advances, many existing models face limitations related to incomplete data and 
sampling biases, particularly in testing coverage. 

To address these challenges, the present study leverages population-level testing data obtained from nationwide 
pharmacy networks. By training advanced analytical models on this robust and real-time dataset, the study aims to 
mitigate the limitations of previous models and offer more accurate and scalable forecasting solutions. 

2.2. Population-Level Testing Studies 

Community-based testing plays a critical role in monitoring the spread of infectious diseases and informing public 
health policy, particularly in the context of influenza and COVID-19. Evidence suggests that widespread community 
testing provides a more comprehensive understanding of infection prevalence compared to testing conducted solely in 
clinical or hospital settings, as individuals are more likely to seek testing in accessible, non-clinical environments such 
as pharmacies. Studies have demonstrated that population-level testing, when coupled with appropriate isolation 
measures, can significantly mitigate viral transmission. Additionally, rapid antigen testing has proven effective in 
identifying both symptomatic and asymptomatic individuals, thereby supporting early intervention and outbreak 
prevention. 

Pharmacy-based testing networks offer several advantages over traditional testing strategies. These networks enable 
point-of-care testing and capture data from individuals across a broad age spectrum, including those with and without 
symptoms. Unlike self-reported testing data, pharmacy-collected data are objective, reliable, and readily verifiable. 
While some prior research has explored the role of retail pharmacy networks in disease surveillance, few studies have 
investigated their utility in predictive modeling. 

This study aims to address this gap by demonstrating how pharmacy-based testing data can be leveraged to enhance 
early detection and forecasting of COVID-19 variant-driven surges. By incorporating this data into predictive models, 
the study contributes to more timely and effective public health responses. 

2.3. Impact of COVID-19 Variants on Testing Strategies 

The emergence of SARS-CoV-2 variants such as Delta and Omicron introduced substantial complexities in the overall 
management of the COVID-19 pandemic. These variants exhibit significant genetic differences, particularly in their 
transmissibility, immune evasion capabilities, and potential to cause severe illness. Such differences necessitate 
adjustments in testing strategies to accurately identify circulating variants and prevent widespread outbreaks. Notably, 
variations in RT-PCR test positivity rates across different variant waves underscore the need for dynamic testing 
protocols and resource allocation. For example, the Alpha variant demonstrated higher transmissibility, leading to 
increased testing demand, while the Omicron variant was associated with elevated infection rates regardless of 
vaccination status, prompting changes in testing guidelines. 

In response to these evolving challenges, adaptive testing strategies have been recommended. Some researchers 
advocate for adjusting testing thresholds based on real-time positivity rates, while others propose prioritizing testing 
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among high-risk or vulnerable populations during variant-driven surges. However, most existing studies have relied 
primarily on data from clinical or hospital-based testing, with limited exploration of data derived from community-level 
pharmacy testing networks. 

This study addresses this gap by integrating pharmacy-based testing data into predictive models, offering more granular 
insights into how variant-induced fluctuations in test demand and positivity rates influence outbreak forecasting. By 
capturing real-time testing dynamics across diverse population segments, this approach enhances the accuracy and 
responsiveness of predictive modeling in the context of evolving viral variants. 

2.4. Machine Learning and Statistical Approaches in Epidemiological Modeling 

Epidemiological forecasting using machine learning (ML) and statistical modeling has gained substantial importance 
due to its flexibility and adaptability compared to traditional compartmental models. In recent studies, ML techniques 
such as supervised learning algorithms—including Random Forest, Gradient Boosting, and Neural Networks—as well 
as time series forecasting methods like Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term 
Memory (LSTM) networks, have been widely applied to predict COVID-19 case counts, hospitalization rates, and 
mortality trends. Preliminary research indicates that ML models often outperform compartmental models in short-term 
forecasting by effectively capturing nonlinear infection patterns. 

Among time series models, ARIMA and LSTM have shown promising results. However, ARIMA, being a linear model, 
lacks the capacity to account for abrupt shifts in transmission dynamics, such as those caused by the emergence of new 
viral variants. In contrast, LSTM—a type of recurrent neural network (RNN)—is well-suited for capturing long-term 
dependencies in sequential data, making it more effective for pandemic forecasting. Recent research has also explored 
hybrid approaches that integrate statistical and ML techniques to enhance forecasting precision. These mixed models, 
when combined with traditional epidemiological frameworks, can significantly improve both accuracy and 
responsiveness in modeling COVID-19 dynamics. 

Despite these advancements, a notable gap remains in the incorporation of high-frequency testing data, particularly 
from community-level sources such as pharmacies. Much of the existing literature relies on delayed metrics such as 
confirmed case numbers and hospitalization data, which may not accurately reflect real-time transmission trends. This 
study seeks to bridge this gap by leveraging pharmacy-based testing data to improve the timeliness and accuracy of 
predictive models. The goal is to support more effective public health interventions through earlier detection and more 
precise forecasting of infection surges. 

3. Data Collection and Preprocessing 

Accurate prediction of COVID-19 trends requires the integration of testing data from networks that are efficient, up-to-
date, and representative of the broader population [8–11]. This study utilizes RT-PCR testing data collected from 
customers at various branches of a national pharmacy testing network. Unlike previous studies that primarily rely on 
hospital-based data, this dataset includes a more diverse segment of the population, encompassing both symptomatic 
and asymptomatic individuals, as well as those undergoing routine screening. 

The inclusion of community-based, pharmacy-derived data provides a more comprehensive view of infection dynamics 
across different demographics. To ensure data quality and suitability for predictive modeling, the raw dataset 
underwent a thorough preprocessing pipeline aimed at enhancing accuracy, consistency, and relevance. This section 
outlines the data collection process, the methods applied for data cleaning, and the unique characteristics of the dataset 
that support the development of a robust predictive modeling framework. 

3.1. Data Sources 

The primary data source for this study was a nationwide pharmacy-based COVID-19 testing platform, which plays a 
significant role in decentralized disease surveillance. Unlike hospital-based testing, which predominantly captures 
individuals with moderate to severe symptoms, pharmacy testing networks encompass a broader and more diverse 
population—including individuals undergoing testing for travel, workplace requirements, or routine health checks. This 
makes pharmacy data particularly valuable for monitoring asymptomatic and pre-symptomatic cases within the 
community. 

The dataset, titled Test Results of COVID-19 Test, includes data from multiple waves of the pandemic and contains 
variables such as test outcome (positive/negative), test type (PCR or antigen), timestamp of the test, age range and 
gender of individuals, geographic identifiers (state, county, and rural or urban classification), and vaccination status 
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when available. This comprehensive dataset supports the development of accurate and generalizable predictive models, 
reducing the need for extensive field-based testing in specific regions or demographic groups. 

Test records were acquired via the APIs of various pharmacy chains, allowing for the extraction of real-time data while 
ensuring patient anonymity and data privacy. In addition, historical batch processing was employed to capture longer-
term trends. The database was standardized according to guidelines recommended by the Centers for Disease Control 
and Prevention (CDC) and the World Health Organization (WHO), enabling interoperability and comparison across 
different pharmacy networks. This integration of real-time and near real-time data facilitates the construction of high-
temporal-resolution models capable of accurately forecasting localized COVID-19 outbreaks. 

3.2. Data Cleaning and Processing 

Testing data often contains missing values, inaccuracies, and biases that can adversely affect the reliability of predictive 
modeling. To address these challenges, systematic data cleaning procedures were applied during the data preprocessing 
stage. Features with critical inconsistencies—such as missing or unreliable test results and test dates—were excluded 
to prevent the introduction of biased or misleading information. For the remaining demographic variables, missing 
values were imputed using appropriate techniques: mode imputation was employed for categorical variables, while k-
nearest neighbors (KNN) imputation was used for continuous variables. 

Duplicate or suspicious records were identified and removed. These included entries with duplicated or nearly identical 
test identifiers and records with timestamps that were unnaturally close, suggesting potential redundancies or data 
entry errors. 

To ensure consistency across data collected from different geographic centers and time periods, normalization 
techniques were applied. Min-max scaling was used for test positivity rates, given that these values are inherently 
bounded between 0 and 1. Other numerical features, such as daily test counts and regional case numbers, were 
standardized using Z-score normalization to ensure comparability. Additionally, categorical variables such as test type 
were encoded using one-hot encoding, while geographic locations were encoded ordinally to make them suitable for 
inclusion in machine learning models. 

These data preprocessing steps were essential for improving data quality, reducing heterogeneity, and enhancing the 
overall performance and interpretability of the predictive models. 

3.3. Data Characteristics 

The dataset provided a unique perspective on the evolution of COVID-19 testing trends over time, as well as across 
different demographic and geographic segments of the U.S. population. Testing volumes exhibited significant 
fluctuations throughout the pandemic, with pronounced spikes during major variant-driven waves such as Delta and 
Omicron. Temporal patterns also revealed increased testing activity during the winter months and immediately 
following major holidays periods typically associated with higher rates of respiratory illnesses, including influenza. 

Geographic and demographic variables further revealed disparities in testing access and positivity rates. Urban areas 
reported a higher volume of tests, likely due to better accessibility and employer-mandated testing requirements, 
particularly for occupational settings. In contrast, rural areas exhibited lower testing volumes but higher positivity 
rates, suggesting potential underreporting and reduced access to testing services. 

Age-specific trends showed that individuals under 30 were more likely to undergo routine screening, while positivity 
rates were significantly higher among individuals over 60, highlighting the latter group’s increased vulnerability to 
severe illness. Gender-based analysis revealed that females had a slightly higher testing frequency than males, likely 
influenced by their representation in high-contact professions such as healthcare and education. 

These findings underscore the importance of incorporating demographic and geographic characteristics into predictive 
modeling to ensure models reflect real-world disparities and support more targeted and equitable public health 
interventions. 
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3.4. Machine Learning and Deep Learning for COVID-19 Severity Prediction Using Electronic Health Records 
(EHR) 

 

Figure 1 Machine Learning and Deep Learning for COVID-19 Severity Prediction Using Electronic Health Records 
(EHR)  

This figure is a workflow diagram that shows the process of applying machine learning and deep learning models to 
analyze Electronic Health Records (EHR) to predict the severity of COVID-19 cases. [12-14] It is separated into four 
large sections: data collection and filtering, feature processing, model development and evaluation, and result analysis. 
The workflow gives information about how hospital data is processed and utilized for training predictive models. 

3.4.1. Data Collection and Filtering 

The initial stage of the framework involves the collection of electronic health record (EHR) data from multiple sources, 
including hospital databases and publicly available repositories such as the MIMIC-III and eICU databases. These 
datasets contain detailed clinical records of patients diagnosed with COVID-19 as well as those with other forms of 
pneumonia. A filtering step is employed to isolate relevant patient records, ensuring that only data pertinent to the 
research objectives are retained for further processing. This filtration process enhances the reliability and specificity of 
the predictive models by clearly distinguishing between different respiratory conditions, thereby reducing the risk of 
diagnostic overlap, and improving model accuracy. 

3.4.2. Feature Processing 

Following the acquisition of raw data, a feature engineering phase is conducted to extract clinically meaningful 
information. The features are categorized into vital signs and laboratory measurements (e.g., systolic blood pressure 
[SBP], white blood cell count [WBC]) and pharmacological interventions (e.g., Aspirin, Linezolid). These clinical 
indicators are critical for assessing disease progression and predicting patient outcomes. The careful selection and 
preprocessing of relevant features not only improve model performance but also ensure that predictions are grounded 
in medically significant variables, thereby enhancing the interpretability and clinical relevance of the results. 
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3.4.3. Development, Training, and Model Evaluation 

Here, predictive models are trained using the preprocessed data. The figure indicates two significant approaches: 

• Machine Learning Models: Here, Logistic Regression (LR), Random Forest (RF), and XGBoost fall under this 
category, which is employed for statistical analysis and classification. These models are aptly suited for 
structured medical data and yield interpretable results. 

• Deep Learning Models: Bi-LSTM (Bidirectional Long Short-Term Memory) and Bi-LSTM with Attention 
Mechanism (Bi_LSTM_Attn) belong to this category, capable of identifying intricate patterns in time-series EHR 
data. These models enhance prediction through learning interdependencies among several clinical variables 
over time. 

Machine and deep learning models are tested using the relevant validation methods to warrant high accuracy and 
reliability. 

3.4.4. Result Analysis 

Post training and testing, the performance of the models is studied in three principal manners: 

• Classification Results: The patients are divided into groups based on the model predictions: Death/Severe and 
Survival/Non-severe. 

• Performance Evaluation: A graph shows the models' performance for various time intervals and examines 
important measurements such as accuracy, sensitivity, specificity, and AUC-ROC. 

• Feature Importance: A bar chart shows the importance of various clinical features in predicting patient 
outcomes. This assists in comprehending which medical factors are most responsible for disease severity. 

This process emphasizes using EHR data, feature selection, and predictive modeling to effectively predict COVID-19 
severity. Combining machine learning and deep learning, healthcare professionals can acquire data-driven information 
to enhance patient care and refine treatment plans. The systematic approach provides precise risk assessment and aids 
in personalized medicine for improved health outcomes. 

4. Methodology 

4.1. Predictive Modeling Approach 

To forecast future variant-driven surges in COVID-19 cases, this study employs a combination of machine learning and 
statistical analysis techniques. To capture temporal dependencies in COVID-19 test positivity rates, time series 
forecasting methods such as Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) 
networks are utilized. ARIMA models are well-suited for short-term forecasting but have limitations in handling non-
stationary patterns, which frequently emerge following the onset of new outbreaks [15–18]. In contrast, LSTM—a deep 
learning architecture effectively models complex temporal relationships, making it more appropriate for capturing 
long-term dependencies in pandemic trends. 

In addition to time series models, ensemble learning methods such as Random Forest and Extreme Gradient Boosting 
(XGBoost) are employed to assess variable importance and to estimate the probability of infection based on 
demographic and geographic factors. The integration of multiple modeling approaches enables the development of a 
more robust and adaptive predictive framework, capable of responding to the dynamic and evolving conditions 
characteristic of pandemic scenarios. 

4.2. Model Training and Validation 

The dataset is partitioned into training, validation, and testing sets in an 8:1:1 ratio, allowing the models to be trained 
on historical data and subsequently evaluated on real-world scenarios. To prevent data leakage and enhance model 
generalizability, time-based cross-validation is employed, which respects the temporal ordering of the data and better 
reflects the sequential nature of pandemic trends. 

Several evaluation metrics are utilized to comprehensively assess model performance. Root Mean Square Error (RMSE) 
is used to quantify forecasting accuracy, while the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) 
is applied to evaluate the classification capability of models in identifying infection patterns. Additionally, sensitivity 
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and specificity are measured to determine the model's ability to accurately detect outbreak trends and minimize false 
negatives and false positives, respectively. 

The use of diverse performance metrics ensures a well-rounded evaluation of the models, providing reliable indicators 
of their practical applicability for real-world deployment in public health decision-making. 

4.3. Feature Engineering 

It is important to emphasize that feature engineering plays a critical role in improving model performance, particularly 
in identifying factors associated with the emergence of COVID-19 spikes. Among these, test positivity rates serve as a 
primary predictive variable, offering a direct and timely indicator of infection prevalence within the population. 
Additional features, such as population mobility—derived from anonymized smartphone tracking data—are 
incorporated to reflect movement patterns that significantly influence the dynamics of disease transmission. 

Maternal and acquired immunity levels, represented through vaccination data, are also included to account for the 
varying immune status across different geographic regions. Demographic covariates such as age, sex, and location are 
considered to capture population-specific infection risks. Furthermore, environmental factors—including seasonal 
climate variations are introduced, given their documented influence on viral behavior and transmission rates. 

By carefully selecting and engineering these features, the predictive models are better equipped to capture the 
complexity and temporal variability of COVID-19 outbreaks. This tailored feature design contributes to improved 
predictive accuracy and enhances the ability of the models to generate location- and population-specific forecasts, 
ultimately supporting more responsive and data-driven public health strategies. 

4.4. Handling Variant Surges 

The challenge of modeling the spread of COVID-19 is addressed in this study by estimating changes in infection rates in 
conjunction with the emergence of new viral variants. The models are designed to be dynamic, incorporating variant 
prevalence data sourced from genomic sequencing reports. To maintain accuracy, minor adjustments—or mini-
corrections are applied based on current trends in test positivity rates, hospitalization patterns, and immune evasion 
characteristics. These updates allow the models to adapt in near real-time as new evidence emerges. 

Additionally, the modeling framework supports the development of multiple models in parallel, with predictive factors 
ranked according to variant severity and transmissibility. This variant-specific parameter tuning enhances the 
responsiveness of the forecasts and allows for more nuanced projections of outbreak trajectories. 

By implementing this adaptive, variant-driven modeling strategy, the study demonstrates how predictive accuracy can 
be significantly improved. This approach offers substantial value for public health agencies by enabling earlier and more 
informed decision-making, even before widespread clinical impacts of new variants become apparent. 
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4.5. Leveraging Population-Level COVID-19 Testing Data for Predictive Modeling During Variant Surges 

 

Figure 2 Leveraging Population-Level COVID-19 Testing Data for Predictive Modeling During Variant Surges  

5. Experimental Results and Analysis 

5.1. Model Performance Evaluation 

The predictive performance of the proposed models was optimized by comparing a range of machine learning and 
statistical techniques for forecasting COVID-19 surges. Initially, traditional time series models such as ARIMA were 
evaluated; however, their performance was limited in capturing abrupt shifts in trends associated with the emergence 
of new variants. In contrast, deep learning models—particularly Long Short-Term Memory (LSTM) networks—
demonstrated superior performance on temporal datasets due to their ability to model long-term dependencies and 
nonlinear temporal relationships. 
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In addition to time series forecasting, ensemble learning algorithms such as XGBoost and Random Forest were 
employed to assess the relative importance of key features, including test positivity rates, mobility patterns, and 
vaccination coverage, in predicting future infection trends. Evaluation metrics such as Root Mean Square Error (RMSE) 
and Mean Absolute Percentage Error (MAPE) indicated that LSTM-based models achieved significantly better 
forecasting accuracy, particularly in multi-step-ahead predictions. Furthermore, AUC-ROC scores obtained from 
classification tasks—used to distinguish between high-risk and low-risk periods for COVID-19 surges—reinforced the 
reliability of machine learning approaches in serving as early warning systems. 

Table 1 presents descriptive statistics that offer foundational insights into the COVID-19 testing data used in this study. 
The table summarizes key variables, including daily test volume, positivity rates, age distribution of test subjects, and 
vaccination coverage. 

Table 1 Summary Statistics of Testing Data 

Variable Mean Standard Deviation Min Max 

Daily Tests Conducted 15,234 3,542 2,500 32,000 

Positivity Rate (%) 6.8 2.1 1.2 15.5 

Age of Test Subjects 42.5 15.3 18 85 

Percentage Vaccinated 67.4 5.9 50.2 81.3 

As shown in Table 1, the average number of COVID-19 tests conducted daily was 15,234, with a range from 2,500 to 
32,000, indicating fluctuations likely influenced by outbreaks and policy changes. The positivity rate averaged 6.8%, 
with a peak of 15.5%, suggesting potential surges during specific time periods. The test population ranged in age from 
18 to 85 years, with a mean age of 42.5 years, representing a broad demographic sample. Vaccination rates averaged 
67.4%, varying by region and over time. These descriptive statistics provide essential context for understanding the 
underlying data patterns and serve as a foundation for developing robust predictive models to inform public health 
strategies. 

5.2. Predictive Insights from Population-Level Testing Data 

Pharmacy-based testing data provided critical insights into the temporal dynamics of COVID-19 variant waves, offering 
a granular understanding of test positivity trends and testing demand across populations. Large-scale testing conducted 
by national pharmacy chains enabled the timely monitoring of virus activity, particularly during the Delta and Omicron 
variant surges. These case studies revealed distinct differences in the progression of test positivity rates. The Delta wave 
was characterized by a gradual increase in positivity over several weeks, which allowed for more accurate anticipation 
of rising case counts. In contrast, the Omicron variant exhibited a rapid spike in positivity rates, reflective of its higher 
transmissibility and shorter incubation period. 

Predictive models developed using real-time pharmacy-based data successfully forecasted these positivity rate trends 
one to two weeks in advance of official case count increases. This forecasting advantage underscores the utility of 
decentralized and large-scale testing networks as effective early warning systems for impending surges. Moreover, 
geographic, and demographic analyses revealed that although the number of tests conducted in rural areas was lower 
than in urban centers, the positivity rates in rural regions were marginally higher during major variant-driven waves. 
These findings highlight disparities in access and underscore the importance of targeted testing strategies in rural 
settings to improve outbreak response. 

5.3. Error Analysis and Limitations 

Despite the substantial predictive performance achieved by the proposed models, several limitations were identified 
that may affect their generalizability and accuracy. One key limitation is the presence of data bias arising from variability 
in testing behavior across regions and population groups. Urban facilities exhibited higher testing frequencies due to 
easier access to pharmacy-based testing, whereas rural areas reported lower test volumes, potentially leading to 
skewed representations of infection patterns. 

Additionally, some deep learning models showed tendencies toward overfitting, particularly when trained on short-
term surges. This overfitting compromises the model's ability to generalize to future outbreaks. To address this issue, 
regularization techniques such as the use of dropout layers were considered to improve model robustness. 
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Another limitation lies in the reliance on test positivity rates as a primary predictive feature. While useful, these rates 
may not accurately reflect true infection prevalence, as they are influenced by individuals’ willingness and ability to 
seek testing. Furthermore, changes in public health policy—such as shifts in testing guidelines or movement restrictions 
introduced inconsistencies in the data over time, posing additional challenges for model stability and adaptability. 

To enhance model performance and resilience, future research should explore the integration of genomic surveillance 
data and the advancement of adaptive learning algorithms. Such improvements would support more accurate and 
responsive modeling in the context of the continuously evolving dynamics of the COVID-19 pandemic. 

6. Discussion 

6.1. Implications for Public Health Policy 

The integration of predictive modeling and large-scale, population-level testing holds significant potential for enhancing 
decision-making within the public health sector. Leveraging real-time data from pharmacy-based testing networks 
enables health officials to detect early signals of variant-driven surges and allocate resources more effectively. As noted 
by Daly, such predictive insights can be instrumental in refining preventive strategies—such as targeting vaccination 
efforts toward vulnerable subpopulations, scaling up testing in high-risk regions, and ensuring timely communication 
of public health information to the general population. 

For instance, early detection of rising positivity rates during the initial stages of the Omicron wave could have facilitated 
the implementation of stricter control measures, potentially alleviating the strain on healthcare systems. Moreover, 
predictive models can inform adaptive testing strategies, such as initiating or expanding testing programs in regions 
exhibiting rapidly increasing positivity rates. 

The incorporation of predictive analytics into public health workflows supports proactive rather than reactive 
responses to disease outbreaks. This data-driven approach enables timely interventions, more strategic planning, and 
a reduction in reliance on the "wait and see" method traditionally associated with outbreak management. 

6.2. Integration with Healthcare and Testing Infrastructure 

To ensure the effectiveness of predictive modeling, it is essential that the proposed solutions align seamlessly with 
existing healthcare and testing system infrastructures. Pharmacy networks, due to their widespread distribution and 
accessibility, provide an ideal platform for the real-time implementation of AI-driven tools. Integrating predictive 
models into pharmacy data pipelines can enable continuous monitoring of testing trends and potential contagion 
outbreaks, allowing for the automatic generation of early warning alerts. 

Such integration can support the development of more proactive and responsive testing policies, including the dynamic 
adjustment of testing frequency and access based on real-time risk assessments. Furthermore, predictive insights can 
assist healthcare providers in anticipating surges in hospitalizations, thereby enabling timely preparation in terms of 
resource allocation, staffing, and ICU capacity management. 

The creation of dynamic, interactive dashboards—accessible to both public health agencies and pharmacy networks—
would significantly enhance real-time situational awareness. These symmetrical visual tools would facilitate 
coordinated decision-making, improve the dissemination of critical data, and ultimately strengthen the collective 
response to emerging public health threats. 

Challenges and Future Research Directions 

To further improve predictive modeling approaches, several challenges must be addressed. A primary concern is the 
ability of models to adapt to emerging SARS-CoV-2 variants, which may exhibit distinct transmission patterns and 
epidemiological behaviors. While some models allow for iterative updates with new data, delays in genomic sequencing 
and variant identification can impede timely model adaptation. Future efforts should focus on developing adaptive 
learning frameworks capable of dynamically incorporating new information and responding flexibly to novel variants 
as they emerge. 

Another critical consideration is the ethical and privacy implications associated with the use of sensitive testing data. 
Although pharmacy-based testing data offers substantial utility for surveillance and modeling, it must be handled with 
stringent safeguards to ensure the privacy and confidentiality of individuals. Compliance with data protection 
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regulations, including the Health Insurance Portability and Accountability Act (HIPAA) and the General Data Protection 
Regulation (GDPR), remains essential to maintaining public trust and ethical integrity in data usage. 

Additionally, addressing biases present in testing data such as unequal access or representation across demographic 
groups is vital for ensuring fairness and accuracy in model outputs. Ensuring equitable representation and correcting 
for data imbalances will enhance the reliability of predictions across diverse populations. 

In the long term, the expansion of these predictive modeling strategies beyond COVID-19 holds promise for broader 
applications in infectious disease surveillance. The methodologies and frameworks developed herein could serve as 
foundational tools for managing future public health threats and pandemics with improved speed, accuracy, and ethical 
responsibility.  

7. Conclusion 

His study demonstrated the effectiveness of leveraging national pharmacy-based COVID-19 testing data to develop 
predictive models capable of forecasting variant-driven surges. The machine learning and statistical models employed 
particularly the deep learning-based LSTM networks proved adept at identifying temporal trends, outperforming 
traditional time series models in capturing complex, evolving infection patterns. When real-time testing data were 
combined with supplementary variables such as mobility and vaccination rates, the models’ precision improved further, 
underscoring the value of incorporating diverse data sources for more accurate pandemic modeling. 

The findings highlight the critical role that pharmacy networks can play not only in early detection of COVID-19 
outbreaks but also in supporting public health decision-making through timely, community-level surveillance. By acting 
as decentralized data collection hubs, these networks contribute meaningfully to proactive outbreak management and 
early warning systems. 

Future enhancements in this domain can focus on several key areas. First, improving model adaptability by integrating 
genomic and epidemiological data in real time will be essential for tracking the emergence of new variants. Second, 
addressing biases in testing data particularly disparities in access across socioeconomic and geographic groups—will 
be crucial for ensuring equitable and reliable predictions. Third, the adoption of privacy-preserving machine learning 
techniques will enable the continued use of sensitive health data while maintaining compliance with data protection 
regulations. 

Beyond COVID-19, the modeling framework developed in this study offers potential for broader applications in 
forecasting and managing other infectious diseases. With continued optimization and integration into real-time 
healthcare infrastructure, predictive analytics can support a shift from reactive crisis response to proactive public 
health preparedness. Such advancements will be instrumental in strengthening global resilience against future 
pandemics.  
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