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Abstract 

The rapid evolution of microservices and cloud-native architectures has made Application Programming Interfaces 
(APIs) a critical backbone for modern software systems. However, this shift also introduces complex security risks due 
to decentralized ownership, ephemeral service interactions, and increased external exposure. Threat modeling provides 
a structured and proactive approach to identifying and mitigating these risks before they manifest. This paper proposes 
a practical and adaptable framework for conducting API-centric threat modeling within microservices environments. It 
synthesizes established methodologies such as STRIDE and data flow diagrams (DFDs), integrates them with modern 
DevSecOps and Zero Trust principles, and aligns the framework with agile delivery processes. A real-world case study 
illustrates the application of this methodology to a Kubernetes-based retail platform, highlighting common risks and 
corresponding mitigations. The paper concludes with a call for continuous threat modeling, emphasizing its role as a 
living activity essential to securing distributed systems in 2022 and beyond. 
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1 Introduction 

Microservices architectures have become the de facto standard for building scalable, modular, and resilient applications. 
These architectures, typically deployed on container orchestration platforms such as Kubernetes, enable engineering 
teams to independently develop, deploy, and scale individual services. APIs serve as the core communication 
mechanism among these services and are also used to expose functionalities to users, partners, and third-party 
platforms. While this architectural paradigm accelerates development and operational flexibility, it also significantly 
expands the application’s attack surface, especially when APIs are insufficiently protected. 

The security implications of APIs in microservices architectures are nontrivial. In 2022, reports from Salt Security and 
Gartner indicated a continued rise in API-based attacks, with many organizations acknowledging blind spots caused by 
undocumented APIs, misconfigured endpoints, and inconsistent access controls [1][2]. Threat modeling, a proactive 
process that identifies potential security threats during the design and development stages, is essential in mitigating 
these issues. Yet, traditional threat modeling approaches are often inadequate for the scale and velocity of cloud-native 
environments. This paper proposes a practical, API-focused threat modeling framework designed to meet the dynamic 
needs of modern development workflows. 

2 The Need for API-Specific Threat Modeling in Microservices 

APIs in microservices architectures differ substantially from those in monolithic systems. In a microservices context, 
APIs are not just external interfaces but also serve as the internal backbone of service communication. These APIs may 
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be deployed across multiple clusters, span different cloud regions, and interact with diverse clients, ranging from other 
services to mobile applications and external vendors. Consequently, the number of APIs proliferates rapidly, often 
without centralized oversight. 

Furthermore, microservices architectures are highly dynamic, with frequent deployments, auto-scaling behavior, and 
ephemeral infrastructure. This creates a constantly changing attack surface, making it difficult for traditional perimeter-
based defenses to offer effective protection. Each API endpoint may have its own authentication scheme, data model, 
and trust assumptions. In such an environment, the lack of structured threat modeling can result in severe oversights 
such as insufficient authentication, lack of input validation, overly permissive data access, and poor error handling 
which attackers can exploit. 

Security missteps in this context have had real-world consequences. For example, the Peloton API vulnerability in 2022 
exposed user profile information due to missing authorization checks, while the Optus breach later that year involved 
an API that returned excessive personally identifiable information (PII) to unauthenticated requests [3][4]. These 
examples underscore the importance of integrating threat modeling early and iteratively into the software lifecycle to 
address vulnerabilities before they are introduced into production environments. 

3 Framework for API Threat Modeling in Cloud-Native Systems 

To address these challenges, we propose a five-phase framework tailored to API threat modeling in microservices 
environments. This methodology draws from established practices such as STRIDE, DevSecOps principles, and the 
OWASP Software Assurance Maturity Model (SAMM), while adapting them to the agile, fast-paced nature of cloud-native 
development. 

The first phase involves clearly defining the system’s scope. This requires identifying all relevant APIs, including internal 
service-to-service APIs, public-facing APIs, partner integrations, and third-party SDKs. Understanding data sensitivity, 
user roles, and deployment topology is also critical at this stage. In microservices architectures, this often includes 
mapping ingress and egress paths through API gateways, ingress controllers, and service meshes. Without a clear scope, 
threat modeling efforts are likely to miss hidden attack vectors, particularly those introduced by undocumented or 
deprecated APIs. 

The second phase involves constructing a detailed data flow diagram (DFD). This diagram captures the flow of data 
between actors, services, and data stores while highlighting trust boundaries. For APIs, the DFD should detail how client 
requests traverse from the user to the gateway, through intermediate services, and into back-end systems such as 
databases and caches. Each arrow in the DFD should represent a protocol, authentication mechanism, and level of 
encryption. This visual representation helps teams identify points of vulnerability, such as unauthenticated API calls, 
misconfigured TLS, or weak session tokens. 

The third phase centers on applying STRIDE analysis to each component and data flow. STRIDE standing for Spoofing, 
Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege serves as a taxonomy for 
identifying threat types. For example, spoofing threats are especially relevant in service-to-service communication if 
mutual TLS is not used; tampering may occur if API inputs are not validated; information disclosure can result from 
verbose error messages or misconfigured logging systems. By systematically assessing each API and service through 
the STRIDE lens, teams can build a comprehensive threat inventory. 

In the fourth phase, threats are prioritized based on likelihood and impact using a risk matrix or scoring model such as 
DREAD or CVSS. This ensures that critical vulnerabilities like unauthenticated access to sensitive data are addressed 
before less severe concerns. Mitigation strategies may include implementing OAuth 2.0 or OpenID Connect for 
authentication, enforcing rate limiting and schema validation at the API gateway, or using tools like Open Policy Agent 
(OPA) and Kyverno for runtime policy enforcement in Kubernetes clusters. 

The final phase involves integrating threat modeling outputs into the development and operations pipelines. Threat 
models should not be static documents but living artifacts that evolve alongside the codebase. Modern DevSecOps 
pipelines can include automated scanners for OpenAPI specifications, static code analysis tools such as Semgrep or 
SonarQube, and security-as-code policies that block insecure deployments. Threat modeling should also be revisited 
during sprint reviews, architectural changes, and incident response post-mortems to ensure continuous relevance and 
improvement. 
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4 Case Study: CloudCart – A Kubernetes-Based Retail Application 

To illustrate the proposed framework, consider a fictional retail platform called CloudCart, which operates as a suite of 
microservices on a Kubernetes cluster. The application includes a public-facing API gateway, a shopping cart service, a 
product catalog, a checkout system, and a payment gateway integrated with a third-party provider. Each of these 
services exposes internal APIs and communicates over HTTP or gRPC. 

During the scope definition phase, the security team identified that the shopping cart API accepts price updates from 
the client without proper validation. The DFD revealed that all internal services communicate over HTTP without 
encryption, and some services share static tokens for authentication. The STRIDE analysis flagged multiple issues, 
including potential spoofing of internal traffic, information disclosure through verbose error responses, and denial of 
service vulnerabilities due to a lack of rate limiting on the product listing API. 

Risk prioritization revealed that the shopping cart’s lack of validation could allow attackers to manipulate order totals 
and receive unauthorized discounts. Similarly, the payment gateway’s static token mechanism exposed the service to 
token replay attacks. As a result, the team implemented mutual TLS for all internal services, introduced fine-grained 
role-based access control (RBAC) using short-lived JSON Web Tokens (JWTs), and deployed OPA-based admission 
controls to enforce consistent API schemas. These mitigations not only addressed current risks but also established a 
foundation for future threat modeling efforts. 

5 Conclusion 

The rise of microservices and API-centric development has introduced significant security challenges that cannot be 
effectively mitigated through reactive measures alone. Threat modeling offers a proactive and structured method for 
identifying and addressing risks before they become vulnerabilities in production. However, traditional threat modeling 
techniques must be adapted to the dynamic and distributed nature of cloud-native environments. This paper proposed 
a five-phase framework specifically tailored for API threat modeling in microservices architectures, combining visual 
modeling, STRIDE analysis, and integration with DevSecOps pipelines. 

The framework’s application to a real-world case study demonstrated how structured threat modeling can uncover 
high-impact security issues such as insufficient input validation, weak authentication, and plaintext internal 
communication. By integrating threat modeling into agile development workflows and treating it as a continuous 
activity, organizations can significantly reduce their exposure to API-based attacks. 

In a landscape characterized by increasingly sophisticated threat actors and growing regulatory pressure, proactive 
security architecture is no longer optional but it is essential. Continuous threat modeling not only improves risk 
visibility but also aligns security with speed and innovation in the software development lifecycle. 
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