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Abstract 

The aim of this study is to numerically obtain the solution to an unsteady incompressible fluid confined between two 
parallel plates with constant velocity. The nonlinear partial differential equation governing the flow is first converted 
to a nonlinear ordinary differential equation using similarity transformation and solved using the combination of 
Laplace transform and Adomian decomposition method (LADM). The model parameters affecting the flow geometry is 
analysed and presented in tables and graphs. The method produces an accurate, elegant, computable, and 
approximately convergent solution which gives great insight but with less mathematical sophistication.  

Keywords:  MHD; Unsteady; Incompressible fluid; Laplace Adomian decomposition method (LADM); Similarity 
transformation 

1. Introduction

Unsteady MHD flow of an incompressible fluid between two infinitely long parallel plates has been extensively studied 
since the fall of the twentieth century. Technically called Couette flow is one which has a fixed lower plate and an upper 
plate which is moving with uniform velocity in the 𝑥  direction. The pioneering study of this phenomena was first 
presented by Sancheti and Bhatt [1].  Since its conception, several researchers have simplified the Navier-Stokes 
equation with underlying assumptions to solve for the exact solution. Several methods have been applied to solve this 
problem for the exact solution. The unsteady MHD Couette flow of heat transfer of dusty fluid with variable viscosity of 
varying properties have been examined by Attia [2]. He extended the above study to include two parallel plates with 
variable physical properties [3] 

[4] have investigated the heat and mass transfer of MHD free convection from a vertical surface incorporating viscous 
dissipation and ohmic heating. The viscous fluid between two oscillating plates of an unsteady hydromagnetic flows of 
a dusty fluid was studied by [5]. [6] have analysed the heat transfer between two parallel plates of a stretching surface. 
The study reveals that, the velocity component has an underlying influence on the velocity profiles as well as the 
concentration profile. Similarly, unsteady flow of a dusty flow of a dusty incompressible between two parallel plates 
under the influence of impulsive pressure gradient has been examined by [7]. Nagarajan [8] extended the above study 
to including viscosity and a conducting liquid between the plates. The analysis of pulsatile flow of unsteady dusty fluid 
through rectangular channel have been considered by [9]. [10] have studied the unsteady flow of dusty incompressible 
fluid between two parallel plates under an impulsive pressure gradient. The result obtained agreed with literature. [11] 
have examined an extended study of MHD flow of dusty viscous conducting liquid between parallel plates. 
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The fusion of Laplace transformation and Adomian decomposition (LADM) as a hybrid semi-analytical method have 
also been extensively applied to solve many practical problems in science and engineering. This method has an 
advantage over other semi-analytical methods in that it does not require perturbation, discretization, linearization, or 
unnecessary assumptions that affect the physical nature of the equations. This practice of academics combining 
methods for analytical solution though relatively new have equally attracted attention from scholars in the nonlinear 
science to solve several problems ranging from linear and nonlinear differential as well as functional equations, Jeffery-
Hamel flow problems namely, linear, nonlinear, and coupled partial differential equation. Ebiwareme et al.  [12-16] have 
used the LADM to embark on analytical study of the Hepatitis E Virus model, Dynamics of atmospheric carbon (iv) oxide 
incorporating Pade approximation, modified Adomian decomposition method for the numerical approximation of the 
crime deterrence model, numerical solution of the food chain ecoepidemic model and analytical treatment for the SIR 
infectious disease model respectively. LADM have also been applied to investigate the following problems: Numerical 
solution to the logistic equation, convection diffusion-dissipation equations, nonlinear coupled partial differential 
equations, two-dimensional viscous fluid with shrinking sheet, nth order integro-differential equations, approximate 
solution of nonlinear fractional differential equations, Volterra integro-differential equations, linear and nonlinear 
Volterra integral equations with weak kernel, system of ordinary differential equations, Newell-Whitehead-Segel 
equation, HIV infection model of CD4+T cells, Falker-Skan equation, Duffing Equation [17-29]. 

In this study, we propose the Laplace Adomian decomposition method (LADM) to solve the resulting nonlinear ordinary 
differential equation from our governing equations upon using similarity transformation. Our main objective in this 
study therefore is to obtain the velocity and temperature profiles subject to the prescribed boundary conditions and 
present the results in tables and graph. The study is organized as follows: In section two, the formulation of the problem 
subject to the given boundary conditions is given. Similarity transformation to convert the governing equations to 
nonlinear ordinary differential equation is carried out in section 3. The fundamentals of the Laplace Adomian 
decomposition method are presented in section 4. Section 5 gives the mathematical analysis of the problem using the 
proposed method. The presentation and discussion of the results in graphical and tabular form is presented in section 
6. 

2. Formulation of the problem 

Let us consider the flow of a viscous incompressible fluid confined between two parallel plates separated by a distance 
ℎ .  Assuming the plates extend to infinity in the 𝑥  and 𝑧  directions, and the 𝑦 −axis is perpendicular to the plane 
containing them. The fluid in the confined space between the parallel plates is assumed to be at rest, and the lower plate 
at 𝑦 = 0 at 𝑡 = 0 is suddenly set in motion with constant velocity 𝑈 in the 𝑥 −direction. This sudden motion generates 
a two-dimensional motion of the fluid between the space of the fluid. The only nonzero component of the velocity is 𝑢, 
and it’s a function of 𝑦  and 𝑡  alone, where �⃗� = (𝑢, 𝑣, 𝑤)  and 𝑢 = 𝑢(𝑦, 𝑡).  Suppose the pressure is constant, then the 
Navier-Stokes’s equation in the absence of body forces is reduced to the form. The governing continuity and Navier-
Stokes equations of two-dimensional incompressible viscous fluid is given by  

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
= 0                     (1) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝑣 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)                        (2) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑦
+ 𝑣 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)                        (3) 

Following the assumption stated above 

𝑣 = 0, ⟹
𝜕𝑢

𝜕𝑥
= 0,

𝜕𝑃

𝜕𝑥
=

𝜕𝑃

𝜕𝑦
= 𝑜  

Eq. (2) now reduced to the equivalent form 

𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑦2                     (4) 

Subject to the initial and boundary condition 

𝑢 = 0 when 𝑡 = 0 for all 𝑦                         (5) 
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𝑢 = 𝑈  𝑎𝑡 𝑦 = 0
𝑢 = 0 𝑎𝑡 𝑦 = ∞

] when 𝑡 > 0                   (6) 

3. Similarity Transformation 

To solve the partial differential equation in (4) subject to Eqs. (5) − (6), we first convert it to an ordinary differential 
equation using similarity transformation of the form 

𝜂 =
𝑦

2√𝜈𝑡
                              (7) 

𝑓(𝜂) =
𝑢

𝑈
                      (8) 

Manipulating the above, we get the following of derivates as follows 

𝜕𝑢

𝜕𝑡
=

𝜕𝑢

𝜕𝜂

𝜕𝜂

𝜕𝑡
= 𝑈

𝜕𝑓

𝜕𝜂
(

−𝑦

4√𝜈𝑡3 2⁄
) 

𝜕𝑢

𝜕𝑡
=

𝜕𝑢

𝜕𝜂

𝜕𝜂

𝜕𝑦
= 𝑈

𝜕𝑓

𝜕𝜂
(

1

2√𝜈𝑡
) 

𝜕2𝑢

𝜕𝑦2
=

𝜕

𝜕𝑦
(

𝜕𝑢

𝜕𝑦
) =

𝜕

𝜕𝜂
(

𝜕𝑢

𝜕𝑦
)

𝜕𝜂

𝜕𝑦
= 𝑈

𝜕2𝑓

𝜕𝜂2
(

1

4𝜈𝑡
) 

Plugging the above into Eq. (1), the equation reduced to the form in terms of the similarity variable 

𝜕𝑓

𝜕𝜂
(−2𝜂) =

𝜕2𝑓

𝜕𝜂2  

That is,  
𝜕2𝑓

𝜕𝜂2 + 2𝜂
𝜕𝑓

𝜕𝜂
= 0                                                           (9) 

And the corresponding boundary conditions are 

𝑓(𝜂) = 1, at 𝜂 = 0 

𝑓(𝜂) = 0, at 𝜂 = ∞                 (10) 

To solve Eq. (9) using (10), we apply the Laplace Adomian decomposition method. The basics of this hybrid method is 
discussed as follows. 

4. Fundamentals of the Laplace Adomian Decomposition Method (LADM) 

In this subsection, we discuss the basics of the hybrid Laplace Adomian decomposition algorithm for the nonlinear first 
order differential equations governing the problem. For convenience, we consider a first order nonhomogeneous 
functional differential equation subject to initial condition of the form 

𝐿[𝑢(𝑥)] + 𝑅[𝑢(𝑥)] + 𝑁[𝑢(𝑥)] = 𝑔(𝑥)                                                     (11) 

𝑢(0) = 𝑓(𝑥)                  (12) 

𝐿[𝑢(𝑥)] = 𝑔(𝑥) − 𝑅[𝑢(𝑥)] − 𝑁[𝑢(𝑥)]                                                      (13) 

Applying Laplace transform to both sides of Eq. (11), and using the differentiation property, we get 

𝑠ℒ{𝑢(𝑥)} − 𝑓(𝑥) = ℒ{𝑔(𝑥)} − ℒ{𝑅𝑢(𝑥)} − ℒ{𝑁𝑢(𝑥)} 
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𝑠ℒ{𝑢(𝑥)} = 𝑓(𝑥) + ℒ{𝑔(𝑥)} − ℒ{𝑅𝑢(𝑥)} − ℒ{𝑁𝑢(𝑥)} 

ℒ{𝑢(𝑥)} =
𝑓(𝑥)

𝑠
+

1

𝑠
ℒ{𝑔(𝑥)} −

1

𝑠
ℒ{𝑅𝑢(𝑥)} −

1

𝑠
ℒ{𝑁𝑢(𝑥)}                                                                   (14) 

Applying the inverse Laplace transform to both sides of Eq. (14), we obtain 

𝑢(𝑥) = 𝜙(𝑥) − ℒ−1 [
1

𝑠
ℒ{𝑅𝑢(𝑥)} −

1

𝑠
ℒ{𝑁𝑢(𝑥)}]                                                    (15) 

Where 𝜙(𝑥) is the term arising from the first three terms on the right hand side of Eq. (15). 

Next, we assume the solution of the problem as a decomposing series in the form 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                                                        (16) 

Similarly, the nonlinear terms are written in terms of the Adomian polynomials as 

𝑁𝑢(𝑥) = ∑ 𝐴𝑛
∞
𝑛=0                                                         (17) 

Where the 𝐴𝑛
′𝑠 represents the Adomian polynomials defined in the form 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁(∑ 𝜆𝑖𝑦𝑖

∞
𝑘=0 )]𝑖=0, 𝑛 = 0,1,2,3                                                 (18) 

Plugging Eqs. (16) and (17) into Eq. (18), we obtain 

∑ 𝑢𝑛(𝑥)∞
𝑛=0 = 𝜙(𝑥) − ℒ−1 [

1

𝑠
ℒ{𝑅 ∑ 𝑢𝑛(𝑥)∞

𝑛=0 } −
1

𝑠
ℒ{𝑁 ∑ 𝐴𝑛

∞
𝑛=0 }]                                                                                          (19) 

Matching both sides of Eq. (19), we obtain an iterative algorithm in the form 

𝑢0(𝑥) = 𝜙(𝑥) 

𝑢1(𝑥) = −ℒ−1 [
1

𝑠
ℒ {𝑅 ∑ 𝑢0(𝑥)

∞

𝑛=0

} −
1

𝑠
ℒ {𝑁 ∑ 𝐴0

∞

𝑛=0

}] 

𝑢3(𝑥) = −ℒ−1 [
1

𝑠
ℒ{𝑅 ∑ 𝑢2(𝑥)∞

𝑛=0 } −
1

𝑠
ℒ{𝑁 ∑ 𝐴2

∞
𝑛=0 }]                                (20) 

𝑢𝑛+1(𝑥) = −ℒ−1 [
1

𝑠
ℒ {𝑅 ∑ 𝑢𝑛(𝑥)

∞

𝑛=0

} −
1

𝑠
ℒ {𝑁 ∑ 𝐴𝑛

∞

𝑛=0

}] 

Then the solution of the differential equation is obtained as the sum of decomposed series in the form 

𝑢(𝑥) ≈ 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯                                                      (21) 

5. Mathematical Analysis using LADM 

To solve Eq. (9) subject to (10), we proceed as follows 

We take the Laplace transform of Eq. (9), we have the expression 

ℒ{𝑓′′} + 2𝜂ℒ{𝑓′} = 0                 (22) 
 

Where ℒ{𝐹} denotes the Laplace transformation of the function, 𝐹 

Using the property of the Laplace transform, we have 
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𝑠2ℒ{𝑓} − 𝑠𝑓(0) − 𝑓′(0) + 2𝜂[𝑠ℒ{𝑓} − 𝑓(0)] = 0                  (23) 

Using the initial condition in Eq. (10), we obtain the following 

𝑠2ℒ{𝑓} − 𝑠 − 𝛼 + 2𝜂[𝑠ℒ{𝑓} − 1] = 0 

Rearranging the above gives 

ℒ{𝑓} =
𝑠+𝛼+2𝜂

𝑠2+2𝜂𝑠
                       (24) 

Applying the principle of partial fraction, the right-hand side takes the form 

ℒ{𝑓} =
1+𝛼 2𝜂⁄

𝑠
+

𝛼

𝑠(𝑠+2𝜂)
                      (25) 

Following Adomian decomposition method, we express the function, 𝑓 in the form of an infinite series 

𝑓 = ∑ 𝑓𝑛
∞
𝑛=0                   (26) 

Plugging Eq. (26) into Eq. (25), we have the form 

ℒ{∑ 𝑓𝑛
∞
𝑛=0 } =

1+𝛼 2𝜂⁄

𝑠
+

𝛼

𝑠(𝑠+2𝜂)
                    (27) 

 
Matching both sides of Eq. (27) yield the iterative algorithm 

     ℒ{𝑓0} =
1+𝛼 2𝜂⁄

𝑠
+

𝛼

𝑠(𝑠+2𝜂)
 

Taking the inverse Laplace transform of the above expression give 

𝑓0 = 1 +
𝛼

2𝜂
−

(−1+𝑒−2𝑡𝜂)𝛼

2𝜂
                      (28) 

The solution of the temperature profile is given by 

𝑓(𝜂) = 𝑓0(𝜂) + 𝑓1(𝜂) + 𝑓2(𝜂)                             (29) 

Using the boundary condition, 𝑓(∞) = 0, we obtain the value of the constant as 
 

𝛼 = −
1

∫ 𝑒−𝜂2
𝑑𝜂

∞
0

= −
2

√𝜋
                     (30) 

 
Putting Eq. (30) into the concentration profile in Eq. (29), we have the expression 

𝑓(𝜂) = 1 − [
∫ 𝑒−𝜂2

𝑑𝜂
𝜂

0

∫ 𝑒−𝜂2
𝑑𝜂

𝜂0
0

]                     (31) 

Therefore, the velocity distribution is given by 

𝑓(𝜂) =
𝑢

𝑈0
= 1 −

2

√𝜋
∫ 𝑒−𝜂2

𝑑𝜂
𝜂

0
                      (32) 

⟹
𝑢

𝑈0
= 𝑓(𝜂) = 1 − 𝐸𝑟𝑓(𝜂)                 (33) 

Where 𝐸𝑟𝑓(𝜂) =
2

√𝜋
∫ 𝑒−𝜂2

𝑑𝜂
𝜂

0
 is called the error function or probability distribution. 
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6. Results and discussion 

In this section, we present the results obtained from solving the nonlinear ordinary differential equation in tables and 
graph. The effects of the governing parameters on the concentration and velocity profiles are shown in figures. 

Table 1 Concentration & Temperature profiles of the viscous flow 

𝜼 𝑬𝒓𝒇(𝜼) 𝒖

𝑼𝟎

 

0 0.000000 1.00000 

0.2 0.222703 0.777297 

0.4 0.428392 0.571608 

0.6 0.603856 0.396144 

0.8 0.742101 0.257899 

1.0 0.842701 0.157299 

1.2 0.910324 0.089686 

1.4 0.952285 0.0477149 

1.6 0.976348 0.0236516 

1.8 0.989091 0.0109095 

2.0 0.995322 0.0046777 

 
 
 
Table 2 Computed of values of velocity profile for different values of height,𝑦 and constant values of 𝑣 = 2, 𝑥 = 5 
 

𝜼 𝒚 = 𝟎. 𝟑 𝒚 = 𝟎. 𝟓 𝒚 = 𝟎. 𝟕 𝒚 = 𝟎. 𝟗 𝒚 = 𝟏. 𝟏 

0 0.00000 0.00000 0.00000 0.00000 0.00000 

0.5 1.33333 0.80000 0.571429 0.44444 0.363636 

1.0 5.33333 3.20000 2.285710 1.777778 1.454555 

1.5 12.0000 7.20000 5.142860 4.00000 3.272727 

2.0 21.33333 12.80000 9.142860 7.111111 5.181818 

2.5 33.33333 20.00000 14.28570 11.11111 9.090910 

3.0 48.00000 28.80000 20.57140 16.00000 13.09090 

3.5 65.33333 39.20000 28.00000 21.77778 17.81820 

4.0 85.33333 51.20000 36.57140 28.44444 23.27270 

4.5 108.0000 64.80000 46.28570 36.00000 29.45450 

5.0 133.3333 80.00000 57.14290 44.44444 36.36360 
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Table 3 Computed values for velocity profile with variation in the width, 𝑥 and constant values of 𝑦 = 1, 𝑣 = 5 on the 
channel 

𝜼 𝒙 = 𝟎. 𝟓 𝒙 = 𝟎. 𝟕 𝒙 = 𝟎. 𝟗 𝒙 = 𝟏. 𝟏 𝒙 = 𝟏. 𝟑 

0 0.00000 0.00000 0.00000 0.00000 0.00000 

0.5 4.00000 2.85714 2.22222 1.18181 1.53846 

1.0 16.0000 11.4286 8.88889 7.27273 6.15385 

1.5 36.0000 25.7143 20.0000 16.3636 13.8462 

2.0 64.0000 45.7143 35.5556 29.0909 24.6154 

2.5 100.000 71.4286 55.5556 45.4545 38.4615 

3.0 144.000 102.857 80.0000 65.4545 55.3846 

3.5 196.000 140.000 108.889 89.0909 75.3846 

4.0 256.000 182.857 142.222 116.364 98.4615 

4.5 324.000 231.429 180.000 147.273 124.615 

5.0 400.000 285.714 222.222 181.818 153.846 

 
 
Table 4 Computed values of velocity profile for variation in the viscosity, 𝑣 and constant values of 𝑦 = 1, 𝑥 = 2 
 

𝛈 𝐯 = 𝟎. 𝟐 𝐯 = 𝟎. 𝟑 𝐯 = 𝟎. 𝟒 𝐯 = 𝟎. 𝟓 𝐯 = 𝟎. 𝟔 

0 0.00000 0.00000 0.00000 0.00000 0.00000 

0.5 0.04000 0.06000 0.08000 0.10000 0.12000 

1.0 0.16000 0.24000 0.32000 0.40000 0.48000 

1.5 0.36000 0.54000 0.72000 0.90000 1.00000 

2.0 0.64000 0.96000 1.28000 1.60000 1.92000 

2.5 1.00000 1.50000 2.00000 2.50000 3.00000 

3.0 1.44000 2.16000 2.88000 3.60000 4.32000 

3.5 1.96000 2.94000 3.92000 4.90000 5.88000 

4.0 2.56000 3.84000 5.12000 6.40000 7.68000 

4.5 3.24000 4.86000 6.48000 8.10000 9.72000 

5.0 4.00000 6.00000 8.00000 10.0000 12.0000 
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Figure 1 Effect of concentration profile on the unsteady flow with constant viscosity 

 

Figure 2 Variation of the concentration profile for different values of the height 

 

Figure 3 Variation of the concentration profile for different values of the width 
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7. Conclusion 

In this study, the analytical investigation of an unsteady MHD incompressible fluid flow sandwiched between two 
infinite parallel plates is carried out using the Laplace Adomian decomposition method. The findings of the study are 
summarized as follows. 

 The velocity decreases continuously and tends to a limiting value zero as 𝜂 ⟶ ∞ 

 The limiting value is reached at exactly 𝜂 = 2. This agrees with practical results 

 Distance and kinematic viscosity vary proportionally. 

 Decrease in the thickness of the layer leads to a corresponding decrease in the product of kinematic viscosity 

and time, hence the flow eventually become a boundary layer flow.  

Compliance with ethical standards 

Acknowledgments 

The first author is grateful to his wife Mrs. Diepreye Ebiwareme for her excellent typesetting of the manuscript and to 
all reviewers whose comments improve the quality of this article. 

Disclosure of conflict of interest 

The authors have declared that there is no conflict of interest 

References 

[1] Attia HA. Unsteady MHD Couette flow and heat transfer of dusty fluid with variable physical properties. Applied 
Mathematics and Computation. 2006; 177(1): 308-318.  

[2] Attia HA, Kotb NA. MHD flow and heat transfer of dusty fluid between two parallel plates with variable physical 
properties, Applied Mathematics Modeling. 1996; 26: 863-875.  

[3] Chamka AJ. Unsteady hydromagnetic flow and heat transfer from a non-isothermal stretching sheet immersed in 
a porous medium. International Communications in Heat and Mass Transfer. 1998; 25(6): 899-906.  

[4] Chen CH. Combined heat and mass transfer in MHD free convection from a vertical surface with ohmic heating 
and viscous dissipation. International Journal of Engineering Science. 2004; 42(7): 699-713.  

[5] Datta N, Dalal DC, Mishra SK. Unsteady heat transfer to pulsatile flow of a dusty viscous incompressible fluid in a 
channel, International Journal of Heat and Mass Transfer. 1993; 36(7): 1783-1788.   

[6] Debnath L, Ghosh AK. On unsteady hydromagnetic flows of a dusty viscous fluid between two oscillating plates, 
Journal of Applied Mathematics and Simulation. 1989; 2(1): 13-31.  

[7] Elbashbeshy, EMA, Bazid MAA. Heat transfer over an unsteady stretching surface. Heat and Mass Transfer. 2004; 
41(1): 1-4.  

[8] Ezzat AA, Bary E, Morsey MM. Space approach to the hydro-magnetic flow of a dusty fluid through a porous 
medium. Computers and Mathematics with Applications. 2010; 59(8):  2868-2879.  

[9] Gireesha HM, Bagewadi CS, Prasannaku BC. Pulsatile flow of an unsteady dusty fluid through rectangular channel. 
Communications in Nonlinear Science and Numerical Simulation. 2009; 14(5): 2103-2110.  

[10] Prasad VR, Ramacharyulu NCP. Unsteady flow of a dusty incompressible fluid between two parallel plates under 
an impulsive pressure gradient, Defense Science Journal. 1979; 30: 125-130.  

[11] Sreeharireddy P, Nagarajan AS, Siviah M. MHD flow of a dusty viscous conducting liquid between two parallel 
plates, Journal of Scientific Research. 2009; 1(2): 220-225.   

[12] Ebiwareme L, Da-Wariboko YA. Modified Adomian decomposition method and Pade approximant for the 
numerical approximation of the crime deterrence model in society. The International Journal of Engineering and 
Science. 2021; 10(7): 01-12. 



World Journal of Advanced Research and Reviews, 2022, 14(03), 136–145 

145 

[13] Ebiwareme L. Analytical Study of the Hepatitis E Virus model (HEV) via Hybrid semi-analytical Laplace 
Transform and Adomian decomposition method (LADM). International Journal of Scientific Research and 
Engineering Development. 2022; 5(1). 

[14] Ebiwareme L. Analytical Solution of the Dynamics of Atmospheric C02 using the LADM-Pade approximation 
Approach. International Journal of Trend in Scientific Research and Development. 2022; 6(2). 

[15] Ebiwareme L. The Laplace Transform decomposition method Applied to the numerical solution of the Food Chain 
ecoepidemic model. International Journal of Statistics and Applied Mathematics. 2022; 7(1): 132-145. 

[16] Ebiwareme L, Akpodee RE, Ndu RI. An Application of LADM-Pade approximation for the analytical solution of the 
SIR infectious Disease model. International Journal of Innovation Engineering and Science Research. 2022; 6(2). 

[17] Islam S, Khan Y, Faraz N, Austin F. Numerical Solution to Logistic differential equation by using Laplace 
decomposition method. World Applied Science Journal. 2010; 8: 1100-1105. 

[18] Yindoula JB, Youssouf P, Bissanga G, Bassino F, Some B. Application of the Adomian decomposition method and 
Laplace transform method to solving the convection diffusion-dissipation equation. International Journal of 
Applied Mathematical Research. 2014; 3: 30-35. 

[19] Khan M, Hussain M, Jafari H, Khan Y. Application of Laplace decomposition method to solve nonlinear coupled 
partial differential equations. World Applied Science. 2010; 9: 13-19. 

[20] Koroma MA, Widatalla S, Kamara AF, Zhang C. Laplace Adomian decomposition method applied to two-
dimensional viscous fluid with shrinking sheet. 2013; 7: 525-529. 

[21] Waleed AH. Solving nth-order integro-differential equation using the combined Laplace Adomian transform 
method. Applied Mathematics. 2013; 4: 882-886. 

[22] Khuri SA, Alchikh R. An iterative Approach for the numerical solution of Fractional boundary value problems. 
International Journal of Applied Computational Mathematics. 2019; 5: 147. 

[23] Wazwaz AM. The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra 
integro-differential equations. Applied Mathematics and computations. 2010; 2(16): 1304-1309. 

[24] Hendi FA. The combined Laplace Adomian decomposition method Applied for solving linear and nonlinear 
Volterra integral equation with weak kernel. Studies in Nonlinear Science. 2011; 2(4): 129-134. 

[25] Dogan N. Solution of the systems of ordinary differential equation by combined Laplace Transform-Adomian 
decomposition method. Mathematical and Computational Applications. 2012; 17(3): 2003-2012. 

[26] Pue-on, P. Laplace Adomian decomposition method for solving Newell-Whitehead-Segel Equation. Applied 
Mathematical Sciences. 2013; 7(132): 6593-6600. 

[27] Ongun MY. The Laplace Adomian decomposition for solving a model for HIV infection of CD4+Tcells. Mathematics 
and computational modeling. 2011; 53: 597-603. 

[28] Nasser, AS. A Numerical method for the solution of the Falkner-Skan equation. Applied Mathematics and 
computation. 1997; 81: 259-264. 

[29] Yusufoglu E. Numerical solution of the Duffing equation by the Laplace decomposition algorithm. Applied 
Mathematics computation. 2006; 177: 572-580.  


