

eISSN: 2581-9615 CODEN (USA): WJARAI Cross Ref DOI: 10.30574/wjarr Journal homepage: https://wjarr.com/

WJARR WJARR	USER 2551 4415 COORN (URA) HUMAN JARR
World Journal of Advanced Research and Reviews	
	World Journal Series INDIA
Chock for undatos	

(RESEARCH ARTICLE)

Check for updates

Certain *q*-starlike and *q*-convex functions with respect to conjugate points

Uzoamaka Azuka Ezeafulukwe *

Mathematics Department, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria,

World Journal of Advanced Research and Reviews, 2022, 15(01), 811–821

Publication history: Received on 25 April 2022; revised on 29 June 2022; accepted on 02 July 2022

Article DOI: https://doi.org/10.30574/wjarr.2022.15.1.0395

Abstract

Certain subclass of q-starlike and q-convex was introduced. The third and fourth coefficient were calculated, with the aid of subordination theory.

(1.1)

Keywords: *q*–Derivative operator; Extremal function; Analytic functions; *q*–Starlike; *q*–Convex

AMS Subject Classification: 30C45

1. Introduction

Let P denote the class of analytic functions p normalized by

$$p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$$

such that $\operatorname{Re}\{p(z)\} > 0, z \in U$.

Let A_k denote the class of functions f normalized by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
, (1.2)

which are analytic in the open unit disc U(1) = U where,

 $U(r) = \{z : |z| < r\}.$

We state the q-derivative operator $D_{z,q}$ defined by [22] (see also [23]) as

$$\left(\begin{array}{l} \mathcal{D}_{z,q}f(z) = \frac{f(z) - f(qz)}{z(1-q)}, \quad q \in (0,1), \ z \neq 0 \\ \\ \mathcal{D}_{z,q}f(z) \mid_{z=0} = f'(0). \end{array} \right)$$

Also, the operator $(D_{z,q}f)(z)$ can also be defined by convolution as follows:

^{*} Corresponding author: Ezeafulukwe Uzoamaka A

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

$$(\mathcal{D}_{z,q}f)(z) = p(z) * \frac{1}{1 - [2]_q z + q z^2}, \quad p \in \mathcal{P}, \ [j]_q = \sum_{\ell=1}^j q^{\ell-1}, \ \ell \in \mathbb{N}$$

We say that the function $\tau : U \to C$ is subordinate to the $\sigma : U \to C$, represented as $\tau \prec \sigma$ or $\tau(z) \prec \sigma(z)$ if there exists a function $\nu : U \to U$, analytic in U such that $\nu(0) = 0$, $|\nu(z)| < 1$, and

 $\tau(z) = \sigma(\nu(z)), \quad z \in U.$

Motivation and Definition

Aldweby and Darus [7] defined the classes $\mathcal{PS}_q^*(\varphi)$ and $PC_q(\phi)$ by

$$\frac{z\left(\mathcal{D}_{z,q}f\right)\left(z\right)}{f(z)} \prec \varphi\left(z\right), \quad \varphi \in \mathcal{P}, \ z \in \mathcal{U}$$
(2.1)

and

$$1 + \frac{zq\left(\mathcal{D}_{z,q}^{2}f\right)(z)}{\left(\mathcal{D}_{z,q}f\right)(z)} \prec \varphi\left(z\right), \quad \varphi \in \mathcal{P}, \ z \in \mathcal{U}$$

$$(2.2)$$

respectively. They obtained the second and third coefficient of functions of these classes. Meanwhile, Ramachandran et. al. [34], introduced the classes of *q*-starlike and *q*-convex functions with respect to symmetric points, denoted by $\mathcal{PS}_q^*(\varphi)$ and $PC_{q,s}(\phi)$ and defined by

$$\frac{2z\left(\mathcal{D}_{z,q}f\right)(z)}{f(z) - f(-z)} \prec \varphi(z)), \quad \varphi \in \mathcal{P}$$
(2.3)

and

$$\frac{2\left[\left(\mathcal{D}_{z,q}f\right)\left(z\right)+zq\left(\mathcal{D}_{z,q}^{2}f\right)\left(z\right)\right]}{\left(\mathcal{D}_{z,q}f\right)\left(z\right)+\left(\mathcal{D}_{z,q}f\right)\left(-z\right)}\prec\varphi\left(z\right), \quad \varphi\in\mathcal{P}$$
(2.4) respectively.

Definition 2.1 Suppose $\alpha \in [0,1]$ and $\beta \in (0,1)$. Let $PS(\alpha,\beta)$ denote the class of functions $f \in A_k$ satisfying the following inequality:

$$\left|\frac{z(\mathcal{D}_{z,q}f)(z)}{f(z)} - 1\right| < \beta \left|\frac{\alpha z(\mathcal{D}_{z,q}f)(z)}{f(z)} + 1\right|, \quad z \in \mathcal{U}$$
(2.5)

From [37], equation (2.5) can be rewritten as:

$$\frac{z(\mathcal{D}_{z,q}f)(z)}{f(z)} \prec \frac{1+\beta z}{1-\alpha\beta z}, \quad z \in \mathcal{U}$$
(2.6)

If $\alpha = \beta = 1$ then the class PC(α, β) reduces to the class PC($\phi(z)$) studied by [7].

Also if $q \rightarrow 1$ the class PC(α, β) reduces to the class S(α, β) studied by [35].

Definition 2.2 Suppose $\alpha \in [0,1]$ and $\beta \in (0,1)$. Let $PC(\alpha,\beta)$ denote the class of functions $f \in A_k$ satisfying the following inequality:

$$\frac{\mathcal{D}_{z,q}\left[z(\mathcal{D}_{z,q}f)(z)\right]}{\left(\mathcal{D}_{z,q}f\right)(z)} - 1 \left| < \beta \left| \frac{\alpha \mathcal{D}_{z,q}\left[z(\mathcal{D}_{z,q}f)(z)\right]}{\left(\mathcal{D}_{z,q}f\right)(z)} + 1 \right|, \quad z \in \mathcal{U}$$
(2.7)

$$\frac{\mathcal{D}_{z,q}\left[z(\mathcal{D}_{z,q}f)(z)\right]}{\left(\mathcal{D}_{z,q}f\right)(z)} \prec \frac{1+\beta z}{1-\alpha\beta z}, \quad z \in \mathcal{U}.$$
(2.8)

If $\alpha = \beta = 1$ then the class PC(α , β) reduces to the class PC($\phi(z)$) studied by [7].

Also if $q \rightarrow 1$ the class PC(α, β) reduces to the class K(α, β) studied by [35].

Definition 2.3 Suppose $\alpha \in [0,1]$ and $\beta \in (0,1)$. Let $\mathcal{PS}_s^*(\alpha,\beta)$ denote the class of functions $f \in A_k$ satisfying the following inequality:

(2.10)
$$\left| \frac{2z(\mathcal{D}_{z,q}f)(z)}{f(z) - f(-z)} - 1 \right| < \beta \left| \frac{2\alpha z(\mathcal{D}_{z,q}f)(z)}{f(z) - f(-z)} + 1 \right|, \quad z \in \mathcal{U}$$
$$\frac{2z(\mathcal{D}_{z,q}f)(z)}{f(z) - f(-z)} \prec \frac{1 + \beta z}{1 - \alpha \beta z}, \quad z \in \mathcal{U}.$$

Definition 2.4 Suppose $\alpha \in [0,1]$ and $\beta \in (0,1)$. Let $PC(\alpha,\beta)$ denote the class of functions $f \in A_k$ satisfying the following inequality:

$$\left|\frac{2\mathcal{D}_{z,q}\left[z(\mathcal{D}_{z,q}f)(z)\right]}{\mathcal{D}_{z,q}\left[f(z) - f(-z)\right]} - 1\right| < \beta \left|\frac{2\alpha\mathcal{D}_{z,q}\left[z(\mathcal{D}_{z,q}f)(z)\right]}{\mathcal{D}_{z,q}\left[f(z) - f(-z)\right]} + 1\right|, \quad z \in \mathcal{U}$$

$$\frac{2\mathcal{D}_{z,q}\left[z(\mathcal{D}_{z,q}f)(z)\right]}{\mathcal{D}_{z,q}\left[f(z) - f(-z)\right]} \prec \frac{1 + \beta z}{1 - \alpha\beta z}, \quad z \in \mathcal{U}.$$

$$(2.12)$$

Lemma 2.1 Let $p \in P$ then the following sharp estimate holds:

(2.13)

Lemma 2.2 Let $p \in P$. Then

 $|p_k| \leq 2, k \in \mathbb{N}.$

 $2p_2 = p_1^2 + x \left(4 - p_1^2\right)$

for some x with $|x| \le 1$ and

$$4p_3 = p_1^3 + 2p_1 \left(4 - p_1^2\right) x - p_1 \left(4 - p_1^2\right) x^2 + 2 \left(4 - p_1^2\right) \left(1 - |x|^2\right) z$$
(2.14)

for some z with $|z| \leq 1$.

Necessary and Sufficient Conditions

Theorem 3.1 Let $f \in PS(\alpha,\beta)$, $\beta \in (0,1]$, $\alpha \in [0,1]$, then

$$\left|a_{2}a_{4}-a_{3}^{2}\right| = \frac{\beta^{2}\left(1+\alpha\right)^{2}}{q^{2}\left[2\right]_{q}^{2}}$$
 (3.1)

The result is sharp, with the extremal function

$$f_1(z) = \begin{cases} \frac{z}{(1-\alpha\beta z^2)^{\frac{1+\alpha}{|2|_q}}}, & \alpha \in (0, \\ z \exp(\frac{\beta z^2}{|2|_q}), & \alpha = 0. \end{cases}$$
(3.2)

Proof. Let $f \in PS(\alpha,\beta)$, then by (2.6) there exists a Schwarz function ν , which is analytic in U such that $\nu(0) = 0$, $|\nu(z)| < 1$ and

$$\frac{z(\mathcal{D}_{z,q}f)(z)}{f(z)} = \vartheta\left(\nu(z)\right), \qquad (3.3)$$

where

$$\vartheta(z) = \frac{1+\beta z}{1-\alpha\beta z} = 1+\beta(1+\alpha)z+\alpha\beta^2(1+\alpha)z^2+\alpha^2\beta^3(1+\alpha)z^3+\cdots$$

Let $p \in P$ be written as follows:

$$p(z) = \frac{1 + \nu(z)}{1 - \nu(z)}$$
(3.4)

Then by (1.1)

$$\nu(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left[p_1 z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \left(p_3 + \frac{p_1^3}{4} - p_1 p_2 \right) z^3 + \cdots \right].$$
(3.5)

And

$$\frac{z(\mathcal{D}_{z,g}f)(z)}{f(z)} = \vartheta \left(\frac{p(z)-1}{p(z)+1}\right)$$

$$= 1 + \frac{\beta}{2}(1+\alpha)p_1 z + \left[\frac{\beta}{2}(1+\alpha)(p_2 - \frac{p_1^2}{2}) + \frac{\alpha\beta^2}{4}(1+\alpha)p_1^2\right] z^2$$

$$+ \left[\frac{\beta(1+\alpha)}{2}\left(\frac{p_1^3}{4} + p_3 - p_1p_2\right) + \frac{\alpha\beta^2(1+\alpha)}{2}(p_2 - \frac{p_1^2}{2})p_1 + \frac{\alpha^2\beta^3(1+\alpha)}{8}p_1^3\right] z^3 \cdots$$
(3.6)

Also,

$$\frac{z(\mathcal{D}_{z,q}f)(z)}{f(z)} = 1 + qza_2 + qz^2 \left([2]_q a_3 - a_2^2 \right) + qz^3 \left([3]_q a_4 - (1 + [2]_q) a_2 a_3 + a_2^3 \right)_{(3.7)}$$

Comparing the coefficients of z, z^2 and z^3 in (3.6) and (3.7), we get

 $a_2 = \frac{\beta(1+\alpha)p_1}{2q}$

$$\begin{split} a_{3} &= \frac{\beta(1+\alpha)}{4q^{2}[2]_{q}} \left[2qp_{2} + (\alpha\beta[2]_{q} + \beta - q) p_{1}^{2} \right] \\ a_{4} &= \frac{\beta(1+\alpha)}{8 q^{3} [3]_{q} [2]_{q}} \times \\ \left\{ \left[\alpha^{2}\beta^{2}[3]_{q}[2]_{q} + \alpha\beta^{2} \left([3]_{q} + [2]_{q} \right) + \beta^{2} + q^{2}[2]_{q} - \alpha\beta q \left(2[3]_{q} + q \right) + \beta q \left(1 + [2]_{q} \right) \right] p_{1}^{3} \\ &+ \left[2\alpha\beta q \left(q + 2[3]_{q} \right) + 2\beta q \left(1 + [2]_{q} \right) - 4q^{2}[2]_{q} \right] p_{1}p_{2} + \left[4q^{2}[2]_{q} \right] p_{3} \right\} \end{split}$$

Thus,

$$a_{2}a_{4} - a_{3}^{2} = -\frac{\beta^{2} (1+\alpha)^{2}}{16 q^{2} [3]_{q} [2]_{q}^{2}} \times \{ \left(\alpha\beta^{2}[2]_{q} + \alpha\beta[2]_{q} + \beta + \beta^{2}q[2]_{q} - q\beta + q^{2}\right) p_{1}^{4} \\ (\beta q + 2q - \beta - \alpha\beta[2]_{q}) 2p_{1}^{2}p_{2} + (4[3]_{q}) p_{2}^{2} - ([2]_{q}) 4p_{1}p_{3} \} \}$$

Hence,

$$\begin{split} \left|a_{2}a_{4} - a_{3}^{2}\right| &= \frac{\beta^{2}\left(1+\alpha\right)^{2}}{16 q^{2} \left[3\right]_{q} \left[2\right]_{q}^{2}} \times \\ \left|\left(\alpha\beta^{2}[2]_{q} + \beta^{2}q[2]_{q} + 2q[2]_{q}\right)p_{1}^{4} - \left(\alpha\beta[2]_{q} + \beta(1-q) - 2q[2]_{q}\right)\left(4-p_{1}^{2}\right)p_{1}^{2}x \\ &+ \left(4[3]_{q} - q^{2}p_{1}^{2}\right)\left(4-p_{1}^{2}\right)x^{2} - \left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right)2[2]_{q}p_{1}z| \\ &\left|a_{2}a_{4} - a_{3}^{2}\right| \leq \frac{\beta^{2}\left(1+\alpha\right)^{2}}{16 q^{2} \left[3\right]_{q} \left[2\right]_{q}^{2}} \\ \left(\alpha\beta^{2}[2]_{q} + \beta^{2}q[2]_{q} - 2q[2]_{q}\right)p^{4} + \left(\alpha\beta[2]_{q} + \beta(1-q) - 2q[2]_{q}\right)\left(4-p^{2}\right)p^{2}|x| \\ &+ \left(4[3]_{q} - q^{2}p^{2}\right)\left(4-p^{2}\right)|x|^{2} + \left(4-p^{2}\right)\left(1-|x|^{2}\right)2[2]_{q}p \\ \left(4-p^{2}\right)2[2]_{q}p + \left(\alpha\beta^{2}[2]_{q} + \beta^{2}q[2]_{q} + 2q[2]_{q}\right)p^{4} + \left(\alpha\beta[2]_{q} + \beta(1-q) - 2q[2]_{q}\right)\left(4-p^{2}\right)p^{2}|x| \\ &+ \left(2-p\right)\left\{2[3]_{q} + q^{2}p\right\}\left(4-p^{2}\right)|x|^{2} \\ &= \mathcal{F}(p\psi). \end{split}$$

where $\psi = |x| \le 1$.

$$\frac{\partial \left(\Gamma(p,\psi) \right)}{\partial \psi} = \frac{\beta^2 \left(1+\alpha\right)^2}{16 \ q^2 \ [3]_q \ [2]_q^2} \left[\left(\alpha \beta [2]_q + \beta (1-q) - 2q[2]_q\right) \left(4-p^2\right) p^2 \right] + 2 \left(2-p\right) \left\{ 2[3]_q + q^2 p \right\} \left(4-p^2\right) |x|$$
(3.8)

 $\max_{\psi \in [0,1]} F(p,\psi) = F(p,1) = \varphi(p)$

$$\begin{split} F(p,1) &= \varphi(p) = \frac{\beta^2 \left(1+\alpha\right)^2}{16 \ q^2 \ [3]_q \ [2]_q^2} \\ 16[3]_q + \left(q \ [q+4[2]_q] + \alpha\beta^2[2]_q + \beta^2 q[2]_q + \beta q - \beta - \alpha\beta[2]_q\right) p^4 \\ \left(\alpha\beta - 2p^2q\right) 4[2]_q p^2 \\ \varphi'(p) &= \frac{\beta^2 \left(1+\alpha\right)^2}{4 \ q^2 \ [3]_q \ [2]_q^2} \\ \left(q \ [q+4[2]_q] + \alpha\beta^2[2]_q + \beta^2 q[2]_q + \beta q - \beta - \alpha\beta[2]_q\right) p^3 \\ \left(\alpha\beta - 2p^2q\right) 2[2]_q p \\ \left|a_2a_4 - a_3^2\right| &= \frac{\beta^2 \left(1+\alpha\right)^2}{q^2 \ [2]_q^2} \end{split}$$

equality holds for the function

$$f_1(z) = \begin{cases} \frac{z}{(1-\alpha\beta z^2)^{\frac{1+\alpha}{\lfloor 2 \rfloor_q}}}, & \alpha \in (0, -1];\\\\ z \exp(\frac{\beta z^2}{\lfloor 2 \rfloor_q}), & \alpha = 0. \end{cases}$$
 have

Solving, w

$$\frac{z\left(D_{z,q}f_1(z)\right)}{f_1(z)} = \frac{f_1(z)}{f_1(zq)} \left(\frac{1+\beta z}{1-\alpha\beta z}\right)$$
(3.9)

Theorem 3.2 *Let* $\beta \in (0, 1]$, $\alpha \in [0, 1]$.

$$|a_2 a_4 - a_3^2| = \frac{\beta^2 (1+\alpha)^2}{q^2 [2]_q^2}$$
 (3.10)

The result is sharp, with the extremal function

$$f_1(z) = \begin{cases} \frac{z}{(1-\alpha\beta z^2)^{\frac{1+\alpha}{|2|_q}}}, & \alpha \in (0, -1];\\ \\ z \exp(\frac{\beta z^2}{|2|_q}), & \alpha = 0. \end{cases}$$
(3.11)

Proof.

Let $f \in PS(\alpha, \beta)$, then by (2.6) there exists a Schwarz function ν , which is analytic in U such that $\nu(0) = 0$, $|\nu(z)| < 1$ and

$$\frac{2z(\mathcal{D}_{z,q}f)(z)}{f(z) - f(-z)} = \vartheta\left(\nu(z)\right)$$
(3.12)

where

$$\vartheta(z) = \frac{1+\beta z}{1-\alpha\beta z} = 1+\beta(1+\alpha)z+\alpha\beta^2(1+\alpha)z^2+\alpha^2\beta^3(1+\alpha)z^3+\cdots$$

Let $p \in P$ be written as follows:

$$p(z) = \frac{1 + \nu(z)}{1 - \nu(z)}$$
(3.13)

Then by (1.1)

$$\nu(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left[p_1 z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \left(p_3 + \frac{p_1^3}{4} - p_1 p_2 \right) z^3 + \cdots \right].$$
(3.14)

And

$$\frac{2z(\mathcal{D}_{z,q}f)(z)}{f(z) - f(-z)} = \vartheta \left(\frac{p(z) - 1}{p(z) + 1}\right)$$
$$= 1 + \frac{\beta}{2}(1+\alpha)p_1 z + \left[\frac{\beta}{2}(1+\alpha)(p_2 - \frac{p_1^2}{2}) + \frac{\alpha\beta^2}{4}(1+\alpha)p_1^2\right] z^2$$
$$+ \left[\frac{\beta(1+\alpha)}{2}\left(\frac{p_1^3}{4} + p_3 - p_1p_2\right) + \frac{\alpha\beta^2(1+\alpha)}{2}(p_2 - \frac{p_1^2}{2})p_1 + \frac{\alpha^2\beta^3(1+\alpha)}{8}p_1^3\right] z^3 \cdots$$
(3.15)

Also,

$$\frac{2z(\mathcal{D}_{z,q}f)(z)}{f(z) - f(-z)} = 1 + [2]_q z a_2 + q[2]_q z^2 a_3 + [2]_q z^3 \left\{ (1+q^2)a_4 - a_2 a_3 \right\} \cdots$$

Comparing the coefficients of z, z^2 and z^3

$$\begin{split} a_2 &= \frac{\beta(1+\alpha)p_1}{2[2]_q} \\ a_3 &= \frac{\beta(1+\alpha)}{4q[2]_q} \left\{ 2p_2 + (\alpha\beta - 1)p_1^2 \right\} \\ a_4 &= \frac{\beta(1+\alpha)}{8q[4]_q[2]_q} \left\{ \begin{array}{c} \left[\alpha^2\beta^2[3]_q + \alpha\beta^2 - \alpha\beta\left([3]_q + q[2]_q\right) - \beta + q[2]_q \right] p_1^3 \\ + \left[\alpha\beta\left([3]_q + q[2]_q\right) + \beta - 2q[2]_q \right] 2p_1p_2 + \left[4q[2]_q \right] p_3 \end{array} \right\} \\ a_4a_2 - a_3^2 &= -\frac{\beta^2(1+\alpha)^2}{16q^2[4]_q[2]_q^2} \\ \left\{ \begin{array}{c} \left[\alpha^2\beta^2 + \beta q + [2]_q - \alpha\beta^2 q - \alpha\beta\left([2]_q + 1\right) \right] p_1^4 + 4p_2^2[4]_q \\ + (\alpha\beta(1+[2]_q) - 2[2]_q - \beta q) 2p_1^2p_2 - \left[4q^2[2]_q \right] p_1p_3 \end{array} \right\}, \\ \left| a_4a_2 - a_3^2 \right| &= \frac{\beta^2(1+\alpha)^2}{16q^2[4]_q[2]_q^2} \\ \left| \left[\alpha^2\beta^2 + \beta q + [2]_q - \alpha\beta^2 q - \alpha\beta\left([2]_q + 1\right) \right] p_1^4 + 4p_2^2[4]_q \\ \left| \left[\alpha^2\beta^2 + \beta q + [2]_q - \alpha\beta^2 q - \alpha\beta\left([2]_q + 1\right) \right] p_1^4 + 4p_2^2[4]_q \\ \right| \\ \left| \left[\alpha^2\beta^2 + \beta q + [2]_q - \alpha\beta^2 q - \alpha\beta\left([2]_q + 1\right) \right] p_1^4 + 4p_2^2[4]_q \\ \end{array} \right\}, \end{split}$$

$$\begin{aligned} \left|a_{4}a_{2}-a_{3}^{2}\right| &= \frac{\beta^{2}(1+\alpha)^{2}}{16q^{2}[4]_{q}[2]_{q}^{2}} \\ & \left[\alpha^{2}\beta^{2}-\alpha\beta^{2}q\right] p_{1}^{4}+(\alpha\beta(1+[2]_{q})-\beta q)x(4-p_{1}^{2})p_{1}^{2} \\ & +(\alpha\beta(1+[2]_{q})-2[2]_{q}-\beta q)2p_{1}^{2}p_{2}-\left[4q^{2}[2]_{q}\right]p_{1}p_{3}\right] \\ (3.16) \\ & \left|+(4-p_{1}^{2})(4\{[3]_{q}-q\})[2]_{q}x^{2}-2q^{2}[2]_{q}p_{1}(4-p_{1}^{2})(1-|x|^{2})z\right] \\ & \left|a_{4}a_{2}-a_{3}^{2}\right| &\leq \frac{\beta^{2}(1+\alpha)^{2}}{16q^{2}[4]_{q}[2]_{q}^{2}} \\ & \times \left[\alpha^{2}\beta^{2}-\alpha\beta^{2}q\right] p^{4}+(\alpha\beta(1+[2]_{q})-\beta q)|x|(4-p^{2})p^{2} \\ & +(4-p^{2})(4\{[3]_{q}-q\}-p^{2})[2]_{q}|x|^{2}+2q^{2}[2]_{q}p(4-p^{2})(1-|x|^{2})(3.17) \end{aligned}$$

$$= \frac{\beta^{2}(1+\alpha)^{2}}{16q^{2}[4]_{q}[2]_{q}^{2}} \left[\alpha^{2}\beta^{2}-\alpha\beta^{2}q\right] p^{4} \\ & +2q^{2}[2]_{q}p(4-p^{2})+(\alpha\beta(1+[2]_{q})-\beta q)(4-p^{2})p^{2}|x| \\ & +2q^{2}[2]_{q}p(4-p^{2})+(\alpha\beta(1+[2]_{q})-\beta q)(4-p^{2})p^{2}|x| \end{aligned}$$

$$= \frac{\beta^{2}(1+\alpha)^{2}}{16q^{2}[4]_{q}[2]_{q}^{2}} (\alpha\beta(1+[2]_{q})-\beta q)(4-p^{2})p^{2} \\ & +2q^{2}[2]_{q}p(4-p^{2})(4\{[3]_{q}-q\}-p(p+2q^{2}))|x|^{2} \\ & +2q^{2}[2]_{q}p(4-p^{2})(4\{[3]_{q}-q\}-p(p+2q^{2}))|x| \end{aligned}$$

$$= \frac{\beta^{2}(1+\alpha)^{2}}{16q^{2}[4]_{q}[2]_{q}^{2}} (\alpha\beta(1+[2]_{q})-\beta q)(4-p^{2})p^{2} \\ & +2[2]_{q}(4-p^{2})(4\{[3]_{q}-q\}-p(p+2q^{2}))|x| \end{aligned}$$

$$(3.19) \\ & +2[2]_{q}(4-p^{2})(4\{[3]_{q}-q\}-p(p+2q^{2}))|x| \end{aligned}$$

$$\varphi(p) = F(p,1) = \frac{\beta^{2}(1+\alpha)^{2}}{16q^{2}[4]_{q}[2]_{q}^{2}} \\ & \times (\alpha^{2}\beta^{2}+[2]) + \beta q - \alpha\beta^{2}q - \alpha\beta^{2}f_{1}+[2] + p^{2} \end{pmatrix} p^{4}$$

$$\times \left[\alpha^{z} \beta^{z} + [2]_{q} + \beta q - \alpha \beta^{z} q - \alpha \beta \left\{ 1 + [2]_{q} \right\} \right) p^{*} + \left(\alpha \beta \left\{ 1 + [2]_{q} \right\} - \beta q - \left\{ [4]_{q} + [2]_{q} \right\} \right) 4p^{2} + 16[4]_{q} \quad (3.21)$$

$$\begin{split} \varphi'(p) &= \frac{\beta^2 (1+\alpha)^2}{4q^2 [4]_q [2]_q^2} p \\ &\times \left(\alpha^2 \beta^2 + [2]_q + \beta q - \alpha \beta^2 q - \alpha \beta \left\{ 1 + [2]_q \right\} \right) p^2 \\ &+ \left(\alpha \beta \{ 1 + [2]_q \} - \beta q - \{ [4]_q - [2]_q \} \right) 2 \end{split}$$

$$|a_2 a_4 - a_3^2| \le \frac{\beta^2 (1+\alpha)^2}{q^2 [2]_q^2}$$
 (3.22)

Equality holds for
(3.23)
$$f_4(t) = \begin{cases} \int_0^t \frac{1}{(1-\alpha\beta\vartheta^2)^{\frac{1+\alpha}{|2|q\alpha|}}} \left(\frac{1+\alpha\beta\vartheta^2}{1-\alpha\beta\vartheta^2}\right) d_q\vartheta; & 0 < \alpha \le 1 \text{ the function} \\ \\ \int_0^t \exp\left[\frac{\beta\vartheta^2}{|2|_q}\right] \left(1+\beta\vartheta^2\right) d_q\vartheta: \end{cases}$$

Solving with $0 < \alpha \le 1$ we have

$$f_4(t) - f_4(-t) = \int_0^t \frac{2}{\left(1 - \alpha\beta\vartheta^2\right)^{\frac{1+\alpha}{\lfloor 2\rfloor_q}}} \left(\frac{1 + \beta\vartheta^2}{1 - \alpha\beta\vartheta^2}\right) d_q\vartheta$$

$$=\frac{2t}{(1-\alpha\beta t^2)^{\frac{1+\alpha}{[2]_q}}}$$
(3.24)

and with α = 0 we have

$$f_4(t) - f_4(-t) = 2t \exp\left[\frac{\beta t^2}{[2]_q}\right].$$

$$\frac{2z f_4'(z)}{f_4(z) - f_4(-z)} = \frac{1 + \beta z^2}{1 - \alpha \beta z^2} \prec \frac{1 + \beta z}{1 - \alpha \beta z} \quad (3.26)$$

2. Conclusion

Certain subclass of q-starlike and q-convex was introduced. The third and fourth coefficient were calculated, with the aid of subordination theory.

Compliance with ethical standards

Disclosure of conflict of interest

The author disclosed there is no conflict of interest.

References

- [1] Aabed Mohammed and Maslina Darus, Second Hankel determinant for a class of analytic functions Defined by a linear operator, *Tamkang J. Math.*, 43(Autumn 2012), 455-462.
- [2] S. Agrawal and S. K. Sahoo, A generalization of starlike functions of order alpha, *arXiv.1404.3988*, 2014 (2014), 14 pages.
- [3] S. Agrawal and S. K. Sahoo, Geometric properties of basic hypergeometric functions, *J. Diff. Eq. Appl.*, 20 (11)(2014), 1502-1522.
- [4] H. Aldweby and M. Darus, Properties of a subclass of analytic functions defined by generalized operator involving *q*-hypergeometric functions, *Far East J. Math. Sci.*, 81(2)(2013),189-200.
- [5] H. Aldweby and M. Darus, A subclass of harmonic univalent functions associated with *q*-analogue of Dziok-Srivastava operator *ISRN Math. Anal.*, 2013 (2013), 6 pages.
- [6] H. Aldweby and M. Darus, Some subordination results on q-analogue of Ruscheweyh differential operator, *Abstract and Applied Analysis*, 2014(2014), 6 pages.
- [7] H. Aldweby and M. Darus, Coefficient estimates of the classes of *q*-starlike and *q*-convex functions, *Adv. Studies in Contemporary Math.*, 26(2016), 21-26.
- [8] K. Al-Shaqsi, M. Darus, and O. A. Fadipe-Joseph, A New Subclass of SalageanType Harmonic Univalent Functions, *Abstr. Appl. Anal.*, 2010(2010), 12 pages.
- [9] J. W. Alexander, Functions which map the interior of the uni circle upon simple regions, *Anal. Math.*, 17(1915), 12-22.
- [10] A. Baricz and A. Swaminathan, Mapping properties of basic hypergeometric func-' tions, J. Classical Anal., 5 (2)(2014), 115-128.
- [11] Thomae, L. J., Beitra[•] ge zuraheorie der durch die Heinische Reihe, J. Reine Angew. Math. 70, (1869), 258–281.
- [12] J. Clunie and T. Sheil-Small, Harmonic univalent functions, *Annales Academiae Scientiarum Fennicae. Series A I. Mathematica*, 9(1984), 3-25.
- [13] J. Dziok, Classes of harmonic functions defined by subordination, *Abstr. Appl. Anal.*, 2015 (2015), 9 pages.

- [14] J. Dziok, M. Darus, J. Soko'l and T. Bulboaca, Generalizations of starlike harmonic functions, *Comptes Rendus Mathematique*, 354(2016), 13-18.
- [15] V. Ravichandran, Starlike and Convex Functions with respect to Conjugae Points, *Acta Mathematica Academiae Paedagogicae Ny'iregyh'aziensis*, 20(2004), 31-37.
- [16] J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21(2015), 99-107.
- [17] J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21(2015), 99-107.
- [18] U. A. Ezeafulukwe and M. Darus, Certain properties of *q*-Hypergeometric functions, *Inter. J. Math. Math. Sc.*, 2015 (2015), 9 pages.
- [19] U. A. Ezeafulukwe and M. Darus, A note on *q*-calculus, *Fasciculi Mathematici*, 55 (2015), 53-63.
- [20] M. E. H. Ismail, E. Merkes and D. Styer, A generalization of stalike functions, *Complex Variables Theory Appl.*, 14 (1990), 77-84.
- [21] F. H. Jackson, On *q*-difference integrals, *Quart. J. Pure and Appl.*, 41(1910), 193203.
- [22] F. H. Jackson, On *q*-functions and a certain difference operator, *Trans. Royal Soc. Edinburgh*, 46(1909), 253-281.
- [23] F. H. Jackson, q-difference equations, Amer. J. of Math., 32(1910), 305-314.
- [24] S. Kanas and D. R^{*}aducanu, Some class of analytic functions related to conic domain, *Mathematica Slovaca*, 64 (2014), 1–14.
- [25] H. M. Srivastava and S. Owa, Univalent Functions, Fractional calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.
- [26] A. Mohammed and M. Darus, A generalized operator involving the qhypergeometric functions, *Matematicki Vesnik.*, 65(4)(2013), 454-465.
- [27] S. K. Sahoo and N. L. Sharma, On a generalization of close-to-convex functions, *arXiv:1404.3268*, 2015, (2015), 14 pages.
- [28] W. C. Ma and D. Minda, An internal geometric characterization of strongly starlike functions, *Annales Universitatis Mariae Curie-Sk lodowska A*, 45(1991), 89-97.
- [29] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.
- [30] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, *Bull. Amer. Math. Soc.*, 42(1936), 349-372.
- [31] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math.
- [32] Annl. Appl., 220(1998), 283-289.
- [33] W. Janowski, Some extremal problems for certain families of analytic functions *I*, *Annales Polonici Mathematici*, 28 (1973), 297-326.
- [34] J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235(2)(1999), 470-477.
- [35] C. Ramachandran, D. Kavitha and T. Soupramanien, Certain bound for *q*-starlike and *q*-convex functions with respect to symmetric point, *Inter. J. Math. Math. Sc.*, 2015(2015), 7 pages.
- [36] Ming-Sheng Liu, Jun-Feng Xu, and Ming Yang, Upper bound of second hankel determinant for certain subclasses of analytic functions, *Abstract and Applied Analysis.*, 2014(2014), 10 pages.
- [37] Z. G. Wang, C. Y. Gao, M. S. Liu, and M. X. Liao, On subclasses of close-toconvex and quasi-convex functions with respect to *k*-symmetric points, *Adv. in Math.*, 38(2009), 4456.
- [38] Z. G. Wang and Y. P. Jiang, On certain subclasses of close-to-convex and quasiconvex functions with respect to 2*k*-symmetric conjugate points, *J. Math. Appl. Anal.*, 29(2007), 167179.
- [39] R. N. Das and P. Singh, On subclasses of schlicht mapping, *Indian J. Pure App. Math.*, 8(1977), 864-872.
- [40] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. of Japan, 11(1959), 72-75.

- [41] R. M. Ali, V. Ravichandran and N. Seenivasagan, Some conditions for Janowski starlikeness, *Intern. J. Math. Math. Sc.*, 2007(2007), 7 pages.
- [42] S. S. Miller and P. T. Mocanu, Differential subordinations: theory and applications, Marcel Dekker, New York, NY, USA, 2000.
- [43] I. Graham and G. Kohr, Geometric function theory in one and higher dimensions, Marcel Dekker, New York, NY, USA, 2003.