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Abstract 

Certain subclass of  q−starlike and q−convex was introduced . The third and fourth coefficient were calculated, with the 
aid of subordination theory.   
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1. Introduction

Let P denote the class of analytic functions p normalized by 

 (1.1) 

such that Re{p(z)} >0,z ∈ U. 

Let Ak denote the class of functions f normalized by 

, (1.2) 

which are analytic in the open unit disc U(1) = U where, 

U(r) = {z : |z| < r}. 

We state the q-derivative operator Dz,q defined by [22] (see also [23]) as 

, 

Also, the operator (Dz,qf)(z) can also be defined by convolution as follows: 
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. 

We say that the function τ : U → C is subordinate to the σ : U → C, represented as τ ≺σ or τ(z) ≺σ(z) if there exists a 
function ν : U → U, analytic in U such that ν(0) = 0, |ν(z)| <1, and 

 τ(z) = σ(ν(z)), z ∈ U. 

Motivation and Definition 

Aldweby and Darus [7] defined the classes 𝒫𝒮𝑞
∗ (𝜑) and PCq(ϕ) by 

  (2.1) 

and 

  (2.2) 

respectively. They obtained the second and third coefficient of functions of these classes. Meanwhile, Ramachandran et. 
al. [34], introduced the classes of q−starlike and q−convex functions with respect to symmetric points, denoted by 
𝒫𝒮𝑞

∗ (𝜑)  and PCq,s(ϕ) and defined by 

  (2.3) 

and 

  (2.4) respectively. 

Definition 2.1 Suppose α ∈ [0,1] and β ∈ (0,1). Let PS(α,β) denote the class of functions f ∈ Ak satisfying the following 
inequality: 

 . (2.5) 

From [37], equation (2.5) can be rewritten as: 

 . (2.6) 

If α = β = 1 then the class PC(α,β) reduces to the class PC(ϕ(z)) studied by [7]. 

Also if q → 1 the class PC(α,β) reduces to the class S(α,β) studied by [35]. 

Definition 2.2 Suppose α ∈ [0,1] and β ∈ (0,1). Let PC(α,β) denote the class of functions f ∈ Ak satisfying the following 
inequality: 

 . (2.7) 
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  (2.8) 

If α = β = 1 then the class PC(α,β) reduces to the class PC(ϕ(z)) studied by [7].  

Also if q → 1 the class PC(α,β) reduces to the class K(α,β) studied by [35]. 

Definition 2.3 Suppose α ∈ [0,1] and β ∈ (0,1). Let  𝒫𝒮𝑠
∗ (𝛼, 𝛽)  denote the class of functions f ∈ Ak satisfying the following 

inequality: 

 .  (2.9) 

(2.10) 

 

 

 

Definition 2.4 Suppose α ∈ [0,1] and β ∈ (0,1). Let PC(α,β) denote the class of functions f ∈ Ak satisfying the following 
inequality: 

 .  

 

 
Lemma 2.1 Let p ∈ P then the following sharp estimate holds: 

 

|pk| ≤ 2, k ∈ N.  
 
Lemma 2.2 Let p ∈ P. Then 

(2.13) 

 , 

for some x with |x| ≤ 1 and 

  (2.14) 

for some z with |z| ≤ 1. 

Necessary and Sufficient Conditions 

Theorem 3.1 Let f ∈ PS(α,β), β ∈ (0,1], α ∈ [0,1], then 

 . (3.1) 

The result is sharp, with the extremal function 

 

(2.11) 

 

(2.12) 
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Proof. Let f ∈ PS(α,β), then by (2.6) there exists a Schwarz function ν, which is analytic in U such that ν(0) = 0, |ν(z)| <1 
and 

 , (3.3) 

where 

 . 

Let p ∈ P be written as follows: 

 . (3.4) 

Then by (1.1) 

  . (3.5) 

And 

 

 

Also, 

 

 . (3.7) 

Comparing the coefficients of z, z2 and z3 in (3.6) and (3.7), we get 

, 

(3.2) 1]; 
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Thus, 

 

. 

Hence, 

 

 

. 

 

 

 

 

= ℱ(p,ψ), 

where ψ = |x| ≤ 1. 

  (3.8) 
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equality holds for the function 

                                  1]; 

 

Solving, we have 

𝑧 (𝐷𝑧,𝑞𝑓1(𝑧))

𝑓1(𝑧)
=  

𝑓1(𝑧)

𝑓1(𝑧𝑞)
 (

1 +  𝛽𝑧

1 −  𝛼𝛽𝑧
) 

Theorem 3.2 Let β ∈ (0,1], α ∈ [0,1]. 

 . (3.10) 

The result is sharp, with the extremal function                                

                                                                           1]; 

 

 

Proof. 

Let f ∈ PS(α,β), then by (2.6) there exists a Schwarz function ν, which is analytic in U such that ν(0) = 0, |ν(z)| <1 and 

 , (3.12) 

where 

 . 

(3.9) 

 

(3.11) 
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Let p ∈ P be written as follows: 

 . (3.13) 

Then by (1.1) 

  . (3.14) 

And 

 

Also, 

 

Comparing the coefficients of z, z2 and z3 
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  (3.16) 

  (3.17) 

 

  (3.18) 

(3.19) 

(3.20) 

 

 

 

 

 

 

  (3.22) 

Equality holds for the function 

(3.23) 

α = 0. 

Solving with 0 < α ≤ 1 we have 
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 . (3.24) 

and with α = 0 we have 

  (3.25) 

  (3.26) 

2. Conclusion 

Certain subclass of  q−starlike and q−convex was introduced . The third and fourth coefficient were calculated, with the 
aid of subordination theory. 
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