

eISSN: 2581-9615 CODEN (USA): WJARAI Cross Ref DOI: 10.30574/wjarr Journal homepage: https://wjarr.com/

WJARR	eissn 2511-8915 Coden (UBA): HJARAJ
W	JARR
World Journal of	
Advanced	
Research and	
Reviews	
	World Journal Series INDIA

(RESEARCH ARTICLE)

Impact of farming system practices on weeds in arable farmlands in University of Port Harcourt and environs, Rivers State-Nigeria

Chinedum A Ogazie *, Ikechukwu O Agbagwa and Edache B Ochekwu

Department of Plant Science and Biotechnology, Faculty of Science, University of Port Harcourt, Nigeria.

World Journal of Advanced Research and Reviews, 2022, 14(02), 031-043

Publication history: Received on 21 March 2022; revised on 29 April 2022; accepted on 01 May 2022

Article DOI: https://doi.org/10.30574/wjarr.2022.14.2.0360

Abstract

Crop production involves the combination of various farming systems practices to produce food and cash crops and at the same time have a reasonable control over weed infestation without course to soil health. Weeds are part of agroecosystems community and are neighbors to our crops and the soil. The work was aimed to investigate the weeds that are common in the sites chosen. A simple reconnaissance weed enumeration survey was adopted for the twentytwo (22) arable farmlands by walk through the farms within and round the boundaries. This was investigated between June 2020 as wet season and in January, 2021 as dry season respectively. A total of 154 weed species were recorded for both wet and dry seasons. The wet and dry seasons had 113 and 120 weed species made up of 37 and 36 families respectively. It revealed 168 broad leaved, 32 grasses and 26 sedges, composed of annual and perennial weed species. All the farms were continuously cultivated and mixed cropped, with 27 crop species identified and recorded. The farmers most preferred crops are Manihot esculenta Crantz being a tuberous crop and Zea mays L., grain cereal with 90.91% each from the overall percentage of individual crop species recorded from farmers who planted them on their farmland (Table 1) respectively, and been staple food items in most part of Nigeria, while the least cropped species are (Amaranthus hybridus L., and Solanum lycopersicon L., Ocimum. americanum L., and Solanum sp.) with 4.54% each respectively which are vegetables to supplement peoples 'diet. Farming systems methods has a tremendous influence on weed species composition in arable farmlands either during the cropping season (wet) or off the season (dry). Some activities are very peculiar within crop production for example bush clearing, and burn, soil tillage in any form or pattern and weed removal either culturally, biological or chemically due impact on weed species in arable farmlands in short or long term and therefore, its impact on crop species and the environment should be minimized and sustained.

Keywords: Farming Systems Practices; Weeds; Arable Farmlands; Wet and Dry Season

1. Introduction

In farming system, many interrelated practices are employed in crop production. Most of these practices for example are slash and burn/shifting cultivation, crop rotation, continuous cropping, mixed cropping, tillage systems, cover crops planting and etc. Some of these practices are either employed to improve soil fertility, smoother weeds, and the application of herbicides to eliminate or reduce weed infestation and reduce weed seed rain back to the soil, fertilizer, compost or farmyard manure application to boost yield and still maintain soil fertility for sustainable crop production [1], [2].

The use of these farming system practices depends on the prevailing circumstances in the study area, location and region. The study area falls within high humid rain forest of Nigeria. It is highly populated and one of the for-most industrial areas in Nigeria and therefore the availability of arable farmland now force farmers to adapt to continuous

* Corresponding author: Chinedum A Ogazie

Department of Plant Science and Biotechnology, Faculty of Science, University of Port Harcourt, Nigeria.

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

slash and burn without enough time for fallow. This does not allow the farmland enough time to restore back its lost nutrients.

According to [3] agriculture is the predominant occupation among rural dwellers who are mostly smallholder farmers in Nigeria. They employ some farming system practices which are conducive for them to manipulate and cultivate the soil to plant crops for the teaming population.

Soil is the main source of plant nutrients and at the same time also harbors weeds which come from the soil as weed seedlings which compete with crops for space, light, and nutrients according to[4],[5]. Weeds are known to be serious impediment in crop production and does not allow for more cultivation of the soil and planting of more crops [6]. It causes yield losses and the farmer can spend all the available useful time trying to maintain a weed free farmland. He can sometimes abandoned the crop and weed altogether when the farmer is overwhelmed and also cause injury to him and his animals [7], [8], [9], [10].

Many literatures are available which have reviewed or commented on all the old and new methods in weed control and no single method completely eliminate weeds [11]; [12]; [13]. Weeds when threatened, they also devise other methods to propagate themselves further for example weed resistance to herbicides [14]; [15]; [16] and the ability to colonize an area and then eliminate the indigenous weed species, production of large number of weed seeds [17]; [18].

However, weeds are of course not completely notorious by competing with crop for nutrients, space, and light [4]; [5], weed contribute to the regeneration of an abandoned land, over used or contaminated land [20]. Weeds provide food for man, animals and birds, hiding places and even homes for them as part of the biodiversity components, and weeds major component of the agro-ecosystem, protect the soil from wind and water erosion, provide food and drug for man and also to his animals[21];[9]. Weeds also contribute to soil organic matter accumulation when it decays; provide a conducive environment for micro-biological activities to thrive and to break down some of the plant materials [22];[23].

We also enumerated the crops planted by each individual farmer to evaluate the level of mixed cropping and the impact it has on the weed species in wet and dry season respectively.

In University of Port Harcourt and its environs, there is no data or report on weed species status/diversity on slash and burn embedded into continuously and mixed cropping of arable farmlands as a reference point. Therefore, this study is aimed at establishing the weed species status/diversity in arable farmlands in University of Port Harcourt and its environs taking into consideration of the farming systems methods adopted by the farmers in the study area for example slash, burn and mixed cropping on arable farmlands that have been continuously cultivated for more than 5 years. The information obtained from the study would further serve as database for future review of agricultural farming system practices in a humid high rain forest of Nigeria.

2. Materials and Methodology

These arable farmlands have been cultivated continuously and have been mixed cropped for more than 5 years within and around University of Port Harcourt, Choba, in Rivers State, Nigeria. The study area lies on Longitude coordinates of 4.824167 and 7.033611 and with a Global Positing System (GPS) reading of 4º 49'27.0012"N and 7º.2'0.9996"E.

Twenty-two newly cropped arable farmland were identified and weeds species were enumerated from the arable farmlands by walk through each of the arable farmlands diagonally and round the perimeters for proper view of the weedy species by adopting reconnaissance methods of Muir [24]; [25.

Weed species were identified right in the arable farmlands and further confirmation by busing [26]; [27]; [28]; [29] and the difficult weed species were collected, processed and sent to the University of Port Harcourt Herbarium for proper identification, confirmation and documentation. The enumerations were conducted between June 2020 for wet season and January 2021 for dry season respectively.

The study area experiences rainfall from April to October and from November to March as dry season. The monthly mean maximum temperature ranges from 28°C to 33°C and minimum from 17°C to 24°C [30]. The soil supports agricultural production of various crop types suitable for the humid forest region of Nigeria according to [31]. Crops mostly cultivated in the study area are enumerated (Table 2).

3. Results

The list of individual weed species identified; crop species, the percentage of the individual crop in order of overall farmers' preference enumerated from the arable farm-lands in the study area are presented in Tables 1 to 3. In Table 1 present list of weed species richness as occurred in all the 22 arable farmlands as 154 for both wet and dry seasons combined belonging to 96 genera in 36 families. Wet and dry season's enumerations were made up of 113 and 120 weed species belonging to 78 and 82 genera and consisted 37 and 36 families. The enumerations for wet and dry seasons revealed annual broad leaves 55, 76; perennial broadleaves 22, 27; annual grasses 10, 15; perennial grasses 4, 5; annual sedges 2, 2; perennial sedges 5, 6 and others 12 and 3. The result also revealed 168 broad leaved, 32 grasses and 26 sedges made up of annual and perennials weed species.

In the wet season 40 weed species were not actually observed and recorded in the course of the enumeration and they occurred in the dry season; while in the dry season 33 weed species were recorded, which did not occur in the wet season. However, 78 same weed species occurred in wet and dry seasons respectively.

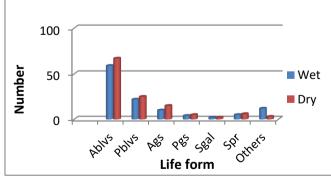
In Tables 2 and 3, we present 27 crops species recorded from all the arable farmlands in the study area. The result also revealed preference crop species planted by all the farmers in the study area. The crop species that were mostly planted by all farmers include *Manihot esculenta* Crantz, *Zea mays* L., *Abelmoschus esculentus* Moench, *Telfairia occidentalis* Hook.f., *Xanthosoma* mafaffa Schott, *Dioscorea* rotundata Poir.. The least preferred crop species were *Solanum* sp, *Amaranthus hybridus* L., *Solanum lycopersicon* L., *Colocasia esculenta* Schott. The result also indicated the least and highest crop species mixed cropped as 3 and 12 respectively.

$$Crop species percentage across farms = \frac{\text{total number of individual crop across farms}}{\text{Total number of farmer}} \times 100$$

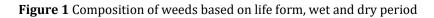
Family	Weed species	Wet	Dry	Life form
Euphorbiaceae	Acalypha ciliata Forsk	+	+	Abl
Poaceae	Acroceras zizanioides Dandy	-	+	Pg
Mimosoideae	Aeschynomene sp.	+	+	Abl
Asteraceae	Ageratum conyzoides Linn	+	+	Abl
Amaranthaceae	Alternanthera bettzickiana (Ragel) Nicholson	+	+	Abl
Amaranthaceae	Alternanthera sessilis (Linn.) R.Br. ex Roth	+	+	Abl
Amaranthaceae	Amaranthus hybridus Linn.	-	+	Abl
Amaranthaceae	Amaranthus spinosus Linn.	-	+	Abl
Amaranthaceae	Amaranthus viridis Linn.	+	+	Abl
Asteraceae	Aspilia africana (Pers.) C.D. Adams	+	+	Abl
Acanthaceae	Asystasia gangetica (Linn.) A. Anders.	+	+	Abl
Poaceae	Axonopus compressus (Sw.) P.Beauv.	+	+	Pg
Rubiaceae	Borreria sp.	+	+	Abl
Poaceae	Brachiaria deflexa (Schumach.) C.E. Hubbard ex Robyns	-	+	Ag
Araceae	Caladium bicolor (Ait.) Vent.	-	+	Pbl
Papilionoideae	Calopogonium mucunoides Desv.	+	+	Abl
Amaranthaceae	Celosia leptostachya Benth.	+	+	Abl
Papilionoideae	Centrosema pubescens Benth.	+	+	Pbl
Asteraceae	Chromoleana odorata (Linn.) King & Robinson	+	-	Pbl

Table 1 List of weed species enumerated in wet and dry season

World Journal of Advanced Research and Reviews, 2022, 14(02), 031-043

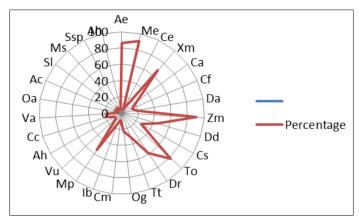

Family	Weed species	Wet	Dry	Life form
Cleomaceae	Cleome rutidosperma DC.	+	-	Abl
Lamiaceae	Clerodendrum sp.	+	-	Pbl
Araceae	Colocasia esculenta (Linn.) Schott	+	-	Pbl
Commelinaceae	Commelina diffusa Burm. f. subsp. diffusa J.K. Morton	-	+	Pbl
Commelinaceae	Commelina diffusa Burm.f.	+	-	Pbl
Commelinaceae	Commelina erecta Linn.	+	+	Pbl
Commelinaceae	Commelina erecta subsp. erecta R.Br.	-	+	Pbl
Commelinaceae	Commelina thomasii	-	+	Pbl
Convolvulaceae	Convolvulaceae unidentified	+	-	Abl
Tiliaceae	Corchorus aestuans Linn.	+	-	Abl
Tiliaceae	Corchorus olitorius Linn.	-	+	Abl
Tiliaceae	Corchorus tridens Linn.	-	+	Abl
Zingiberaceae	Costus afer Ker-Gawl.	-	+	Pbl
Euphorbiaceae	Croton hirtus L'Hérit.	+	+	Abl
Euphorbiaceae	Croton lobatus Linn.	+	+	Abl
Acanthaceae	Cyathula prostrata (Linn.) Blum	+	+	Abl
Poaceae	Cynodon dactylon (Linn.) Pers.	+	+	Pg
Cyperaceae	Cyperus compressus Linn.	+	+	Ps
Cyperaceae	Cyperus distans Linn.f.	+	-	Ps
Cyperaceae	Cyperus esculentus Linn.	+	+	Ps
Cyperaceae	Cyperus haspan Linn.	+	+	Ps
Cyperaceae	Cyperus iria Linn.	+	-	Ps
Cyperaceae	Cyperus polystachyus (Rottb.) P.Beauv. var. polystachyus	+	-	Ps
Cyperaceae	Cyperus pustulatus Vahl.	-	+	Ps
Cyperaceae	Cyperus rotundus Linn.	+	-	Ps
Cyperaceae	Cyperus tuberosus Rottb.	-	+	Ps
Poaceae	Dactyloctenium aegyptium Willd.	+	-	Ag
Papilionoideae	Desmodium triflorum (Linn.) DC.	+	+	Pbl
Poaceae	Digitaria horizontalis Willd.	+	+	Ag
Poaceae	Digitaria longiflora (Ret.) Pers	+	-	Ag
Rubiaceae	Diodia sarmentosa Sw.	+	+	Pbl
Dioscoreaceae	Dioscorea sp.	+	-	Abl
Caryophyllaceae	Drymaria cordata (Linn.) Willd.	-	+	Abl
Poaceae	Echinochloa colona (Linn.) Link	-	+	Ag
Asteraceae	Eclipta alba (Linn.) Hassk.	+	+	Abl
Poaceae	Eleusine indica (Linn.) Gaertn.	+	+	Ag
Asteraceae	Eleutheranthera ruderalis (Sw.) Sch. Bip.	+	+	Abl

Family	Weed species	Wet	Dry	Life form
Asteraceae	Emilia praetermissa Milne-Redhead	+	+	Abl
Asteraceae	Emilia sonchifolia (Linn.) DC	+	+	Abl
Poaceae	<i>Eragrostis tenella</i> (Linn.) P.Beauv. ex Roem. & Schult	+	+	Ag
Asteraceae	Erigeron floribundus (H.B. & K.) Sch.Bip.	+	-	Abl
Euphorbiaceae	Euphorbia heterophylla Linn.	+	+	Abl
Euphorbiaceae	Euphorbia hirta Linn.	+	+	Abl
Euphorbiaceae	Euphorbia hyssopifolia Linn.	+	+	Abl
Cyperaceae	Fimbristylis ferruginea (Linn.) Vahl	-	+	Ps
Cyperaceae	Fimbristylis littoralis Gaudet	+	+	Ps
Tiliaceae	Glyphaea brevis (Spreng). Monachino	-	+	Pbl
Acanthaceae	Gomphrenia celosioides Mart.	+	+	Abl
Melastomataceae	Heterotis rotundifolia (Sw.) JacFél.	-	+	Abl
Papilionoideae	Indigofera spicata Forsk	+	+	Pbl
Convolvulaceae	Ipomoea cordatotriloba Dennst.	-	+	Abl
Convolvulaceae	Ipomoea involucrata P.Beauv.	+	+	Abl
Cyperaceae	Kyllinga bulbosa Beauv.	+	-	Ps
Cyperaceae	Kyllinga erecta Schumach.	+	+	Ps
Cyperaceae	<i>Kyllinga erecta</i> Schumach. <i>var. polyphylla</i> (Kunth) Hooper	+	+	Ps
Cyperaceae	Kyllinga erecta Schumacher var. erecta	+	-	Ps
Cyperaceae	<i>Kyllinga pumila</i> Michx.	+	-	Ps
Cucurbitaceae	Lagenaria breviflora (Benth.) Roberty	+	-	Abl
Urticaceae	Laportea aestuans (Linn.) Chew.	-	+	Abl
Urticaceae	Laportea ovalifolia (Schumach. & Thonn.) Chew	+	-	Pbl
Mimosoideae	Leuceana leucocephala (Lam.) de Wit	+	+	Pbl
Linderniaceae	Lindernia crustacea (Linn.) var. diffusa	+	+	Abl
Linderniaceae	Lindernia diffusa (Linn.) var. diffusa	+	+	Abl
Linderniaceae	Lindernia olivariana Dandy	+	-	Abl
Linderniaceae	Lindernia sp.	-	+	Abl
Onagaraceae	Ludwigia abyssinica A. Rich	-	+	Abl
Onagaraceae	Ludwigia decurrens Walt.	+	+	Abl
Onagaraceae	Ludwigia erecta (Linn.) Hara	+	-	Abl
Onagaraceae	Ludwigia hyssopifolia (G. Don) Exell	+	-	Abl
Onagaraceae	Ludwigia octovalvis (Jacq.) P. Raven	-	+	Abl
Cucurbitaceae	Luffa aegyptica Mill	+	+	Abl
Malvaceae	Malvastrum coromandelianum (Linn.) Garcke	+	+	Abl
Cyperaceae	Mariscus alternifolus Vahl	+	+	Ps
Cyperaceae	Mariscus flabelliformis Kunth var. flabelliformis	+	-	Ps


Family	Weed species	Wet	Dry	Life form
Cyperaceae	Mariscus longibracteatus Cerm.	+	-	Ps
Mimosoideae	Mimosa diplotricha C.Wright ex Sauvalle	-	+	Abl
Mimosoideae	Mimosa pudica Linn.	+	+	Abl
Mimosoideae	Mimosa sp.	+	-	Abl
Rubiaceae	Mitracarpus villosus (Sw.) DC.	+	+	Abl
Molluginaceae	Mollugo nudicaulis Lam	-	+	Abl
Cucurbitaceae	Momordica charantia Linn.	-	+	Abl
Rubiaceae	Oldenlandia corymbosa Linn.	+	+	Abl
Rubiaceae	Oldenlandia lancifolia (Schumach.) DC.	+	+	Abl
Rubiaceae	Oldenlandia sp.	-	+	Abl
Poaceae	Panicum brevifolium Linn.	+	-	Ag
Poaceae	Panicum laxum Sw.	+	+	Ag
Poaceae	Panicum maximum Jacq.	+	+	Pg
Poaceae	Paspalum conjugatum Berg.	+	+	Ag
Poaceae	Paspalum scrobiculatum Linn.	+	+	Ag
Passifloraceae	Passiflora foetida Linn.	-	+	Abl
Poaceae	Pennisetum polystachion (Linn.) Schult.	-	+	Ag
Piperaceae	Peperomia pellucida (Linn.) H.B. & K.	+	+	Pbl
Phyllanthaceae	Phyllanthus amarus Schum. & Thonn.	+	+	Abl
Phyllanthaceae	Phyllanthus fraternus G.L Webster	+	-	Abl
Phyllanthaceae	Phyllanthus muellerianus (O.Ktze) Exell	-	+	Abl
Phyllanthaceae	Phyllanthus niruri Linn.	-	+	Abl
Phyllanthaceae	Phyllanthus niruroides Müll.Arg	+	+	Abl
Solanaceae	Physalis angulata Linn.	+	+	Abl
Lamiaceae	Platostoma africanum P. Beauv.	+	+	Abl
Portulacaceae	Portulaca oleracea Linn.	+	+	Pbl
Urticaceae	Pouzolzia guineensis Benth	+	+	Abl
Papilionoideae	Pueraria phaseoloides (Roxb.) Benth.	+	+	Pbl
Solanaceae	Schwenckia americana Linn.	+	+	Pbl
Scrophulariaceae	Scoparia dulcis Linn.	-	+	Abl
Cyperaceae	Sedges	+	+	Ncl
Papilionoideae	Senna hirsuta (Linn.) Irwin & Barneby	+	-	Abl
Poaceae	Setaria barbata (Lam.) Kunth	+	+	Ag
Malvaceae	Sida acuta Burm. f.	+	+	Pbl
Malvaceae	Sida cordifolia Linn.	+	+	Pbl
Malvaceae	Sida corymbosa R.E. Fries	-	+	Pbl
Malvaceae	Sida rhombifolia Linn.	+	+	Pbl

Family	Weed species	Wet	Dry	Life form
Malvaceae	Sida veronicifolia Lam.	-	+	Pbl
Smilacaceae	Smilax kraussiana Meisn.	+	-	Pbl
Solanaceae	Solanum nigrum Linn.	-	+	Abl
Solanaceae	Solanum torvum Sw.	+	+	Pbl
Lamiaceae	Solenostemon monostachyus (P.Beauv.) Briq. Subsp. monostachyus	+	+	Pbl
Rubiaceae	Spermacoce ocymoides Burm.f.	+	-	Abl
Rubiaceae	Spermacoce ruelliae DC.	-	+	Abl
Rubiaceae	Spermacoce verticillata Linn	+	-	Abl
Longaniaceae	Spigelia anthelma Linn.	+	+	Abl
Asteraceae	Spilanthes uliginosa Sw.	+	+	Abl
Poaceae	Sporobolus pyramidalis P.Beauv.	+	+	Pg
Verbenaceae	Stachytarpheta cayennensis (L.C. Rich) Schau.	+	+	Ag
Verbenaceae	Stachytarpheta jamaicensis (Linn.) Vahl	-	+	Abl
Poaceae	Stenotaphrum secundatum (Walt) Kuntze	-	+	Ag
Asteraceae	Synedrella nodiflora Gaertn.	+	+	Abl
Portulacaceae	Talinum triangulare (Jacq.) Willd.	+	+	Pbl
Ulmaceae	Trema orientalis (Linn.) Blume	-	+	Pbl
Asteraceae	Tridax procumbens Linn.	+	+	Abl
Tiliaceae	Triumfetta cordifolia A. Rich	-	+	Abl
Tiliaceae	Triumfetta rhomboidea Jacq.	+	+	Abl
Asteraceae	Vernonia cinerea (Linn.) Less	+	+	Abl
Asteraceae	Vernonia sp.	-	+	Abl
Papilionoideae	Vigna sp.	+	-	Abl
Araceae	Xanthosoma mafaffa Schott	+	-	Pbl

Legend: + = Present; - = absent; Abl = annual bread leaf; pbl = perennial broad leaf; ps = perennial sedge; pg = perennial grass; ncl = not classified



Legend: Ablvs: Annual broad leaves; Pblvs: Perennial broad leaves; Ags: Annual grasses; Pgs: Perennial grasses; Sgsl: Annual sedges; Spr: Perennial sedges; Others.

S/n	Binomial nomenclature & authority	Crop species (%)
1.	Abelmoschus esculentus (L.) Moench	86.36
2.	Manihot esculenta Crantz	90.91
3.	Colocasia esculenta (L.) Schott	4.54
4.	Xanthosoma mafaffa Schott	68.18
5.	Capsicum annuum Linn.	22.72
6.	Capsicum frutescens Linn.	13.63
7.	Dioscorea alata L.	18.18
8.	Zea mays L.	90.91
9.	Dioscorea dumetorum (Kunth) Pax	45.45
10.	Cucumis sativus L.	27.27
11.	Telfairia occidentalis Hook f.	81.81
12.	Dioscorea rotundata Poir	59.09
13.	Talinum triangulare (Jacq.) Willd.	31.81
14.	Ocimum gratissimum L.	22.72
15.	<i>Cucurbita moschata</i> Duchesne	9.09
16.	<i>Ipomoea batata</i> (L.) Poir	13.63
17.	Musa paradisiac L.	54.54
18.	Vigna unguiculata L.	9.09
19.	Arachis hypogaea L.	9.09
20.	Citrullus colocynthis (L.) Schrad	18.18
21.	Vernonia amygdalina Del.	18.18
22.	Ocimum americanum L.	4.54
23.	Ananas comosus (L.) Merill	9.09
24.	Solanum lycopersicum L.	4.54
25.	Mucuna sloanei Rendle & Fawc.	9.09
26.	Solanum sp. L.	4.54
27.	Amaranthus hybridus L.	4.54
28.	Total Crop species recorded (27)	100

 Table 2 Farmers Crop Species preference in Percentage (%)

Legend: Ae: A. esculentus, Me: M. esculenta, Ce: C. esculenta, Xm: X. mafaffa, Ca: C. annuum, Cf: C. frutescens, Da: D. alata, Zm: Z. mays, Dd: D. dumetorum, Cs: C. sativus, To: T. occidentalis, Dr: D. rotundata, Tt: T. triangulare, Og: O. gratissimum, Cm: C. moschata, Ib: I. batata, Mp: M. paradisiac, Vu: V. unguiculata, Ah: A. hypogaea, Cc: C. colocynthis, Va: V. amygdalina, Oa: O. americanum, Ac: A. comosus, Sl: S. lycopersicum, Ms: M. sloanei, S: Solanum sp., Ah: A. hybridus

Figure 2 Percentage preference of crop species by farmers

Table 3 Crop species planted by farmers

	al lat ty					N	IUM	IBEI	R OF	FA	RME	RS A	ND	CRO	P SP	ECIE	ES PI	ANT	ED				
S/N	Binomial nomenclat ure& authority	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19	F20	F21	F22
1.	Abelmoschus esculentus (L.) Moench	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	x	0	Х	Х	Х	0	Х	Х	Х	х	x
2.	Manihot esculenta Crantz	Х	0	0	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	Х	X	Х	Х	X	Х	Х
3.	Colocasia esculenta (L.) Schott	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.	Xanthosoma mafaffa Schott	0	Х	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	0	Х	Х	Х	Х	Х	Х	0
5.	Capsicum annuum Linn.	Х	Х	Х	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
6.	Capsicum frutescens Linn.	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	0	0	0
7.	Dioscorea alata L.	Х	0	0	0	0	0	Х	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	0
8.	Zea mays L.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
9.	Dioscorea dumetorum (Kunth) Pax	0	X	0	0	0	0	0	0	Х	Х	0	х	0	0	х	х	х	0	х	Х	0	Х
10.	Cucumis sativus L.	Х	Х	0	Х	0	0	0	0	0	0	0	Х	0	0	0	0	Х	0	0	0	0	Х
11.	Telfairia occidentalis Hook f.	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	Х	0	Х	Х	Х	Х
12.	Dioscorea rotundata Poir	0	Х	0	Х	Х	0	0	Х	0	Х	0	0	Х	Х	Х	Х	Х	0	Х	Х	0	X
13.	Talinum triangulare (Jacq.) Willd.	0	Х	Х	X	0	0	0	0	0	0	0	0	Х	0	0	Х	0	0	Х	0	Х	0

	al lat ty					N	IUM	IBEI	R OF	FA	RME	RS A	ND	CRO	P SP	ECIE	ES PI	.ANT	ED				
S/N	Binomial nomenclat ure& authority	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19	F20	F21	F22
14.	Ocimum gratissimum L.	0	X	0	0	0	X	0	X	Х	X	0	0	0	0	0	0	0	0	0	0	0	0
15.	<i>Cucurbita moschata</i> Duchesne	0	0	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	х
16.	<i>Ipomoea batata</i> (L.) Poir	0	0	0	Х	Х	0	0	0	Х	0	0	0	0	0	0	0	0	0	0	0	0	0
17.	Musa paradisiac L.	0	0	0	Х	Х	Х	Х	0	0	0	0	Х	Х	Х	Х	0	Х	Х	Х	Х	0	0
18.	Vigna unguiculata L.	0	0	0	X	0	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	0	0	0
19.	Arachis hypogaea L.	0	0	0	0	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	0
20.	<i>Citrullus colocynthis</i> (L.) Schrad	0	0	0	0	0	0	0	0	Х	0	0	0	0	0	Х	0	0	Х	Х	0	0	0
21.	Vernonia amygdalina Del.	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
22.	Ocimum americanum L.	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	0	0	0	0	0	0	0	0
23.	Ananas comosus (L.) Merill	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	0	0	0	0	0	0
24.	Solanum lycopersicum L.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	0	0
25.	<i>Mucuna Sloanei</i> Rendle & Fawc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	0	х
26.	<i>Solanum</i> sp. L.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	0	0
27.	Amaranthus hybridus L.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	0	0	0
28.	Total Crop Species Recorded (27)	8	10	6	10	9	9	7	5	11	7	3	7	6	7	10	10	8	6	12	9	7	9

4. Discussion

Globally, farming systems methods have so much impacted on the arable farmlands through anthropogenic activities causing different levels of damage to the soil. Some of these resultant impacts are soil erosion, soil degradation, depletion of nutrients, pest and disease infestation, soil impaction etc.[32];[33];[34]. The soil support both crop and weed species and both inter-relate in the course of growth and development for nutrients, space, light, water [35].

In our study which was conducted on the background of slash, and burn, continuous cultivation and mixed cropped without allowing period of rest resulted in the weed richness and diversity in wet and dry seasons (Table 1).

This observation corroborates [36] study revealed a clear effect on land use history on soil fertility and weed pressure because a reduction in cultivation fallow cycle length will increase the buildup of weed populations and put pressure on the farmer's work load by weeding all through the season causing time and other resources waste.

These methods will encourage emergence of weeds in early and late cropping seasons leading to weed species distribution, diversity and their competitiveness with crops. The result shows more weed species for example annual

broad leaves 55, 76; perennial broadleaves 22, 27; annual grasses 10, 15; perennial grasses 4, 5; annual sedges 2, 2; perennial sedges 5, 6 and others 12 and 3 more in the dry than the wet season. This could be as a result of weed management practices applied in the cropping season which influence weed species composition, richness and diversity in the area of study. This is in line with[37] confirmed that weed management strategies in wheat based cropping systems and weed flora interaction significantly influenced diversity and density of individual weed, total, broadleaved and narrow leaved weeds in arable farm-land.

The study area experiences high rain fall and causes about water running across which could carry weed seeds that have capacity to float far beyond its mother stand. Heavy rain fall also encourage weed growth leading to late senescence and increase in biomass. This assertion is in confirmative with [38] that insufficient water caused biomass losses in May and June and this impact was compensated with sufficient rain in late July and August in the study area in China.

This high rain fall could have altered weed seed germination leading to more seedlings germinating and growing into the dry season which increased the high number of weeds in dry season plant forms. This corroborate the assertions [39];[40] that changes in weather conditions have a significant effect on growth of all plants species including crops and weeds.

In wet season 40 weed species were not actually recorded and while in the dry season 33 weed species were recorded. These weed species not recorded and those recorded could be that some were shaded by crop species (Tables 2 and 3) or other bigger weed species as observed by [41] noted that long term use of a winter rye cover crop in maize-soybean system has the potential to meaningfully reduce the size of weed seed bank compared to winter fallow, and while weed seed bank is the source of weed infestation in arable farmland.

It could also be attributed for example that the weeds at seedling stage were very small at that time to be noted or the shoots could have been cut off as result of frequent weeding which was in line with the assertion of [42] that cultivation frequency influenced weed species diversity and composition in flood recession farming which were dominated by dry land arable weed species, while un-cropped or undisturbed site were composed of wet land weed species.

The result also revealed 78 of same weed species which occurred in wet and dry seasons respectively. These weed species which occurred in wet (rainy) and dry are attributed to the ability of weed species to overcome the impact of farming systems methods which were applied in the course of the cropping season for example frequent weeding, cultivation methods applied [42], cropping patterns, crop/weed species interactions, crop and crop cover effects and climate [43], multiple cropping and intercropping [44]. It has been recorded in literature that different cropping systems and weed management strategies have influenced weed infestation in today's agriculture as crop growers seeks ways to feed the growing population of the world. And this corroborates the findings by [37] in a study on weed flora wheat-based cropping systems, that weed management strategies in wheat based cropping systems and weed flora interaction significantly altered diversity and density of individual, total, broadleaved and narrow leaved weeds in arable farmland.

5. Conclusion

Slash and burn, continuous and mixed cropping of arable farmlands are common practice in the humid high rain forest of Nigeria due to increase in population and demand for available arable farmlands for cropping activities and for other human uses. Continuous use of arable farmland without follow break influences weed species and diversity which constitute a major problem in crop production than any other pest or disease and encouraged by climatic factors. Planting of two or more crops is a common practice in the study area which contributes to sustainable crop production, farmer's food varieties, income and security.

Compliance with ethical standards

Acknowledgments

All individual who has contributed to this work has been listed as authors.

Disclosure of conflict of interest

No potential conflict of interest by the authors.

References

- [1] Martin G, Martin-Clouaire R, Duru M. Farming system design to feed the changing world. A review. Agron Sustain Dev. 2013; Jan 33 (1):131-149.
- [2] Therond O, Duru M, Roger-Estrade J, Richard G. A new analytical framework of farming systems and agriculture model diversities. A review. Agron Sustain Dev.2017; Apr 26; 37, (21):1-24.
- [3] Akano O, Modirwa S, Yusuf A, Oladele O. Making smaller hold farming systems in Nigeria sustainable and climate smart. European IFSA symposium, 2018 Jul1-5; Chania (Greece).
- [4] Zimdahl RL. Weed-Crop Competitions: a Review. 2nd Edition. Blackwell Publishing; 2004.
- [5] Lundkvist A, Verwijst T. Weed biology and weed management in organic farming. In: Raumjit Nokkoul eds. Research in Organic Farming. IntechOpen. 2011; p.157-86.
- [6] Schittenhelm S, Kottmann L, Schoo B. Water as a limiting factor for crop yield. Archives.2017 Feb; 69 (2).
- [7] Iderawumi AM, Friday CE. Characteristics effects of weed on growth performance and yield of maize (Zea mays). Biomed J of Sci and Tech Res.2018 Jul 30; 7(3):p. 4.
- [8] Vila M, Beaury EM, Blumenthal DM, Bradley BA, Early R, Laginhas BB, et al. Understanding the combined impacts of weeds and climate change on crops. Environ. Res. Lett. 2021 Mar; 16 (3):p.12.
- [9] Ekwealor KU, Echereme CB, Ofobeze TN, Okereke CN. Economic importance of weeds- a review. Asian Plant Res J.2019 Dec; 3(2): 1-11.
- [10] Kumar R, Katiyar R, Kumar S, Kumar T, Singh V. Lantana camera: An alien weed, its impact on animal health and strategies to control. J of Expt Biol and Agric Sci.2016 May; 4(3S): 321-37.
- [11] Zimdahl RL. Fundamentals of Weed Science. Fifth Edition. Elsevier Science; 2018.
- [12] Leghari SJ, Legari UA, Laghari GM, Buriro M, Soomro FA. An overview on various weed control practices affecting crop yield. J of Chem Biol and Phy Sci. 2015 Nov; 6 (1): 59-69.
- [13] Tu M, Hurd C, Randall JM. Weed control methods Handbook: Tools and techniques for use in natural areas. The Natural Consev. 2001; p.219.
- [14] Heap I. Global perspective of herbicides-resistance weeds. Pest Manag. Sci. 2014 Sept; 70(9): 1306-15.
- [15] Travlos I, de Prado R, Chachalis D, Bilalis DJ. Herbicide Resistance in weeds: Early detection, Mechanisms, dispersal, new insights and management issues. Front Ecol Evol.2020 July24; 8(213):p5.
- [16] Qasem JR. Herbicide resistant weeds: The Technology and weed management. In: Price AJ, Kelton JA eds. Herbicides-Current Research and Case Studies in use. IntechOpen. 2013; p.445-71.
- [17] Ge C, Wang R, Chai Y, Wang H, Kan M, Liu J. High colonization possibility of some species of weeds in Suaeda salsa community: From an Ecological Stoichiometry Perspective.PloSONE.2017 Jan 30; 12(1): 1-13.
- [18] Rai PK, Singh JS. Invasive alien plant species: The impact on environment, ecosystem services and human health. Ecol Indic. 2020; Apr 111: 106020.
- [19] Nigatu L, Sharma JJ. Parthenium weed invasion and biodiversity loss in Ethiopia: Literature review. Proceeding of African Crop Science Conference.2013; 11: 377-81.
- [20] MacLaren C, Storkey J, Menegat A, Metcalfe H. Dehneri-Schmutz K. An ecological future for weed science to sustain crop production and the environment. A review. Agro. Sust. Dev.2020 July; 40(24):1-29
- [21] Hillocks RJ. The potential benefits of weeds in reference to small holder agriculture in Africa. Integ Pest Mang Revs.1998 Jan 3; 3: 155-67.
- [22] Araujo-Junior CF, Martins BH, Higashi VY, Hamanaka CA. The role of weeds and cover crops on soil and water conservation in a tropical region: In: Vytautas Pilipavicius eds. Weed Biol and Control. IntechOpen. 2015.
- [23] Yang Y, Wang H, Tang J, Chen X. Effects of weed management practices on orchard soil biological and fertility properties in Southeastern China. Soil and Till Res. 2007 Mar; 93 (10): 179-85.
- [24] Muir KS. Initial assessment of the ground water resources in the Monterey Bay Region, California. US Geological Survey, Water Resources Division.1977 Sept; 77 (46):1-44.

- [25] Mueller-Dombois D, Ellenberg H. Aims and Methods of Vegetation Ecology. 1st ed. New York: John Wiley and Sons; 1974.
- [26] Vernon R. Field Guide to Important Arable Weeds of Zambia.1st ed. London: Balding + Mansell Limited London and Wisbech, England; 1983.
- [27] Akobundu IO, Agyakwa CW. A Handbook of West African Weeds. 2nd Edition. Ibadan: African Book Builder; 1998.
- [28] Akobundu IO, Ekeleme F, Agyakwa CW, Ogazie CA. A Handbook of West African Weeds. 3rd ed. Lagos: AfKAK; 2016.
- [29] Ekeke C, Ogazie CA, Agbagwa IO. Checklist of weeds in University of Port Harcourt and Its environs. J. Appl. Sci. Environ. Manage.2019 April; 23 (4): 585-92.
- [30] Ogbonna DN, Amangabara GT, Ekere TO. "Urban solid waste generation in Port Harcourt metropolis and its implications for waste management". Manag of Environ Quali.2007 Jan; 18(1): 71-88.
- [31] Ekeke C, Okonwu K. Comparative study of fertility status of soils of University of Port Harcourt, Nigeria. Res J of Bot. 2013; 8(1) 24-30.
- [32] Kanianska R. Agriculture and its impact on land-use, Environment, and Ecosystem Services. In: Amjad Almusaed eds. Landscape Ecology-The Influences of Land Use and Anthropogenic Impacts of Landscape Creation. IntechOpen. 2016; P.140.
- [33] Ahodo K, Freckleton RP, Oglethorpe D. Investigation of factors affecting arable farming profit, crop complexity and risk under the single farm payment policy. 89th Annual Conference, April 13-15; 2015, Warwick University, Coventry, UK 204231, Agricultural Economics Society.
- [34] Stein S, Steinmann HH, Isselstein J, Linking Arable Crop Occurrence with Site Conditions by the Use of Highly Resolved Spatial Data. Land 2019 April; 8 (4): 65.
- [35] Santin-Montanya I, Francisco de Andres E, Zambrana E. Tenorio JL. The competitive ability of weed community with selected Crucifer oilseed crops. In: Andrew Price, Jessica Kelton and Lina Sarunaite eds. Herbicides, agronomic crops and weed biology. London: IntechOpen; 2015; P. 182
- [36] Abrell T, Naudin K, Bianchi-Felix JJA, Corbeels M. Weed pressure and soil fertility in intensified slash-and burn cropping systems in the eastern Amazon region. (ESA 2018). "Innovative Cropping and Farming Systems". Agroscope.2018 Aug; p.143.
- [37] Shahzad M, Jabran K, Hussain M, Raza MAS, Wijaya L, El-Sheikh MA, Alyemeni MA. The impact of different weed management strategies on weed flora of Wheat-based cropping systems. PLOS ONE. 2012 Feb; 16(2): 1-15.
- [38] Zhang J, Zuo X, Zhao JM, Medina-Roldan E. Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semiarid sandy grassland. Scientific Reports. 2020 3rd Jun; 10 (9026): 1-11.
- [39] Kang MS, Banga SS. "Global agriculture and climate change. A perspective. In: Kang MS, Banga SS. eds. Combating climate change: An Agricultural perspective. CRC Press, Baco Ralton, FL, 2013:11-25.
- [40] Chauhan BS, Prabhjyot-Kaur MG, Randhawa RJ, Singh H, Kang MS. Global warming and its possible impact on agriculture in India. Adv Agron. 2014;Jan (123): 65-121.
- [41] Nichols V, English L, Carlson S, Gailans S, Liebman M. Effects of long term cover cropping on weeds seedbank. Front Agron.2020; November 23rd; 2(591091):1-13.
- [42] Nthaba M, Kashe K, Murray-Hudson M. The influence of cultivation frequency on weed species composition and diversity in flood recession farming in the Okavango Delta, Botswana. Ecol.Proc.2018 Sep 27; 7(33):1-12.
- [43] Evangelista P, Young N, Burnett J. How will climate change spatially affect agriculture production in Ethiopia? Case studies of important cereal crops. Clim Chan.2013 Aug; 119;(3): 855-73.
- [44] Kumalasari NR, Bergmeier E. Effects of surrounding crop and semi natural vegetation on the plant density of paddy fields. Agric Food Secur.2014 Oct 21; 3(15).