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Abstract 

Metal oxide gas sensors have many advantages over other solid-state gas monitoring devices, including low cost, ease 
of manufacture, and small design. However, the shape and structure of sensing materials have a considerable impact on 
the performance of such sensors, posing a significant challenge for gas sensing properties on materials or dense films 
to attain high-sensitivity characteristics. Various tin dioxide (SnO2) nanostructures have been devised to increase gas 
sensing characteristics such as sensitivity, selectivity, and response time, among other characteristics. An overview of 
the most well-known techniques for synthesizing gas-sensing films, as well as the influence of doping with various metal 
oxides, nanoparticle size, and operating temperature on the gas-sensing properties of such films, is discussed in this 
work. The gas sensing mechanisms and the gas detection techniques are presented in detail. The metal oxide doped 
SnO2 showed a strong response for SO2 and NO2 gases, whereas nanoparticle doping plays a crucial effect in increasing 
SnO2 sensitivity towards H2, H2S, NO2, CO, Ethanol, etc. Furthermore, the effect of operating temperature on SnO2 
response is discussed in this report. SnO2 has a high sensitivity over a wide temperature range (100-350 C). 
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1. Introduction 

Nanoscience is described as the study of the properties of materials with nanometer-scale dimensions or the science 
concerned with tiny objects with dimensions ranging from a few nanometers to less than 100 nm [1]. Nanostructures 
metal oxides have a significant interest because of their size-dependent properties and their various applications [2]. 
Semiconductor oxides play a critical role in energy conservation and conversion applications, optoelectronics, memory 
applications, etc. [3–5]. One of the most critical types of semiconductors is the transparent conductive oxides (TCOs), 
which are composed of metal combined with oxygen, such as CdO, ZnO, and SnO2 [6]. Such materials have two benefits; 
they are described by high electrical conductivity and optical transmittance. Despite the wide bandgap of these 
materials compared to the other semiconductors, the conduction band is full of free electrons. Thus, the transmittance 
spectrum within 400-1500 nm depends on the preparation conditions of the material.  

Nanostructured semiconductors, such as SnO2, ZnO, and TiO2, can be used to detect a wide range of organic pollutants 
[7–11].  Tin (IV) Oxide (SnO2) is an n-type transparent semiconductor with a wide bandgap of 3.6 eV at 300 K [12,13]. 
SnO2 is used in a wide variety of applications, including photovoltaic devices [14–18], biological applications [19–23], 
solar cells [24–28], electrochemical applications [29–31], and gas sensors [32–37]. Due to its high sensitivity to reducing 
and oxidizing gases such as CO, H2, and NO, tin oxide is commonly employed in gas sensor applications. [38]. It was 
prepared by several techniques such as sol-gel, microwave-assisted and ultrasound-assisted methods, solvothermal, 
pulsed laser deposition, solid-state reaction, microemulsion, hydrothermal deposition, electron beam evaporation, 
sonochemical, sputtering, spray pyrolysis, sonication, vapor-liquid-solid synthesis [26,29,39–45]. It is an inorganic 
compound with a density of 6.99 g/cm3, and the melting point is 1624.85 C [46].  

The rutile is the most common crystal structure of SnO2. It has a tetragonal unit cell with P42/mm (136) space group [47], 
and the lattice constants are a=b= 4.73 Å and c=3.18 Å [48]. A single unit cell includes six atoms, two of which are Tin 
and four Oxygen. Each Sn atom is surrounded by six O atoms at the octahedron's vertices in this structure, whereas 
three Sn atoms surround each O atom at an equatorial triangle's vertex.  

 

Figure 1 (a) Crystal structure of SnO2 and (b) structure of SnO2 thin film gas sensor 

Figure 1(a) depicts the crystal structure of SnO2. The particle size of SnO2 nanostructures less than 20 nm with a surface 
area of 100-200 nm2/g is particularly relevant in gas sensing applications. The structure of a SnO2 thin film gas sensor 
is depicted in Figure 1(b).  This review will highlight the most critical factors affecting the sensitivity of tin dioxide films 
and then compare the studied results from literature reviews to reach the optimal conditions for preparing tin oxide 
films as gas sensor devices. 

2. Gas sensing mechanism 

The detecting mechanism of metal-oxide gas sensors is based on species ionosorption on their surfaces, and the most 
significant ionosorbed species at ambient air are oxygen and water. The electrical and chemical activity of the O2 
vacancies on the surface of semiconductor oxides determines the sensing mechanism [49]. Two types of sensing 
reactions have been found in this mechanism. The first is the adsorb of charge-accepting molecules, such as oxygen or 
nitrogen dioxide, which extract the electrons from the conduction band at vacancy sites, decreasing the electrical 
conductance. Second, in an O2 environment, oxygen molecules adsorbed on the surface react with gas molecules such 
as hydrogen or carbon dioxide, causing trapped electrons to be released and then injected back into the channel, 
increasing electrical conductivity [50]. The redox sensors' responses are categorized as oxidizing and reducing, which 
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is the basis for decreasing and increasing channel conductance. Equations 1 and 2 illustrate the oxidizing response of 
the sensor: 

𝑁𝑂 + 𝑒− → 𝑁𝑂−                      (1)  

While the reducing response of the sensor can be characterized by example: 

𝐶𝑂 + 𝑂 → 𝐶𝑂2 + 𝑒−                (2)  

The temperature at which semiconductor sensors operate should be low enough to avoid long-term alterations to the 
bulk material and high enough that gas reactions occur in the order of the desired response time[51,52]. In general, 
semiconductor sensors that operate in relatively high-temperature ranges show a significant change in electrical 
resistance, which increases the rate of chemical reaction to the surface and thus increases the charge transfer processes 
[53]. The essential principle of semiconductor sensors working is dependent mainly on the interaction between the 
reactive chemical species (e.g., 𝑂𝐻−, 𝑂−, 𝑂2

−, and 𝐻+) and the gas molecules to be sensed. The primary elements affecting 
semiconductor sensitivity are the microstructure (surface to volume ratio), the size of the grains, the thickness of the 
sensor film, and the pore size of the oxide particle [54]. 

3. Gas Detection Techniques 

The quantum mechanical analysis demonstrated that the periodic crystal lattice sites restricted by the semiconductor 
surfaces produce localized surface states. When the energy levels of semiconductor material are in the forbidden energy 
region, the surface states may inject/trap electric charge into the bulk crystal. The crystal's ionized donors or acceptors 
generate a countercharge on the surface due to the corresponding surface charge. The band bending in the crystal is 
compatible with the formation of a double charge layer, which has a net negative charge and a positive countering 
charge in bulk [55].  

The exposure of semiconductor surfaces, such as SnO2 surface, to a gaseous atmosphere contributes to the development 
of more surface states as surrounding gases enhance the adsorption process occurring near the surface [56]. The 
principle of oxygen species adsorption, a component prevalent in most gas sensor applications, is illustrated in Figure 
2a. The oxygen is adsorbed on the surface of the semiconductor when an electron is trapped from the conduction band, 
forming the oxygen ion𝑂2

− . This electron capture is the same as occupying a surface state generated by localized 
adsorption (O2) [57]. Since the Fermi level of the semiconductor is higher than the surface state energy level in the 
absence of oxygen, this mechanism is possible. The charge transfer results in developing a surface charge and thus the 
bending of the semiconductor's band structure, as illustrated in Figure 2b. The Fermi level is dropped until enough 
oxygen has been adsorbed to equalize the surface energy level with the semiconductor Fermi level, referred to as Fermi 
level pinning. The bending of the tape results in the depletion of free surface charge carriers, the formation of a charge 
carrier depletion region, and then a high ohmic electrons resistance [55]. 

 

Figure 2 (a) The mechanism of SnO2 thin film gas sensor and (b1) Diagram of valance band, conduction band, and 
Fermi level (b2) band bending in case of oxygen species adsorption on a sensor surface 
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4. Metal oxide doping effect 

F. Ren et al. first reported that an excellent gas-sensitive performance of CuO/SnO2 based sensor to BTEX belongs to the 
addition of catalyst CuO [58]. The highly sensitive, low-temperature, operated nitrogen dioxide (NO2) gas sensor was 
fabricated using SnO2 thin film doped with CuO. Sonker et al. stated that CuO/SnO2 has a higher sensitivity than undoped 
SnO2 [59]. Also, Zhou showed that p-type metal oxide (CuO) doped SnO2 gas sensing thin films have high sensitive H2S 
[60]. The CuO/SnO2 thin film is confirmed to be a promising thin-film in gas sensor devices because the metal oxide 
catalyst increases the surface area. Punit Tyagi has studied the thin films' growth, especially SnO2 thin films with high 
electrical resistivity, employing the NiO as a catalyst has combined on the surface of SnO2 thin film with dotted 
nanoclusters and a continuous layer to enhance the response properties. The sensing response improved around 56 
observed at a lower temperature for the NiO dotted cluster/SnO2 sensor. Anjali Sharma has studied the structure of gas 
sensors based on RF sputtered SnO2 thin film [61]. Various catalysts like In2O3, Al2O3, WO3, CuO, NiO, and TeO2 in 
nanoclusters structure have been deposited on the surface of SnO2 to enhance the speed of response and recovery of 
the sensor and their effect on sensing response properties against NO2 gas. According to D. Xue et al., the results of gas 
sensing demonstrate that the WO3-SnO2 nanocomposites have superior methane sensing properties compared to pure 
SnO2 [62]. Punit Tyagi has presented the SO2 gas sensing feature of SnO2 thin film prepared using the RF sputtering 
method [63].  

Various catalysts (MgO and V2O5) with nanoclusters form having a diameter of 600 𝜇m have been loaded on the surface 
of SnO2 for SO2 gas detection. Both catalysts have incorporated with SnO2 film, leading to high selectivity towards SO2 
gas at lower temperatures. J. Y. Choi and T. S. Oh described the sensor response of La2O3-doped SnO2 to 10–75 ppm CO 
gas [64]. The La2O3-doped SnO2 showed significantly improved CO sensitivity. Using the hydrothermal technique, S.Yan 
et al. prepared CeO2-SnO2 2-Dimensions nanosheets of equal size and little rhombus nanopores [65]. For the CeO2-SnO2 
sensor, the response toward 100 ppm ethanol was 44, and it was larger two times than that of the pure SnO2 sensor. In 
addition, the results showed that the CeO2-SnO2 nanosheets improved the characteristics of the gas sensing and the 
response and recovery time become shorter due to the effect of the CeO2-doping and the porous structure.  

Kuang-Chung Lee et al. studied the behavior of CO gas sensing of the PdO-decorated sensors by depositing the PdO 
nanoparticles on SnO2 thin films via reactive sputter deposition [66].  For the PdO-decorated sensor, the sensor signal 
is larger than three times that of the pure SnO2 sensor.  Z.Tianshu et al. presented the CdO doping effect on conductance, 
microstructure,  and gas-sensing characteristics of SnO2-based sensors [67]. The 10 mol.% Cd-doped SnO2-based sensor 
reveals the outstanding performance of ethanol-sensing, like a great sensitivity, is 275 for 100 ppm C2H5OH, great 
selectivity over CO, H2, and i-C4H10, and a fast response rate of about 12 seconds for 90% response time. A comparison 
of the most common doping material summarizing its gas concentration and sensitivity is presented in Table (1). 

Table 1 Comparison of the most common doping material summarizing gas type, gas concentration, and the sensitivity 

Doping material Gas Gas Concentration ppm Sensitivity% Ref. 

CuO BTEX 50 6 times higher than pure [58] 

NO2 20 Highest response1.83 × 102 [59] 

H2S - Highest responses 438 [60] 

WO3 methane 500 2.3 times higher than pure [62] 

 NiO  SO2 500 Highest response ~ 56  [63]  

La2O3 CO 50 Highest response 59.0  [64] 

CeO2 Ethanol 100 2 times higher than pure [65] 

PdO CO 2000 1.6 times higher than pure [66] 

CdO H2 1000 Highest response at 98 [67] 

NiO  SO2 500 Maximum response ~ 56  [68] 

WO3 NO2 10 Highest response 5.4 × 104 [69] 

MgO, V2O5 SO2 5000 317,166 [70] 
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5. Nanoparticles effect  

P. Sun et al. synthesized the hierarchical Cd-doped and undoped SnO2 nanostructures using the hydrothermal method's 
inexpensive and friendly environment [71]. The 3.0 wt.% Cd-doped SnO2 based sensor exhibit outstanding selectivity 
toward H2S. S. Rani reported the gas sensing properties of sol-gel-derived Fe-doped nanocrystalline SnO2 thin films [72]. 
The films with 2% Fe content showed a high response and excellent selectivity for CO compared to other gases. Yanbai 
Shen et al. synthesized SnO2 nanowires using a thermal evaporation method with a tetragonal structure [73]. The 
outcomes showed that the doping by Pd led to enhancing the sensor's response and decreased the operating 
temperature, which maximized the sensor's response. K. Hu et al. prepared Pd-doped SnO2 nanofibers by magnetron 
and electrospinning sputtering [74]. The manufactured material showed a response of about 53 for 500 ppm hydrogen 
at the temperature of 130 °C, which is an essential enhancement compared with sensors untreated with plasma. J. Kaur 
prepared different kinds of thin films, indium-doped and undoped SnO2 thin films with various values of doping 
concentrations by using the sol-gel spin coating technique on glass substrates [75].  

At a low temperature, the indium doping improves the selectivity and sensor response towards NO2 gas and prevents 
the agglomeration of particles, which is responsible for lowering the sensor response and stability in the range of 
particle size. As well, A. Salehi studied the dependence of the SnO2 sensitivity on indium concentration by chemical 
vapor deposition [76]. The sensitivity of indium-doped SnO2 is four times higher than the undoped sensor, which can 
be obtained for 1000 ppm methanol. M. D’Arienzo et al. carried out a one-pot install of SnO2 and Pt−doped SnO2 inverted 
opal thin films, which can be used for gas sensing [77]. The electrical sensitivity values under an atmosphere of CO/Air 
showed that the response of pure SnO2 films is lower than Pt-doped films; also, the response of the sol−gel films is lower 
than inverted opal films. P. Ivanov used a valuable, thick-film technique to manufacture robust, small, and sensitive 
semiconductor metal oxide sensors to reveal traces of ethanol vapors in the air [78]. The alteration in resistance of the 
Pt-doped sensors is from two to fifty-five times larger than the alteration in the mercantile sensor. The material of Pt-
doped SnO2 is more sensitive, less resistant, and has a faster response to ethanol than that of pure SnO2.  

K. Y. Dong et al. fabricated nanofibers oxide gas sensors considered sensing materials on micro platforms by employing 
the micromachining technique [79]. The results showed that the responses of 0.08 wt.% Pt doped SnO2 are more 
significant than that of pure SnO2 nanofibers to 4–20 ppm H2S. X. Kou et al. prepared pure SnO2 nanofibers and 1–5 
mol% Co-doped SnO2 nanofibers using an electrospinning technique [80]. Their results revealed that the maximum 
response to 100 ppm ethanol was for 3 mol.% Co-doped SnO2 nanofibers, about 40.1, four times greater than pure SnO2 
one.  Using the spin-coating method, Kou Chong et al. prepared pure SnO2 thin film and several thin films of 1–10 mol% 
Co-doped SnO2 thin [80]. The result showed that the most response properties were for the sample of 1 mol% Co-doped 
SnO2 thin film at a temperature of 225 °C, where the response was 59.04 with a response time of 7s toward 2000 ppm 
H2 gas. The improved H2 gas sensing properties are due to the smaller grain size and the formation of p-n heterojunction. 
Y. Guan et al. used a one-step hydrothermal route to prepare pure SnO2 and Zn-doped SnO2 hierarchical architectures 
[81]. The sensor-based on S3 (Zn2+/Sn4+=0.056) at the temperature of 213 °C exhibited outstanding selectivity toward 
ethanol with a response of about 14.4 to 100 ppm, achieving more than three times larger than the pure SnO2 sensor. X. 
Ding prepared Zn-doped SnO2 nanorods clusters for different sizes by modifying the concentration of Zn2+  in the 
solution by employing a facile hydrothermal method [82].  The morphology-composition-performance is the more the 
doping ratio of Zn, the longer the length of nanorods, and the larger the response to methanol, which is essential for the 
synthesis and the design of gas sensors with excellent performance.  

P. S. Kolhe deposited SnO2 based thin films on glass substrates with doped ratios 1.5, 3.0, and 4.5 mol% of Ag by 
employing the spray pyrolysis method [83]. A critical response (∼ 1.38) with a short recovery and response time (110 
s, 46 s ) towards 450 ppm H2S at a temperature of 100 °C can be observed for the sample with 3 mol.% Ag-doped SnO2 
film. X. Lian et al. have used the hydrothermal technique to manufacture pure and Ce-doped with 3, 5, and 7 wt.% SnO2 
nanoparticles. The outcomes have shown that the nanoparticles had formed of SnO2 and Ce atoms had doped into the 
SnO2 substrates, for 5 wt.% SnO2:Ce, it has a greater specific surface area around 173.53 m2/g. Significantly, the 
performance of the SnO2:Ce sensor has enhanced contrasted to pure SnO2 and showed the highest response, which is 
about 50.5 for 50 ppm, and good acetone selectivity at a temperature of 270 °C. A. I. Khudiar and A. M. Oufi doped SnO2 
thin films with Al thin films with concentrations of 0,1,3 and 5 % via the RF plasma sputtering technique [84]. The results 
show that the increase the doping levels to 3%, the response increases; however, for a doping concentration of 5%, the 
response decreases. Perfect properties of hydrogen sensing were obtained, such as good selectivity, fast response time, 
high response, and short recovery time. These results give good evidence that the additive enhances the gas sensor's 
performance. Y. Wu et al. synthesized single-crystal nanobelts of SnO2 and La-SnO2 (SnO2 NBs, La-SnO2 NBs) using 
thermal evaporation [85]. It found that at a concentration of 100 ppm, the single La-SnO2 NB sensor had a high 
sensitivity of 8.76 toward ethanediol at an operating temperature of 230 °C. 
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C. M. Hung et al. synthesized ZnO-SnO2 nanofibers doped with Au crystals by electrospinning technique for improving 
the performance of H2S gas sensing [86]. Depending on the optimal doping concentration of Au, the gas sensitivity to 
H2S is enhanced by around 700%.  X. Kou et al. reported the effect of doping of Ru on the gas sensing characteristics of 
SnO2 nanofibers for acetone detection [87]. The outcomes exhibit that the response to 100 ppm acetone of 2 mol% Ru-
doped SnO2 nanofibers is 118.8, larger than that of pure SnO2.  L. Du et al. synthesized undoped SnO2 and Ga-doped 
porous micro flowers (SPMs) by a facile hydrothermal technique [88]. The sensor of 3 wt.% Ga-doped SPM shows a 
weak detection limit of 3.0/0.1 ppm and enhanced sensitivity of 95.8/50 ppm to formaldehyde at a temperature of 
230 °C, which is greater than that of the pure SPM sensor at 21.2/50 ppm. Z. Jiang et al. synthesized a set of Eu-doped 
and undoped SnO2 nanofibers by a simple electrospinning method and subsequent calcination treatment [89]. Eu-doped 
SnO2 nanofibers show important improved sensing properties with short response and recovery time, considerable 
response value, and excellent selectivity to acetone vapor. Particularly, the sensor is based on 2 mol.% Eu-doped SnO2 
nanofibers demonstrate the highest response (32.2 for 100 ppm), which was two times greater than the pure SnO2 
sensor.  

Inderan et al. fabricated an ethanol gas sensor using a hydrothermal technique with an improved sensor response using 
Ni-doped SnO2 nanorods [90]. They demonstrated that the average length and diameter of the pure SnO2 are 150 nm 
and 25 nm, respectively, while they were 35 nm and 6 nm for the 5.0Ni: SnO2 nanorods; they are four times smaller than 
pure SnO2 nanorods.  They investigated that the high response of the 5.0Ni: SnO2 nanorod sensor is due to the particle's 
dimensions, which leads to an increase in the charge depletion layer thickness and the existence of oxygen vacancies in 
the SnO2 nanorods lattice elements. A comparison of the most common nanoparticle doping material summarizing its 
Gas Concentration and sensitivity is presented in Table (2). 

Table 2 Comparison of the most common nanoparticle doping material summarizing gas type, gas concentration, and 
the sensitivity 

Nanoparticle Gas Gas Concentration ppm Sensitivity% Ref. 

Cd H2S 10-31 22 times higher than pure [71] 

Fe NH3, CO, C2H5OH 1000 46,120, 84 [72] 

Pd 
H2 

 

1000 Highest response 253  [73] 

500 Highest response 53.0  [74] 

In 
NO2 500 Highest response 7200  [75] 

H2 1000 4 times higher than pure [76] 

Pt 

CO 580 One time higher than pure [77] 

Ethanol 1-1000 2-55 times higher than pure [78] 

H2S 4-20 25.9–40.6 times higher than pure [79] 

Co Ethanol 100 40.1 [80] 

Zn 
Ethanol 100 

 

3.2 times higher than pure [81] 

Methanol Highest response 50.8  [82] 

Ag H2S 450 Highest response 1.38  [83] 

Al H2 50-500 3 times higher than pure [84] 

La Ethanediol 100 Highest response 8.67  [85] 

Au H2S 0.1-1 700 [86] 

Ru Acetone 100 12 times higher than pure [87] 

Ga Formaldehyde 0.1-3.0 4.5 times higher than pure [88] 

Eu Acetone vapor 100 2 times higher than pure [89] 

Ni Ethanol 1000 13 times higher than pure [90] 

Co H2 2000 Highest response 59.04  [91] 

Ce Acetone 50 Highest response 50.5  [92] 
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6. Operating temperature effect 

The operating temperature affects the sensitivity by increasing the chemical reaction speed between the components 
of the adsorbed oxygen and the gas molecules. At low temperatures, the sensor's response is determined by the speed 
of the chemical reactions, while the gas diffusion speed on the surface, at high temperatures. D. L. Kamble synthesized  
NO2 gas sensor of nanocrystalline SnO2 using different spray solution concentrations [93]. The prepared sensor 
achieved the responsivity of 556 when exposed to 40 ppm of NO2 at an operating temperature of 150 °C with a response 
and recovery times of were 100-46 seconds and 48-224, respectively. Z. Ying synthesized nanowhiskers SnO2 of mass 
production by evaporating Sn as powders at a temperature of 800 °C [94]. The SnO2 nanowhiskers revealed that at a 
temperature of 300 °C, the sensitivity of ethanol gas was from 23 to 50 ppm. A. Alhadi et al. prepared SnO2 nanoparticles 
by employing an inexpensive hydrothermal technique [95]. The pure SnO2 nanoparticles sensor has excellent selectivity 
for 100 ppm ethanol at a temperature of 180 °C and the great response of about 27 s, and a weak detection of 5 ppm. In 
addition, it has a recovery time of about 2 s and a response time of about 4 s. The distinguish sensing characteristics of 
the SnO2 sensor make it a suitable sensor for ethanol detection. G. D. Khuspe et al. synthesized SnO2 nanostructure via 
an inexpensive sol-gel spin coating technique using the solvent m-cresol  [96]. SnO2 demonstrated the highest response 
(19%) of good stability, 77.90% toward 100 ppm NO2 at an operating temperature of 200 °C. The recovery and response 
times (20 min and 7 sec) were also observed with the same operating parameters. Y. Shen formed SnO2 nanowires on 
oxidized Si substrates by the thermal evaporation technique of Sn grains at 900 °C [73]. The sensitivity increased as the 
H2 concentration increased, and the highest sensitivity (118) was observed for a 2wt.% Pt-doped SnO2 sample when 
exposed to 1000 ppm H2 at 100 °C.  

Table 3 Comparison of the most common nanoparticle doping material summarizing its gas concentration, sensitivity, 
and temperature 

Doping material Gas Gas Concentration 

ppm 

Sensitivity% Temperature0C Ref. 

- NO2 40 Highest response at 556  150 [93] 

- Ethanol 50 Highest response at 23  300 [94] 

- Ethanol 100 Highest response at 27 180 [95] 

Pd LPG 5000 72% 350 [97] 

Cu H2S 10 Highest response at 2500 100 [98] 

H2S 100 1 time higher than pure 180 [99] 

In H2 500-3000 7% 200 [100] 

 Co H2 100 Highest response at 24 330 [101] 

- NO2 100 19% 200 [102] 

Pt H2 1000 118 100 [103] 

 

J. K. Srivastava analyzed the sensitivity, response, recovery time, and sensing mechanism of Pd-doped thick SnO2 film 
for LPG detection [97].  The sensor doped with 1% palladium revealed the highest sensitivity of 72% at an operating 
temperature of 350 °C for 0.5% LPG concentration. C. M. Ghimbeu presented the possibility of electrostatic sprayed 
SnO2 and SnO2 doped with Cu films for NO2, SO2, and H2S detection [98]. The doping significantly improves the sensing 
properties of SnO2 films. Cu-doped SnO2 films had a higher response against low H2S concentrations (10ppm) at 
temperatures of 100°C. S. Zhang fabricated undoped and Cu-doped SnO2 thin films with extensive specific surface areas 
via a self-assembled soft template combined with simple physical co-sputtering deposition [99]. The sensitivity of the 
undoped SnO2 sensor is lesser than the Cu-doped SnO2 porous sensor, with a recovery time ∼ 42.4 sec and a response 
time ∼10.1sec to 100 ppm of H2S at a temperature of 180 °C. A. Salehi used Indium doping to improve the SnO2 gas 
sensor selectivity [100]. Both indium-doped and undoped SnO2 gas sensors were manufactured with various deposition 
methods. At various temperatures, ranging from 50 °C to 300 °C. The sensitivity change was measured for the sensors 
induced by selective gases of the hydrogen and wood smoke at concentrations ranging from 500 to 3000 ppm. The 
peaks of sensitivity of the samples show several values for selective gases with a response time of approximately 0.5 
sec. L. Liu synthesized Pure and Co-doped SnO2 nanofibers using an electrospinning technique [101]. Co-doped SnO2 
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nanofibers reveal enhancing H2 sensing characteristics. From the samples for pure and Co-doped SnO2 nanofibers, it 
was found that 1 wt.% of Co-doped SnO2 nanofibers exhibit the greatest response with a fast recovery and response 
times. When the sensor was exposed to100 ppm H2 at 330 °C, the recovery time was 3 sec, and the response time was 2 
sec, while the response was up to 24. A comparison of the most common nanoparticle doping material summarizing its 
Gas concentration, sensitivity, and temperature is presented in Table (3). 

7. Conclusion 

This paper reviews the effect of metal oxide doping, nanoparticles, and operating temperature on SnO2 gas sensing 
characteristics towards numerous gases. Metal oxide catalyst increases the thin film's surface area, indicating that it can 
be used as a gas sensor. Doped/coated SnO2 containing nanoclusters of various catalysts, such as In2O3, WO3, Cu, O, NiO 
and TeO2, enhances the sensor response and recovery time and its sensitivity to a variety of gases. Doping SnO2 with 
various semiconductors results in porous nanostructures that increase gas sensing features and shorten the response 
time and recovery time. The initial factor influencing particle dimensions (crystallite size and grain size), hence the 
thickness of the charge depletion layer and the presence of oxygen vacancies in the sensor lattice components, is doping 
with nanoparticles. Doping with nanoparticles at low temperatures improves the sensor's specific characteristics and 
response. The particle accumulation is responsible for lowering sensor response and stabilizing the particle size range. 
According to the reviews, Tin oxide is commonly employed in gas sensor applications due to its high sensitivity to 
reducing and oxidizing gases. 
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