
 Corresponding author: Ishva Jitendrakumar Kanani

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Securing APIs in the modern threat landscape: Best practices and challenges

Ishva Jitendrakumar Kanani *

Department of Computer Science Engineering, Kent State University, Kent, Ohio, USA.

World Journal of Advanced Research and Reviews, 2022, 13(03), 654-657

Publication history: Received on 11 February 2022; revised on 25 March 2022; accepted on 30 March 2022

Article DOI: https://doi.org/10.30574/wjarr.2022.13.3.0239

Abstract

As application ecosystems evolve toward microservices, serverless architectures, and cloud-native models, Application
Programming Interfaces (APIs) have become essential conduits for data and functionality exchange. However, their
ubiquity and accessibility also make them prime targets for cyberattacks. This paper explores the evolving threat
landscape for APIs, outlines the security challenges associated with API-first development, and recommends best
practices for securing APIs across their lifecycle. It also includes a case study on high-profile API breaches from 2021–
2022 and offers practical implementation strategies aligned with NIST and OWASP frameworks.

Keywords: API Security; API Gateway; Microservices; Cloud-Native Security; Shadow APIs; Threat Modeling;

1. Introduction

By 2022, APIs had become the backbone of digital transformation, enabling connectivity between microservices, cloud
applications, mobile clients, and third-party platforms. A report from Akamai revealed that over 83% of global internet
traffic involved API communication, indicating their widespread use in both internal and external systems [1]. As
development practices evolve toward API-first methodologies, security concerns have intensified, especially given that
APIs often expose business-critical functions and sensitive user data.

APIs offer speed, flexibility, and scalability—but they also broaden the attack surface. Their accessibility, especially in
public-facing contexts, makes them attractive targets for adversaries. A 2022 report by Salt Security found that 94% of
organizations had experienced at least one API-related security incident in the prior year [2]. Vulnerabilities such as
broken object-level authorization, data overexposure, and improper authentication are increasingly exploited to
compromise systems. These issues are exacerbated in complex environments where APIs proliferate rapidly without
consistent governance, testing, or monitoring.

This paper examines how organizations can secure their APIs across the lifecycle—from design and development to
deployment, monitoring, and retirement. It explores emerging threats, details technical implementation practices, and
presents a real-world case study illustrating the importance of proactive API security.

2. The API Threat Landscape

2.1 Emerging Threat Patterns

APIs are highly flexible and customizable, but this flexibility can also introduce risk when security best practices are not
enforced. The OWASP API Security Top 10, last updated in 2021, highlights the most prevalent and dangerous categories
of API vulnerabilities [3]. These include broken object-level authorization (BOLA), which occurs when access controls
fail to restrict users from accessing objects that do not belong to them, and excessive data exposure, where APIs return

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://wjarr.com/
https://doi.org/10.30574/wjarr.2022.13.3.0239
https://crossmark.crossref.org/dialog/?doi=10.30574/wjarr.2022.13.3.0239&domain=pdf

World Journal of Advanced Research and Reviews, 2022, 13(03), 654-657

655

more information than necessary, leaving sensitive data unprotected. Other common threats include broken user
authentication, lack of rate limiting, and security misconfigurations such as permissive cross-origin resource sharing
(CORS) settings or verbose error messages.

Real-world exploitation of these vulnerabilities continued to rise in 2022. For example, Peloton exposed user account
data via an insecure API endpoint lacking adequate authorization checks [4]. More significantly, the Optus breach in
Australia affected nearly 10 million individuals and was directly traced to an unauthenticated API endpoint,
demonstrating how even basic misconfigurations can lead to catastrophic data exposure [5]. T-Mobile, too, suffered
repeated breaches tied to weak API controls and monitoring deficiencies [6].

As attackers shift focus from traditional web attacks to API-centric exploits, organizations must evolve their security
postures to address this growing threat vector comprehensively.

3. Implementation Strategies for Securing APIs

3.1 Secure Authentication and Authorization

Effective authentication and authorization are foundational to API security. Standards such as OAuth 2.0 and OpenID
Connect enable token-based authentication and allow for delegated access via access and refresh tokens [7]. When
properly implemented, these frameworks allow APIs to validate user identities without storing credentials. Access
tokens should be signed, time-bound, and context-aware, including fields like audience, issuer, and expiration time.

Role-based access control (RBAC) and attribute-based access control (ABAC) can enforce fine-grained policies by
ensuring users can only access resources they are explicitly permitted to. For multi-tenant applications, tenant isolation
must be strictly enforced through scoped tokens and consistent authorization validation.

3.2 Schema Enforcement and Input Validation

Defensive API design requires strict input validation to avoid injection, enumeration, and manipulation attacks.
OpenAPI 3.0 specifications allow developers to define expected request and response formats, enabling schema
enforcement at both gateway and application levels [9]. Strict JSON validation ensures that unexpected parameters or
payloads are rejected early, while maximum content length and boundary checks help prevent denial-of-service (DoS)
attacks.

3.3 Gateway-Level Protections

API gateways such as AWS API Gateway, Kong, Apigee, and Azure API Management provide centralized control points
for security enforcement. Gateways can verify JWT tokens, enforce rate limits, throttle suspicious traffic, and manage
CORS settings [10]. They can also apply mutual TLS (mTLS) for authenticating service-to-service communication in
microservices architectures. Key rotation, versioning, and endpoint access logging are additional gateway features that
bolster operational visibility.

3.4 Secure Development and Testing

Security must be integrated into the software development lifecycle (SDLC). Static code analysis tools like SonarQube
and CodeQL help identify insecure code patterns at the source level [11]. Meanwhile, dynamic testing with OWASP ZAP,
Postman Security, or Burp Suite allows teams to simulate real-world API attacks. Fuzzing tools like RESTler generate
malformed or edge-case inputs to assess API robustness, while business logic flaws often require manual testing and
threat modeling [13].

Secret management tools such as HashiCorp Vault and AWS Secrets Manager should be used to avoid hardcoded
credentials and ensure key rotation policies are enforced [12].

3.5 Runtime Protection and Monitoring

In production, continuous monitoring is essential. Security information and event management (SIEM) platforms like
Splunk, Datadog, and ELK stack can aggregate and analyze API logs to detect anomalies. Specialized API security
platforms, including Salt Security, 42Crunch, and Noname Security, provide visibility into shadow APIs, monitor usage
behavior, and trigger alerts for unusual patterns such as brute-force attacks or data scraping attempts [14].

World Journal of Advanced Research and Reviews, 2022, 13(03), 654-657

656

Organizations must also be prepared to identify and deprecate outdated or undocumented APIs, known as zombie APIs,
which can silently expose data or functionality if left unmanaged [15].

4. Case Study: The 2022 Optus API Breach

In September 2022, Optus experienced one of the most significant data breaches in Australian history when attackers
exploited a publicly accessible API that required no authentication. Through unauthenticated HTTP requests, the
attacker extracted personal data including names, addresses, phone numbers, dates of birth, and identity document
numbers. The attack was unsophisticated yet effective—simply enumerating user identifiers in the request path
allowed the attacker to scrape millions of records. The API lacked basic controls such as access authentication, rate
limiting, and anomaly detection, making the extraction of data not only possible but efficient.

The incident revealed multiple systemic failures. Sensitive data was returned in plaintext and without filtering, violating
principles of data minimization. Moreover, the exposed API was tied to a legacy system, indicating poor visibility and
governance of aging infrastructure. Optus responded by disabling the endpoint, alerting regulators, and offering identity
protection services to customers. The Australian government introduced emergency measures to allow banks to access
compromised ID data, and proposed sweeping reforms to the Privacy Act. These reforms included greater penalties,
mandatory data minimization, and expanded investigative powers for the Office of the Australian Information
Commissioner (OAIC) [5][16].

The breach highlighted the real-world consequences of neglecting API security fundamentals. It emphasized the need
for organizations to implement authentication rigorously, monitor all API traffic, enforce proper data handling, and
maintain a comprehensive inventory of all exposed interfaces especially those tied to deprecated systems

5. Conclusion

APIs are now integral to digital business operations, powering everything from cloud-native applications and mobile
platforms to partner integrations and internal microservices. However, as demonstrated by the Optus breach and
numerous others in 2022, APIs also introduce a wide and often underprotected attack surface. The growing complexity
of API ecosystems across multi-cloud environments, serverless platforms, and hybrid infrastructures demands that
security teams evolve their strategies beyond perimeter defense.

Securing APIs requires a holistic, lifecycle-based approach that incorporates best practices such as robust
authentication (e.g., OAuth 2.0), fine-grained access controls (RBAC/ABAC), schema validation, rate limiting, encryption,
and runtime monitoring. Organizations must also prioritize continuous discovery and decommissioning of
undocumented or deprecated APIs—known as “shadow” and “zombie” APIs which remain among the most exploited
vulnerabilities.

Additionally, the Optus breach underscores the importance of data minimization, anomaly detection, and Zero Trust
principles. Security must be embedded as a design requirement rather than an afterthought, supported by cross-
functional collaboration between development, operations, and security teams. This requires ongoing investment in
developer education, threat modeling, and security automation integrated within CI/CD pipelines.

Looking ahead, API security is poised to benefit from advances in AI-driven anomaly detection, behavioral traffic
analysis, and automated policy enforcement. These innovations can reduce the burden on manual review and enable
faster, more accurate identification of emerging threats. Furthermore, as regulatory pressure mounts globally, aligning
API security controls with frameworks like OWASP API Top 10, NIST SP 800-207, and ISO/IEC 27001 will be critical for
maintaining trust and compliance.

In summary, API security must evolve from isolated tools to a strategic pillar of enterprise cybersecurity. Organizations
that proactively secure their APIs will not only reduce their breach risk but also enable safer innovation, faster
development cycles, and stronger digital resilience in an increasingly interconnected world.

References

[1] Akamai. State of the Internet: API Security. 2022.

[2] Salt Security. State of API Security Report. Q1 2022.

World Journal of Advanced Research and Reviews, 2022, 13(03), 654-657

657

[3] OWASP Foundation. OWASP API Security Top 10 – 2021 [Internet]. 2021 [cited 2025 Jul 18]. Available from:
https://owasp.org/www-project-api-security/

[4] TechCrunch. Peloton API Bug Exposed User Data [Internet]. April 2022 [cited 2025 Jul 18]. Available from:
https://techcrunch.com/2022/04/peloton-api-bug/

[5] Australian Cyber Security Centre. Optus Data Breach: Key Takeaways. October 2022.

[6] T-Mobile. SEC Breach Filing. January 2023.

[7] Hardt D. The OAuth 2.0 Authorization Framework. IETF RFC 6749; 2012.

[8] National Institute of Standards and Technology (NIST). Zero Trust Architecture. NIST SP 800-207. Gaithersburg,
MD: NIST; 2020.

[9] OpenAPI Initiative. OpenAPI Specification v3.0. 2022.

[10] Google Cloud. API Gateway Documentation. 2022.

[11] GitHub. CodeQL: Semantic Code Analysis. 2022.

[12] GitGuardian. State of Secrets Sprawl Report. 2022.

[13] Bishop Fox. API Business Logic Testing: Why It Matters. 2022.

[14] Noname Security. The API Security Landscape. Industry Report; 2022.

[15] Gartner. Stop Attacks by Securing Unknown and Shadow APIs. Market Guide; 2022.

[16] Australian Government. Privacy Act Reforms Post-Optus Breach. Legislative Proposal; 2022.

https://owasp.org/www-project-api-security/

