

Wireless Communication Protocols for Remote Monitoring of Solar-Wind Farms

Vijayaprakash R M ^{1,*}, Suma H R ² and Sunil Kumar G ³

¹ Department of Electronics and Communication, D. A.C.G. Government polytechnic, Chikkamagaluru-577101, Karnataka, India.

² Department of Electronics and Communication, Government Polytechnic for women, Hassan-573201, Karnataka, India.

³ Department of Electrical and Electronics, Government Polytechnic, Holenarasipura-573211, Karnataka, India.

World Journal of Advanced Research and Reviews, 2022, 13(02), 669-674

Publication history: Received on 02 February 2022; revised on 10 February 2022; accepted on 22 February 2022

Article DOI: <https://doi.org/10.30574/wjarr.2022.13.2.0186>

Abstract

The integration of battery energy storage systems (BESS) with solar photovoltaic (PV) and wind energy resources presents a promising solution for addressing the inherent intermittency of renewable energy sources. This paper provides a comprehensive review of optimization approaches for battery energy storage in solar-wind hybrid systems. We examine various optimization objectives, methodologies, and constraints that shape the design and operation of integrated renewable energy systems with storage. The paper analyzes sizing methodologies, control strategies, economic considerations, and technical constraints that influence optimization outcomes. Through comparative analysis of different optimization techniques including mathematical programming, heuristic algorithms, and artificial intelligence approaches, we identify the strengths and limitations of each method. Several case studies illustrating successful implementations in different geographical and regulatory contexts are presented. The review concludes with identification of research gaps and future directions for advancing battery storage optimization in renewable energy systems.

Keywords: Wireless Communication Protocols; Solar-Wind Hybrid Systems; Remote Monitoring; ZigBee; LoRaWAN

1. Introduction

Renewable energy sources, particularly solar and wind, have become key components in the global shift toward sustainable energy systems. The increasing deployment of solar-wind hybrid farms necessitates efficient systems for monitoring and control. These systems ensure optimal energy output, early detection of faults, and effective maintenance scheduling. One of the critical enablers of these systems is wireless communication technology, which allows for real-time data transmission from remote and often inaccessible locations.

Solar-wind farms are typically located in remote, rural, or offshore areas where traditional wired infrastructure is either costly or impractical. This geographical isolation necessitates the use of wireless communication for transmitting data such as energy production levels, meteorological information, and equipment status. Wireless systems not only reduce installation costs but also improve scalability and flexibility in system design.

Numerous wireless protocols have emerged over the years, offering varying capabilities in terms of range, data rate, power consumption, and reliability. Commonly used protocols include ZigBee, Wi-Fi, LoRa, and cellular technologies like GSM/3G/4G. Each protocol has specific advantages and limitations that must be considered depending on the monitoring requirements and environmental conditions of the installation site.

* Corresponding author: Vijayaprakash R M

The integration of Internet of Things (IoT) technologies into renewable energy monitoring has further propelled the use of wireless communications. IoT-based monitoring systems collect, process, and transmit vast volumes of data, requiring reliable and low-latency wireless protocols. These systems also enable remote diagnostics and control, enhancing the overall efficiency of energy management.

As shown in Table 1, different communication technologies vary significantly in their performance attributes. These attributes include transmission range, bandwidth, latency, energy consumption, and network topology. The selection of a suitable protocol depends on a trade-off among these attributes, considering the unique requirements of solar-wind farms.

Table 1 Key Attributes of Wireless Communication Protocols

Protocol	Range	Data Rate	Power Consumption	Topology	Typical Use Case	
ZigBee	10–100 meters	20–250 kbps	Very Low	Mesh/Star	Local sensor network in farms	
Wi-Fi	50–100 meters	11–600 Mbps	High	Star	Short-range bandwidth	high-data transfer
LoRa	Up to 15 km	0.3–50 kbps	Very Low	Star	Long-range transmission	low-data-rate
GSM/3G/4G	1–20 km	40–100 Mbps (4G)	Moderate to High	Star	Wide-area remote monitoring	
BLE	Up to 50 meters	125 kbps–2 Mbps	Very Low	Star	Short-range mobile	diagnostics

This paper explores the technical characteristics of popular wireless communication protocols and evaluates their suitability for remote monitoring in solar-wind hybrid farms. The discussion is supported by a comparative analysis and previous studies conducted before 2021, aiming to offer insights for optimal protocol selection and system design.

2. Remote Monitoring Architecture for Hybrid Solar-Wind Systems

A typical remote monitoring system for solar-wind farms comprises several components including sensors, controllers, gateways, and cloud servers. Sensors collect real-time data on energy generation, environmental conditions, and system health. These sensors are connected to controllers that preprocess the data and transmit it to a central monitoring unit via wireless communication protocols.

Gateways serve as a bridge between the local monitoring system and the remote control center. They are responsible for aggregating data from multiple sensors and forwarding it using wide-area wireless communication technologies. Cloud servers store and analyze the collected data, enabling visualization dashboards and intelligent analytics for fault prediction and energy optimization.

Wireless communication is implemented at various levels of this architecture. Local communication between sensors and controllers typically uses low-power protocols like ZigBee or Bluetooth Low Energy (BLE), while long-distance transmission to the cloud is carried out using Wi-Fi, LoRaWAN, or cellular networks. The heterogeneity of these networks demands a robust integration strategy to ensure seamless data flow.

Power efficiency is a crucial consideration in remote monitoring architecture. Since many sensors and communication modules are powered by batteries or energy harvested from the environment, the selected wireless protocol must consume minimal power without compromising data integrity and latency. LoRa and ZigBee are known for their low power consumption and are thus preferred in sensor-to-controller communications.

Table 2 presents a layered view of wireless communication integration in solar-wind farm monitoring systems. It maps out the communication technologies used at the sensor, gateway, and cloud levels, highlighting their primary roles and performance characteristics. This layered perspective aids in understanding the complexity and modularity of the overall monitoring infrastructure.

Table 2 Communication Layers and Technology Roles

Layer	Component	Technology Used	Functionality
Sensor Layer	Environmental Sensors	ZigBee / BLE	Collects temperature, irradiance, wind speed, etc.
Local Aggregation Layer	Microcontroller/Gateway	ZigBee / Wi-Fi / LoRa	Aggregates and preprocesses data
Network Layer	Gateway	GSM / 3G / 4G / LoRaWAN	Forwards data to cloud
Cloud Layer	Remote Server	Internet Backbone	Data storage, analytics, and dashboard
Application Layer	User Interface	Web/Mobile App	Data visualization and control

The effectiveness of remote monitoring depends on protocol reliability, interference tolerance, and scalability. Environmental factors such as humidity, temperature, and physical obstructions can affect signal quality. Therefore, wireless systems must be designed with error correction mechanisms and redundancy protocols to maintain continuous data flow in adverse conditions.

3. Overview of Wireless Communication Protocols

ZigBee is a low-power, low-data-rate protocol based on the IEEE 802.15.4 standard. It supports mesh networking, which enhances communication reliability through multiple pathways. ZigBee is suitable for short-range communication and has been widely used in energy monitoring applications due to its power efficiency and low cost [A. Saif et al., 2019].

Wi-Fi, governed by the IEEE 802.11 standards, offers high data rates and is suitable for transferring large volumes of data. However, it consumes significant power and has limited scalability in outdoor environments. Despite this, it is often used in locations with access to a stable power supply and good infrastructure support [N. Javaid et al., 2013].

LoRaWAN is a long-range, low-power protocol designed for wide-area applications. It supports star-of-stars topology and provides good penetration through obstacles. Its low data rate is sufficient for periodic sensor updates, making it ideal for remote monitoring of renewable energy systems in rural and mountainous regions [Z. Shelby, 2011].

Cellular networks like GSM, 3G, and 4G offer extensive coverage and are suitable for transmitting data over large distances. These protocols support real-time monitoring and remote control functionalities. However, they are dependent on telecom infrastructure and can incur high operational costs, especially in remote areas [M. Al-Fuqaha et al., 2015].

Table 3 Comparison of Protocol Performance Metrics

Protocol	Bandwidth	Latency	Power Efficiency	Cost	Reliability
ZigBee	Low	Moderate (~50 ms)	High	Low	High (mesh)
Wi-Fi	High	Low (~10 ms)	Low	Medium	Moderate
LoRa	Very Low	High (>100 ms)	Very High	Low	High
GSM/3G/4G	Medium-High	Low (~50 ms for 4G)	Medium	High	High
BLE	Medium	Very Low (<10 ms)	Very High	Low	Low to Medium

Bluetooth and BLE are typically used in close-proximity applications. Although they are less common in large-scale solar-wind farms, they can be useful for maintenance activities, such as diagnostics performed by technicians on-site using handheld devices [P. Kamalinejad et al., 2015].

Table 3 compares the most widely used wireless protocols across parameters such as range, bandwidth, power consumption, and suitability for solar-wind farm applications. This comparative table serves as a guide for engineers and researchers in selecting appropriate communication technologies.

4. Case Studies and Field Implementations

One notable implementation is the deployment of ZigBee-based monitoring systems in solar power plants in India. These systems used a network of sensors to measure irradiance, temperature, and panel voltage, transmitting data wirelessly to a local server. The mesh network topology ensured robustness in communication despite environmental disturbances [S. Kulkarni et al., 2014].

Another example involves the use of LoRaWAN in a wind farm located in Spain. The monitoring system collected data on wind speed, turbine rotation, and power output. The long-range communication capability of LoRa allowed effective transmission across multiple kilometers without repeaters, thus reducing infrastructure costs [J. Petäjäjärvi et al., 2017].

Wi-Fi-based systems have been tested in hybrid energy setups in rural African communities. These systems provided real-time data visualization for local operators and integrated with mobile applications for performance alerts. However, challenges with power consumption and limited range were reported [R. S. Shukla et al., 2018].

GSM and 3G networks are commonly used in large-scale commercial farms where infrastructure support is available. A hybrid solar-wind farm in China employed GSM modules to send data to a centralized SCADA system. This enabled remote diagnostics and predictive maintenance scheduling [Y. Liu et al., 2016].

Studies before 2021 have also explored the use of multi-protocol integration. For instance, combining ZigBee for sensor networks and GSM for cloud communication creates a balance between power efficiency and coverage. Such hybrid systems offer flexibility in design and resilience in performance [B. V. Nguyen et al., 2019].

Table 4 summarizes key case studies with details on location, protocol used, monitoring parameters, and outcomes. The table highlights the effectiveness and challenges encountered in real-world deployments.

Table 4 Summary of Case Studies in Solar-Wind Farms

Location	Protocol Used	Parameters Monitored	Outcome
India	ZigBee	Solar irradiance, temperature, voltage	Reliable mesh network with low power consumption
Spain	LoRaWAN	Wind speed, turbine output, fault signals	Long-range coverage with minimal infrastructure
Rural Africa	Wi-Fi	Solar and wind output, battery status	Real-time monitoring achieved, but power issues noted
China	GSM	Energy output, fault diagnostics	Enabled predictive maintenance through cloud connectivity
Vietnam	ZigBee + GSM	Mixed environmental and system data	Hybrid system improved range and efficiency

5. Challenges and Future Considerations

Interference is a major challenge in wireless communication, especially in areas with multiple energy systems or electromagnetic noise from turbines. ZigBee and Wi-Fi both operate in the 2.4 GHz band, which can lead to signal overlap. Protocols with frequency-hopping or spread spectrum techniques can help mitigate this issue.

Scalability remains a concern as the number of sensors and devices increases. Network congestion and latency issues may arise, especially in mesh networks like ZigBee. LoRaWAN and cellular networks offer better scalability due to their hierarchical and centralized architecture.

Data security is another vital concern, especially for systems transmitting data to cloud platforms. Encryption and secure authentication protocols must be incorporated into the communication system to prevent unauthorized access and data breaches [D. Evans, 2011].

Power availability in remote sites can limit the choice of protocols. Systems that rely on high power, such as Wi-Fi or 4G LTE, may not be feasible without a reliable power supply. Low-power protocols like LoRa and ZigBee are better suited for energy-harvesting environments.

Latency and real-time performance are critical for certain applications like fault detection and grid synchronization. Protocols with high latency may not be suitable for applications requiring immediate response. Cellular and Wi-Fi protocols generally provide better real-time performance compared to low-power wide-area networks.

Future trends include the adoption of 5G and satellite-based IoT networks to enhance coverage and reduce latency. These technologies offer the potential for more robust and intelligent remote monitoring systems, particularly for offshore or isolated solar-wind installations.

6. Conclusion

Wireless communication plays a pivotal role in enabling real-time, efficient, and scalable monitoring of solar-wind hybrid energy systems. Given the remote nature of these installations, wireless technologies provide a practical alternative to traditional wired networks. The choice of protocol significantly impacts the system's power efficiency, data integrity, and overall performance. Among the reviewed protocols, ZigBee and LoRa stand out for their energy efficiency and long-range capabilities, respectively. Cellular technologies provide reliable wide-area coverage but come with higher energy and cost demands. Wi-Fi offers high bandwidth but is limited in range and power efficiency. Real-world implementations show that hybrid architectures combining multiple protocols can address diverse monitoring requirements. Field studies have demonstrated the successful deployment of such systems, emphasizing the need for protocol interoperability and environmental resilience. Despite their advantages, wireless protocols face challenges such as interference, scalability, and security vulnerabilities. Emerging technologies such as 5G and LPWAN evolution hold promise for addressing these limitations and further enhancing remote monitoring capabilities. As highlighted in the various tables and case studies, selecting the appropriate communication protocol requires a comprehensive understanding of site conditions, system requirements, and technical trade-offs. Engineers and researchers must evaluate these factors to design robust and cost-effective solutions. Overall, the integration of advanced wireless communication protocols will continue to play a key role in the development of smart, autonomous, and efficient renewable energy systems.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Saif, A., et al. (2019). "Wireless Sensor Network Architectures for Monitoring Wind Turbines." *Renewable Energy*, 134, 1173–1185.
- [2] Javaid, N., et al. (2013). "Wireless Technologies for Smart Grid Applications." *Journal of Network and Computer Applications*, 40, 318–334.
- [3] Shelby, Z. (2011). "Embedded IP and 6LoWPAN." *IEEE Wireless Communications*, 17(6), 88–95.
- [4] Al-Fuqaha, M., et al. (2015). "Internet of Things: A Survey on Enabling Technologies." *IEEE Communications Surveys & Tutorials*, 17(4), 2347–2376.
- [5] Kamalinejad, P., et al. (2015). "Wireless Energy Harvesting for the Internet of Things." *IEEE Communications Magazine*, 53(6), 102–108.
- [6] Kulkarni, S., et al. (2014). "ZigBee Based Monitoring System for Renewable Energy Sources." *International Journal of Engineering Research & Technology*, 3(4).

- [7] Petäjäjärvi, J., et al. (2017). "Evaluation of LoRa LPWAN Technology for Remote Wind Monitoring." *Sensors*, 17(3), 472.
- [8] Shukla, R. S., et al. (2018). "Smart Energy Management in Rural Hybrid Systems." *Energy Reports*, 4, 392–401.
- [9] Liu, Y., et al. (2016). "A GSM-Based SCADA System for Solar-Wind Farms." *Energy Procedia*, 103, 258–263.
- [10] Nguyen, B. V., et al. (2019). "Hybrid Communication System for Energy Monitoring." *IEEE Access*, 7, 59827–59835.
- [11] Evans, D. (2011). "The Internet of Things: How the Next Evolution of the Internet Is Changing Everything." Cisco White Paper.