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Abstract 

Monitoring of reservoir properties prior to well placements and production is a requirement for optimisation and 
efficient oil and gas production. This is usually done using well log analyses and 3-D seismic, which are often prone to 
errors. However, 4-D (Time-lapse) seismic, incorporating numerous 3-D seismic surveys of the same field with the same 
acquisition parameters, which portrays the transient changes in the reservoir due to production effects overtime, could 
be utilised because it generates better resolution. There is however dearth of information on the applicability of this 
approach in the Niger Delta. This study was therefore designed to apply 4-D seismic, well-log and geologic data in 
monitoring of reservoirs in EK field of the Niger Delta. It aimed at locating bypassed accumulations, and ensuring 
effective reservoir management. The Field (EK) covers area of about 1200km2 belonging to the early (18ma) Miocene. 
Data covering two 4-D vintages acquired over fifteen-year interval were obtained from oil companies operating in the 
field. The data were analysed to determine the seismic structures, horizons, Well-to-Seismic Tie (WST), and wavelets. 
Well logs and production history data from fifteen selected wells were also collected from the Oil companies. Formation 
evaluation, petrophysical analysis and inversion alongside geological data were undertaken using Petrel, Shell-nDi, 
Techlog and Jason Software. Well-to-seismic tie, formation evaluation and saturation monitoring using petrophysical 
and geological data and software were used to find bypassed hydrocarbon prospects. The seismic vintages were 
interpreted, and the amounts of change in the reservoir were defined by the differences in Acoustic Impedance (AI) 
inversions of the base and the monitor seismic. AI rock properties were estimated from all the seismic amplitudes using 
controlled sparse-spike inversion. The estimated rock properties were used to produce AI maps. The structural analysis 
showed dominance of NW-SE trending rollover collapsed-crest anticlines in EK with hydrocarbons trapped northwards. 
There were good ties in wells EK 27, 39. Analysed wavelets revealed consistent amplitude and phase for the WST hence, 
a good match between the inverted impedance and the well data. Evidence of large pay thickness, ranging from 2875ms 
(11420 TVDSS-ft) to about 2965ms, were found around EK 39 well with, good yield properties. The comparison between 
the base of the AI and the current monitor and the generated AI maps revealed zones of untapped hydrocarbons as well 
as assisted in determining fluids movement. The inverted sections through EK 27, 39 (within 3101 m - 3695 m), 
indicated depletion in the reservoirs. The extent of the present non-uniform gas-oil contact and oil-water contact 
movements were from 3554 to 3575 m. The 4-D seismic approach led to better reservoir characterisation, well 
development and the location of deeper and bypassed hydrocarbon reservoirs. 
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1. Introduction 

Monitoring of reservoir properties prior to well placements and production is a requirement for optimisation and 
efficient oil and gas production. This is usually done using well log analyses and 3-D seismic, which are often prone to 
errors. However, 4-D seismic, incorporating numerous 3-D seismic surveys overtime, could be utilised because it 
generates better resolution. There is however dearth of information on the applicability of this approach in the Niger 
Delta. This study was therefore designed to apply 4-D seismic inversion, and petrophysical data in monitoring of 
reservoirs in EK fields of Niger Delta. 

The Niger Delta Basin is a major petroleum province for oil and gas exploration in Nigeria. Petroleum exploration 
activity in Niger Delta has resulted in the acquisition of well log records and several 3-D seismic data. It has been 
observed that the remaining undiscovered oil reserves are just about as large as those already consumed (Energy 
Information Administration, 1998a; Waal and Calvert, 2003) [9, 32]. That is a vast amount of oil, that are remaining and 
are hard to explore, that is why it is imperative to work on how to recover them reliably and efficiently. The need for 
accurate description of the petroleum reservoir and locating untapped oil and gas accumulations is critical to reservoir 
management. Yet, due to the complex nature of reservoir heterogeneity with time, obtaining accurate description of the 
reservoir and improving recovery is a big challenge. Next is the need to monitor the evolution of existing reserves over 
time due to production as pressure, saturation, etc, changes; to ensure optimum production. Also, there is the utmost 
need for accurate prediction of fluid flow in regions away from well control. This study is focused on bridging the gap 
in interpreting recent 4-D seismic in the Acoustic Impedance (AI) domain instead of the usual amplitude domain. As 
compared to its application in developed countries of the world like US, UK and Norway, 4-D seismic has not been 
extensively used in the Niger Delta to identify areas of bypassed and un-drained hydrocarbons, monitor the movements 
of reservoir fluids as production goes on, improve the existing geologic model, and more cost-effective field operations.  

Aim and Objectives 

With the use of various data and geophysical techniques, the aim of this study is to monitor the production changes of 
Niger Delta (Central Swamp - EK) oilfield reservoirs, and determine the extent of fluid contact movements using 4-D 
seismic, and well data, in order to optimize wells placement, improve recovery and find new prospect. It was achieved 
with these specific objectives: 

 To build the structural model of the study area, integrating and evaluating well information with seismic data to 
obtain Well- to- Seismic Ties (WST) including existing velocity data and synthetic-seismic match in EK Fields. 

 To obtain and estimate acoustic impedance rock property from seismic amplitudes using model-based inversion 
algorithm. To also produce several Acoustic Impedance (AI) maps of the inverted base, monitor and difference 
cube showing the effects of production in the study area. 

 To Track transient changes in E2000 reservoirs due to production effects and determine expected hydrocarbon 
response, potential fluid contact characteristics and areas of by-passed production, or inefficiencies in the 
production process. Use the results to predict new prospect, propose perforation depths, and optimize seismic 
interpretation strategy plus correlation. 

 To carry out a general assessment of reservoir characterization and applying the results to the Niger Delta clastic 
reservoirs for better history-matching, enhanced prospect definition and locating bypassed hydrocarbon pay.  

 

 
Figure 1 A cartoon showing a Base 3-D seismic survey and a time lapse survey. After several years of oil production 

(Staples et al., 2006) [28] 
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Generally, the objective in optimum field development is to lengthen the life span of the field, prevent water invasion, 
and recover as much hydrocarbon as possible. By recording 3-D seismic data over the field at various time intervals, 
which may be from months to years, the fourth dimension (calendar time) were introduced to the analysis of the data, 
thus the term 4-D seismic method to describe the time-lapse 3-D seismic exploration. Figure 1 shows a cartoon of a 4-D 
seismic survey. 

1.1. Literature Review 

In marine 4-D seismic acquisition, Eiken et al. (2003) [8] demonstrated that dense streamer towing complemented by 
accurate data regularization can reduce the Normalized Root Mean Square (NRMS) repeatability error to about 6%, 
which corresponds to the minimum theoretical 4-D threshold in ideal condition as described by Calvert (2005) [4].  

For land acquisition, Widmaier et al. (2003) [34] described a 4-D acquisition strategy that has become that of 
international standard. The strategy was based on high density 3-D (HD-3D) principles yielding data, which is very 
robust and is easily modified for specific reservoir challenges and survey locations. If the location of given shot is 
repeated between successive surveys, then the repetition of all source-receiver azimuths will guarantee that receiver 
positions are also repeated. The criterion is specified because source-receiver azimuth differences are particularly easy 
to “Quality Check (QC)” during acquisition and processing. In measurements, the same source and receiver location 
(initial location same as the one after some time duration), are used. Same number of fold and similar processing 
methods usually called “apple-for-apple process”. 

 

Figure 2 Seismic section through the base (recently processed 1991 3-D seismic vintage), monitor (2012 reshoot) and 
difference seismic volume (Aikulola et al., 2011) [1] 

Processing and imaging time-lapse datasets requires great care and attention to detail, in order to attenuate the 4-D 
noise caused by changes in acquisition parameters or environmental conditions, and to emphasize the 4-D signature of 
the reservoir caused by changes in fluid, pressure and stress. Some processes with particular application to 4-D projects 
include: Static, Regularization, 4-D binning, De-striping, Matching, etc. 

An example of 4-D processing, where comparison of the base and monitor seismic were made was reported by Aikulola 
et al. (2011) [1]. Figure 2 is a seismic section through the base, monitor and difference showing the result of the 
difference analysis. The processing resulted in optimized 4-D seismic dataset with an average RMS Repeatability Ratio 
(RRR) of 0.28. It was expected that the new 4-D seismic data would improve well reservoir management and optimize 
field development plan for the prior field. An interpretable seismic data with RMS Repeatability Ratio (RRR) of 0.28 
were obtained after 4-D seismic processing. The main processing steps in achieving the required repeatability between 
the base and monitor surveys are combined residual statics derivation, depopulation by trace pair selection and 
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application of matching filters. The volumes delivered are the base, monitor and difference seismic data (Figure 2) which 
would be used for well reservoir management and optimization of the field development plan. 

In interpretation, measurements are aimed at measuring or estimating from 4-D seismic data, the reservoir properties 
that are affected as a result of production induced changes (difference) in the reservoir (Tian et al., 2012) [29]. The 4-D 
data interpretation and measurement usually are performed in seismic space on a seismic interpretation system. 

The Difference Volume: On a difference section, the constant geology is differenced away and the reservoir changes 
become more visible. Small reservoir faults may also become visible in a difference section. The difference amplitude in 
an oil field usually will be proportional to 𝜙. Δ𝑆𝑤 . ℎ, where h is the height which may be the full reservoir thickness or 
only the oil-column change, 𝜙 is the effective porosity and Δ𝑆𝑤  is the change in fluid saturation. The difference section 
can be important in revealing reservoir architecture details and also provide unique information regarding permeability 
away from the wells (Figures 2). 

According to Tian et al. (2012) [29], Time shift is necessary in order to match the phase and time of a seismic dataset 
from amplitude map. Because reservoir changes causes velocity changes, time shifts are important indicators. Time 
shifts measured over a defined reservoir interval may be robust in the presence of wavelet differences and static shift. 
By correlating the baseline and the monitor surveys, the time shift across the entire reservoir could be determined, by 
estimating wavelet effects and the correlation or time-shift difference between the measurement below the particular 
reservoir and the one above it. 

It is well established that 4-D repeatability depends strongly on repeating the acquisition parameters, such as source 
and receiver positions, wavelet and noise conditions, and subsequent processing. From seismic data, prediction of trace 
repeatability for given acquisition could be done. If two traces are time shifted, the result can yield largely surprisingly 
large differences. 

In another example, 4-D challenges inherent in an onshore environment due to urbanization and ways of tackling them 
were demonstrated, by Lumley (2004), Omudu et al. (2007b) and Aikulola et al. (2011) [16, 18, 1]. These challenges 
include: statics, noise, further repeatability issues, etc.  

1.2. Applications and Benefits of the 4-D Seismic 

Managing production and imaging bypassed prospects are some of the technical and economic benefits of 4-D seismic 
methods. Other known applications were also, elaborated in the research of the following authors (Lumley et al., 1999; 
Lumley, 2001; Burkhart et al., 2001; Gan et al., 2004, Detomo et al., 2009) [14, 15, 3, 10, 6].  

1.3. Time-lapse Inversion 

Seismic Inversion is thus, the transformation of seismic amplitude cubes into elastic (or acoustic) impedance cube. 
According to Treitel and Lines (1994) [30], the inversion transformed reflection data into reservoir rock property 
description that is quantitative. The physical parameters involved in seismic inversion are impedance, velocity and 
density; others are lambda and shear modulus. Acoustic impedance inversion can be seen as a form of deconvolution 
(Russell, 1988; Lorenzen, 2000; Qing, 2002; Zou et al., 2002; Omudu et al., 2007a) [23, 13, 20, 35, 17]. An important part 
in the inversion procedure is the estimation of the seismic wavelets. There are pre-stack and post-stack inversion 
methods. Here, the focus is on pre-stack inversion and it involves applying the inversion at well locations to verify the 
inversion parameters and optimize the seismic scaling. The output volumes of pre-stack inversion are acoustic 
impedance, shear impedance and density. 

Inversion of 4-D data can be carried out in a number of different ways. In this work, the individual inversion scheme 
was employed as compared to that by Lorenzen (2000) [13]. It involves the inversion of individual base and monitor 
data sets to impedance models using the constrained sparse-spike inversion algorithm, which are then differenced to 
obtain a time-lapse impedance model. The inversion consists of a regularized linear inversion calculation which 
determines the simplest possible model that is able to fit the observed data.  

The capabilities of seismic inversion for reservoir characterization have been investigated by several authors including: 
Ross and Suat-Altan (1997), Qing (2002) and Omudu et al., (2007c) [22, 20, 19]. In these papers, integration of acoustic 
properties, core and wire-line log data combined with an understanding of rock physics permit the key uncertainties of 
hydrocarbon in place, reservoir connectivity, and consequent production challenges to be addressed. These researchers 
suggest that appropriate integration will facilitates effective reservoir management and lead to the eventual application 
of technologies such as 4-D seismic. Sarkar et al. (2003) [24] assessed the merits of different inversion workflows by 
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using a synthetic 4-D data set and comparing models resulting from the inverse calculations with actual impedance 
models.  

The study demonstrated the importance of coupling the inversion of base and monitor surveys to mitigate the impact 
of inherent non-uniqueness in seismic data inversion.  

In accessing the feasibility of 4-D seismic monitoring projects, Blonk and Brehen (1998) [2], show an early example of 
how to access the field and recognise cases that are favourable to the use of 4-D seismic monitoring of the reservoir, 
taking proper consideration of noise levels. This approach, which helps in proper planning for repeated or monitored 
surveys, can help enhance the chances of success for monitoring fluid contacts and reservoir dynamics. The 4-D seismic 
anomalies are characterized as differences between time-lapse 3-D data that are present after cross-equalization as 
exemplified by Figure 3. Calibration of these anomalies often is ambiguous, in that, they may be attributable to changes 
in one or more of the reservoir conditions, such as change in fluid saturation caused by water displacing oil, pore 
pressure change caused by injection, or a temperature change caused by steam injection (Tura and Lumley, 1999)  [31]. 

 

Figure 3 Amplitude extractions along a time slice from two time-lapse 3-D seismic data recorded in 1996 and 1997, 
(a) before and (b) after cross-equalization (Ecker et al., 1999) [7] 

1.4. Controlled Sparse-Spike Inversion (CSSI) 

The most common deterministic methods are represented by: Sparse spike inversion that is controlled. This is an 
impedance inversion and the goal is to find a model that is reflection coefficients r (t) given that seismic data x (t) and 
source wavelet w (t) as input, and then calculate impedance ξ (t) from the model. Also, the concept and the methodology 
of CSSI can be found in Chi et al. (1984) and Lorenzen, (2000) [5, 13]. Lorenzen (2000) [13], showed examples of 
inversion using wavelets estimated with or without well log information. 

The inversion replaces the seismic trace by a pseudo acoustic impedance trace at each Common Depth Point (CDP) 
position. Note that the sparse spike assumption implies, however, that thin bed geometry will not always be reach in 
the most optimal way.  

1.5. Description of the Study Area 

The EK Field is situated in the Central Swamp depositional belts of Niger Delta Basin which, is situated in the Gulf of 
Guinea and extends throughout the Niger Delta province as defined by Reijers (2011) [21]. Situated some 17 km 
southeast of Yenegoa (90 km west of Port Harcourt), in one of the Niger Delta’s Oil Mining Leases (OMLs). It lies within 
Latitudes 40 371 N and 50 001 N; Longitudes 60 101 E and 60 371 E, covering an area of about 1200 km2 and belonging to 
the early Miocene (18 ma). The study area is located in the seasonally flooded freshwater central swamp area (Figures 
4). The field was discovered in 1961 by EK -01 well. To date, a total of about 40 wells have been drilled, 34 of which 
penetrated the E2000 reservoir. Seven of these wells are water injection wells, three are water producers, twenty five 
are oil producers, two are gas producers and five were either abandoned or sidetracked. The E2000 is oil and gas 
bearing while the D6200, F1000, F2000 are Natural Gas (NAG) reservoirs (SPDC, 2013). The 3-D baseline survey was 
acquired between July and October 1997, while the monitor survey was acquired between January and July 2008, by 
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the company, operating in the area with the objective to optimize the subsurface image of the proven oil bearing 
structures in the prospect area (Aikulola et al., 2011) [1]. Figure 4, shows the map of the study area from a result of the 
design from the ArcGIS software. The map shows the position and features of the field.  

The regional Geology and stratigraphy had been studied by many authors including: Short and Stauble (1967); Reijers 
(2011) [21]. From Eocene to the present, the Niger Delta has prograded southwestward, forming depobelts that 
represent the most active portion of the delta at each stage of its development. These depobelts form one of the largest 
regressive deltas in the world with an area of about 300,000 km2, a sediment volume of 500,000 km3 and a sediment 
thickness of over 10km in the basin depocenter (Kulke, 1995) [12]. 

 

Figure 4 Niger Delta (Nigeria) location showing the Study area (   ) within the map (Adapted from SPDC 
 Geomatics, 2008) [25, 13] 

The Niger Delta Province contains only one identified petroleum system which is referred to as the tertiary Niger Delta 
(Akata - Agbada) Petroleum System (Kulke, 1995; Haak, et al., 2000; Reijers, 2011) [12, 11, 21]. Petroleum exploration 
is also expanding, especially in deepwater offshore. 

2. Material and methods 

Data covering two 4-D seismic vintages acquired over fifteen-year interval were obtained from oil companies operating 
in the field. Well logs and production history data from fifteen selected wells were also collected from the Oil companies. 
Formation evaluation, petrophysical analysis and inversion alongside geological data were undertaken using Petrel, 
Shell-nDi, and Jason Software. In this stage, attribute derived from the seismic data were integrated with well derived 
rock properties to map the earth’s physical properties measured away from well bore into the field covered by the 
seismic. One key step is to identify which seismic attributes, individually or in combination, provide the optimal 
correlation with the rock attributes. Hence, the data were analysed to determine the seismic structures, horizons, Well-
to-Seismic Tie (WST), and wavelets. Also, seismic inversion were run on the two vintages of the seismic data (the base 
and the monitor) using Jason Geosciences work bench (JGW) software, and the acoustic impedance and other attributes 
were generated for interpretation and for better delineation of the reservoirs, and inferring changes in terms of fluid 
dynamics and saturation.  

2.1. Structural analysis 

This analysis was carried out. A good understanding of the fault positions and orientations is critical for the effective 
drilling planning in order to maximize efficiency of drilling and hydrocarbon extraction. Faults were picked using the 
Petrel software, on vertical sections along the direction of maximum transport and correlated along the fault trace on 
semblance slices. The faults sticks were correlated with multiple semblance slices at an interval of 0.5 ms two-way-
travel time to constrain fault shape and validate vertical correlation of faults in a 3-D visualization tool. The resultant 
faults sticks were then modelled to produce the corresponding fault surfaces which were used to delineate the 
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geological structural trend in the study area. This was carried out with the nature of the geology of the basin, (structural 
styles) of the area in mind.  

Fault interpretation was performed using cross section (every 4th inline) and time slices generated from the variance 
cube. The continuity of the fault segments and their assignments were rigorously checked on the variance time slices 
and tied to the well data. The observed fault cuts in the EK wells were matched to the seismic data. 

In horizons mapping and interpretation, laterally consistent seismic reflectors were also tracked. These were to detect 
hydrocarbon bearing structures, delineate their extent and calculate their volumes. The mapped events were identified 
from well correlation and tying well tops to seismic events. The fault-horizon earth model, resulting from the seismic 
interpretation provided the framework for the structural analysis of the fields. 

2.2. Well-to-Seismic Tie and Wavelet Analysis 

Well-to-Seismic tie compares seismic data at a well location with log data from the well (White and Hu, 1998) [33]. The 
aim is to match the measurements made through well logs, which are determined in depth domain, to the seismic data 
acquired in the time domain. This allows us to relate horizon tops identified in a well with specific reflections on the 
seismic section. 

Synthetic seismic traces were generated in JGW projects and tied to seismic using well tops. This was done by using the 
sonic and density logs to generate acoustic impedance which in turn gave reflection coefficients. The reflection 
coefficient was then convolved with an extracted wavelet to generate the synthetic seismic trace. Where there exist no 
sonic (velocity) or density logs, a checkshot survey data was employed to give the impedances of the lithologies, from 
where the reflection coefficients can be deduced. The synthetic trace was compared to the real seismic data at the well 
location. Well log editing for the purpose of well to seismic correlation, was properly carried out. 

The wavelet analysis involves the estimation of a filter, which best fits well log coefficients to the input seismic at well 
location. The wavelet extraction method applied in this work was model supported, using seismic and well information. 
A wavelet is completely defined by its amplitude spectrum (amplitude versus frequency plot) and its phase spectrum 
(phase shift versus frequency plot). The wavelet can be estimated in various ways depending on the information 
available. Well-to-seismic tie is a crucial step in seismic interpretation and inversion.  

2.3. Inversion 

Controlled Sparse-spike Inversions (CSSI) were done on the two vintages using the JGW software. In this stage, acoustic 
impedance (AI) rock properties were estimated from seismic amplitudes and comparisons made between the synthetic 
and the seismic trace at the well location. Some assumptions were made as below to derive the seismic signal or wavelet:  

• Time bulk-shift of synthetic trace is correctly determined. 
• Reflectivity series is normal Randon or Gaussian (i.e. the seismic amplitude spectrum is equal to the 

reflectivity series spectrum). 
 

The sparse-spike inversion is model driven and it assumes that only the large spikes are meaningful. It finds the location 
of these large spikes by examining the seismic trace. In this method the seismic trace is simulated from a minimum 
number of AI interfaces (or reflectivity spikes) that will reproduce the real seismic response when convolved with the 
wavelet. Sparse-spike inversion builds up the reflectivity sequence one spike at a time. It seeks the simplest possible 
reflectivity model that, when convolved with the wavelet, produces a synthetic that matches the input seismic. The 
Sparse-spike solution does not have any low frequency components due to the band limited nature of input seismic. The 
constrained option uses a low frequency model as a guide. The low frequency variation was estimated from filtered well 
logs and this gives better results. The inverted vintages were interpreted, and the amounts of change in the reservoir 
were defined by the differences between the base and the monitor seismic. 

3. Results  

The results of the study were sequentially presented as maps, tables, graphs and sections.  

3.1. Structural and Seismic-to-well tie analyses 

The structural analysis showed dominance of NW-SE trending rollover collapsed-crest anticlines in EK with 
hydrocarbons trapped northwards.  
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Excellent synthetic seismograms were generated for the tie. It is essential to note that the well logs receive editing 
(“QCed”), to limit the number of bad data points. The well logs were correlated to the seismic data which enabled the  
constraining to the zone and horizon of interest. The starting point of this geophysical interpretation is the correlation 
of the well logs to the seismic data using the seismic to well tie plug-in of the Shell nDi and the JGW suite. This tie analysis, 
enabled the identification of the reservoir loops and the correlation of the stratigraphic sequence drilled in the well to 
the acoustic reflections recorded in the seismic section. Hence, enabling the tying of borehole formation tops identified 
in the well with specific reflectors on the seismic section. Each peak from the synthetic is correlated from each peak 
from the real seismic trace. The results showed good ties between the well’s logs and the seismic data, considering the 
alignment of the events on the well synthetic trace and the field acquired seismic trace as can be seen in Figures 5 to 7. 
Figures 5 and 6 are the result of the tie for well EK -39 while Figures 7 (a, and b) is that for the side track of EK -39 (i.e. 
EK -39_ST).  

 

Figure 5 Well-to-seismic tie of EK - 39 using JGW software (seismic trace passing through well is repeated) 

 

 

Figure 6 Well-to-seismic tie of EK - 39 (Zoomed at F Reservoirs) 

Figure 8 (a, and b) show the wavelet extracted from seismic and well log data of well EK 39 and EK 39_ST respectively. 
Wavelet extraction was performed in order to carry out a good well-to-seismic tie. This is to ensure that a wavelet which 
is zero-phase and has same amplitude spectrum with that of the seismic data was used and this was achieved. Wavelet 
estimation was an iterative process that improved as the synthetic tie improved. The result showed the statistical and 
the well based wavelets. The statistical wavelet was obtained from seismic data while the well based wavelet was 
obtained from well log data. The wavelet extracted represents the average of the wavelets of the individual well control 
points. This gives approximate values of the true, the amplitude and phase spectra of the source wavelet. The wavelets 
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show amplitude and phase spectra; therefore, in the case of the seismic extraction, a zero/ constant phased wavelets 
were assumed. In order to get the best correlation, the statistical wavelet extraction is followed by a well-based wavelet 
extraction.  

 

Figure 7(a, and b): Well-to-seismic tie of EK -39_ST 

Generally, overall well-to-seismic tie at wells EK 39 and 39_ST were good. EK 39_ST gives moderate tie since it does not have 
any measured sonic log (used synthetic sonic log for tie).Wavelet extracted from EK 39 is consistent in amplitude and phase 
and hence was used in the inversion. 

 

Figure 8 (a). EK -39 Wavelets (b). EK -39_ST Wavelets 

3.2. The Constrained Sparse-Spike Inversion (CSSI) Results 

The results are presented in Figures 9 where comparisons were made between the amplitude sections and the inverted 
section of EK Base and monitor seismic vintages. As a result of production changes (pressure and saturation decline), 
E2000 top have move up to a current position as seen in the monitor seismic as compared with the base. Also the band 
pass AI section through well EK-1 (within 2500-3000ms), have also indicated the extent of the oil-water contact (OWC) 
movement. 

3.3. Comparing Acoustic Impedance Volumes 

The acoustic impedance volumes shown in Figure 10 are cross sections of the Base and the Monitor seismic data from 
X-line: 2875ms to 2965ms with inserted tops and base (horizons) of the reservoir and the legend showing colours of 
high and low AI. Within these horizons, a reduction in the impedance contrasts from the base, to the monitor were 
observed which can be interpreted as the result of production effect in the reservoir. Also high resistivity values as seen 
from EK 39 well log almost aligning with the low impedance section within the reservoir which indicated hydrocarbon 
charged zone as can also be correlated with Figures 9 and 10. 
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Figure 9a Juxtaposing the amplitude section with the inverted section of EK Base seismic Vintage 

 

 

Figure 10 Section of Band pass P-impedance of the EK-Field 4-D CSSI showing the production changes over time 
(2875-2965ms) 

Production from EK Field over the years, were seen to alter some of the petrophysical properties (example lower 
hydrocarbon saturation values for wells drilled later as a result of water influx). In order to minimize this impact, several 
measures were adopted including: using core derived saturation as against log saturation, in the volumetric calculations. 
The AI inversion result of the base and monitor difference (depletion in the monitor) have shown the production effects. 

As a result of production changes, E2000 top have move up to a current position as seen in the monitor seismic as 
compared with the base. Also the band pass AI section through well EK -39 (within 2500 - 3000ms), have also indicated 
the extent of the oil-water contact (OWC) movement (Figure 11). The monitor seismic and the inverted (band pass AI) 
section through EK -27, -39 (within 2500 ms - 3000 ms), have also indicated E2000 depletion and the extent of the 
present non uniform gas oil contact (GOC) and oil water contact (OWC) movements, in EK -03 and EK -16 from 11660 
ft to 11730 ft and from 11918 ft to 11852 ft respectively (Figures 10 and 11). These results made it easier to also find 
more prolific prospects, propose EK - 40, - 42 wells, while accurately pick their drilling locations and screen depths. 
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Figures 12 (a, b, and c) show amplitude maps (Band pass P-Impedance) results of the EK Field, 4-D CSSI and production 
changes over time. 

 

Figure 11 E2000 Cross section through EK -03 and EK -16 

 

Figure 12a Map showing Band pass P-Impedance results of the EK Field 4-D CSSI and production changes over time 

 

Figure 12b Map showing Band pass P-Impedance comparison Max-Amplitude of the EK Field 4-D CSSI and 
production changes over time 
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Figure 12c Map showing Band pass P- Impedance comparison RMS-Amplitude of the EK Field 4-D CSSI and 
production changes over time 

3.4. Acoustic Impedance Sections and Difference 

 

Figure 13 Acoustic Impedance Slices (RMS) taken at EK-E2000 seismic horizon from Base Monitor (b) and Difference 
(Monitor-Base c) 
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Figures 13 and 14 shows the acoustic impedance slices taken at the E2000 top and base horizons for the base (a), 
monitor (b) and difference (c) volumes showed low acoustic impedance values corresponding to hydrocarbon charged 
sand bodies around the producing well locations. 

A slight decrease is observed in the Monitor when compared to the Base which may be attributed to hydrocarbon 
migration effects. Probable by-passed zones with low acoustic impedance anomalies were also observed west and 
north-west of the producing zone. Also two zones (A and B) below, were observed, which may be hydrocarbon charged 
sand bodies since they exhibited consistently low acoustic impedance values in both the Base and the Monitor and is 
much pronounced in the Monitor than the Base which may be attributed to hydrocarbon accumulation. 4-D effect was 
observed on the Difference slice due to changes in acoustic impedance around the well location. Regions having large 
4-D change in the difference seismic volumes are affected by production since the base and monitor seismic volume 
were repeatable. 

 

Figure 14 Result showing map of the EK Field -E2000, 4-D Seismic band pass P. Impedance CSSI; a) is an amplitude 
 extraction from the preproduction baseline survey (1997); next is the amplitude extraction at the same level 

 from the 2012 re-processed monitor; next is the amplitude extraction from the seismic difference cube 
 highlighting areas where water has replaced oil 

 

 

Figure 15 Band pass AI section passing through wells EK-1 (within 2500-3000ms) {Note: Soft impedance bodies 
 (yellow and red), indicates sands while Hard impedance bodies (blue and black) indicates shale). a) Tied with 

well AI-Band pass (b) tied with GR log 

3.5. Time-lapse Interpretation 

In summary, the left/ western side of the impedance map of EK Field has shown much depletion than the right side 
bounded by the major fault. The central of this side forms prospect areas of focus. Consequent to the Symptoms of 
decline, the proposed Oil Rim Development (ORD) wells on E2000 might need some better lift assistance. 
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The interpretation of time-lapse seismic data requires integration of rock physics, geology, and production information. 
Anomalies in the time-lapse acoustic impedance difference data are most commonly caused by pressure or saturation 
changes or non-repeatable noise. Away from the low fold margins of the survey, there are no major difference anomalies 
above the reservoir interval (Figures 12 to 14). It is not possible to separate pressure and saturation time-lapse seismic 
effects using only the stacked P-wave derived data. However, integration with other information can help discriminate 
the primary cause. The absence of a time-lapse anomaly can be attributed to no reservoir changes, counter-acting 
pressure and saturation changes, non-repeatability, and the lack of reservoir. 

It will be worthwhile to note from Figures 15 that the hydrocarbon have pushed above the initial perforation due to 
production and increased water influx. Hence, the use of 4-D results to optimize the positioning of development wells 
and to constrain and update the dynamic reservoir models. A comparison of the impedance inversion results with the 
interpreted base and top of the EK - Agbada Sandstone from the well ties shows generally good agreement.  

4. Discussion 

This research was carried out in order to more accurately resolve seismic monitoring of reservoir properties and their 
changes over time. The EK Field offer unique opportunities to develop these high resolution reservoir characterization 
and monitoring methodologies. Also, the work will contribute to knowledge and analyse the importance of time-lapse 
seismic in reservoir monitoring for identifying Oil Water Contact (OWC), Gas Oil Contact (GOC), drained and un-drained 
reservoir compartments (by passed hydrocarbon), and optimising well placement.  

Application of 4-D seismic inversions has been well-known to be a useful tool for reservoir management and its 
significances has been recognized, worldwide from monitoring production to identifying producing zones and deeper 
bypassed hydrocarbon. The CSSI has also exhibited vital role in providing relevant information in the vast streams of 
data under the constraints of lower cost and less time in the interpretation of seismic data and less human-labour are 
required.  

However, this understanding has financial significance in that the recovery factor of a reservoir can be improved by few 
percentages and the return on investment can be maximised and proper decisions on areas of divestment. This study is 
significant in the sense that: 

It is aiding in the improvement of production, enhancing the well placement within the Niger Delta and optimises the 
design of asset recovery and divestment processes. It would help to rejuvenate oil fields and enhance the ability to 
predict future reservoir and also estimate hydrocarbon reserves of the Niger Delta Basin. 

The results were crucial to addressing the inherent reservoir monitoring problems in those areas. Furthermore, the 
research have not only build a model that is consistent with current geological, geophysical and petrophysical data; but 
have built one that gives a good prediction of its future behaviour (history matching).  

The outcome is an important contribution to the academic knowledge base and also to the oil and gas industry as 
modern exploration is now focused at optimizing field developments and production, minimizing costs and maximizing 
the economic returns of the assets. 

E2000 sands have good well coverage and lower structural uncertainties. There are varying fluid contacts in the E2000 
reservoir levels. The significant risks identified for the EK field is the vandalisation of the oil/gas export lines which 
affects the field's production. 

5. Conclusion 

The time-lapse program at EK has proved to be a cost-effective tool for reservoir surveillance. A number of factors 
contributed to its success: application of an efficient and robust interpretation strategy established using 4-D seismic 
models based on reservoir flow simulation. Time-lapse (4-D) seismic is a reservoir monitoring technology that has 
matured to the point where it can be considered a reliable reservoir surveillance tool. We have seen in this paper that 
the applications of time-lapse seismic methods have helped to determine the extent of the oil-water contact (OWC) 
movement during the years of production. 4-D is of benefit in identifying connectivity and fault sealing. Identify thief 
zones, water/gas coning and cusping. Some of the economic benefits include: increase/accelerate ultimate HC recovery, 
Reduce infill well costs; reduce water/gas separation requirements (delay water/gas breakthrough).  
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This study has enabled the location of deeper bypassed hydrocarbons with improved recovery. It has also, helped in 
effective well plans with new integrated technologies. This will improve reservoir monitoring and property prediction 
of deeper plays in the Niger Delta.  
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