

Superconductivity: Basic Principles and Type I vs Type II Superconductors

Bharath Kumar T ^{1,*}, Krupanidhi Y G ² and Ramya Y A ³

¹ Senior Scale Lecturer in Science, Government Polytechnic, Chitradurga-577501, Karnataka India.

² Senior Scale Lecturer in Science, Government Polytechnic, Turuvekere-572227, Karnataka India.

³ Senior Scale Lecturer in Science, D.A.C.G, Government Polytechnic, Chikkamagalur 577101, Karnataka India.

World Journal of Advanced Research and Reviews, 2022, 13(01), 895-900

Publication history: Received on 04 January 2022; revised on 17 January 2022; accepted on 28 January 2022

Article DOI: <https://doi.org/10.30574/wjarr.2022.13.1.0050>

Abstract

Superconductivity is a remarkable quantum mechanical phenomenon in which certain materials exhibit zero electrical resistance and perfect diamagnetism when cooled below a critical temperature. Since its discovery in 1911, superconductivity has attracted extensive scientific and technological interest due to its potential applications in power transmission, medical imaging, high-field magnets, and quantum devices. This paper presents an overview of the fundamental principles of superconductivity, including zero resistance, the Meissner effect, and critical parameters. A detailed comparison between Type I and Type II superconductors is provided based on their magnetic behavior, critical fields, material properties, and applications.

Keywords: Superconductivity; Meissner effect; Critical magnetic field; Type I superconductors; Type II superconductors

1 Introduction

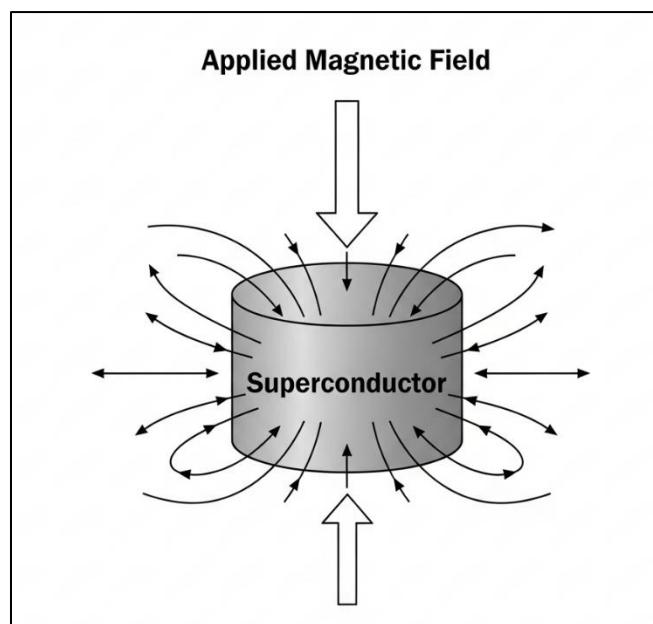
The study of electrical resistance in materials has long been a cornerstone of condensed matter physics. Typically, as temperature decreases, the electrical resistance of metals and conventional conductors also decreases gradually, but never reaches zero. This long-held understanding was fundamentally challenged in 1911, when Dutch physicist Heike Kamerlingh Onnes observed an extraordinary phenomenon: the electrical resistance of mercury plummeted abruptly to zero when cooled below a critical temperature of 4.2 Kelvin. This remarkable state, now known as superconductivity, heralded the discovery of a new phase of matter characterized by the complete absence of electrical resistance.

The implications of superconductivity are profound, not only from a theoretical standpoint but also for practical applications. Superconductors can carry electrical current without energy loss, opening the door to highly efficient power transmission, powerful electromagnets, and advanced technologies such as magnetic resonance imaging (MRI), particle accelerators, and quantum computing. The underlying principles of superconductivity are deeply rooted in quantum mechanics, giving rise to unusual electromagnetic properties such as the expulsion of magnetic fields (the Meissner effect) and the quantization of magnetic flux.

Superconductors are broadly divided into two categories: Type I and Type II, distinguished by their behavior in external magnetic fields and their intrinsic material properties. Type I superconductors exhibit a sharp transition from the superconducting to the normal state and completely expel magnetic fields below a critical value. In contrast, Type II superconductors allow partial penetration of magnetic fields through quantized vortices and remain superconducting over a wider range of magnetic fields. Understanding these distinctions is crucial for the selection and development of superconducting materials tailored to specific technological needs.

* Corresponding author: Bharath Kumar T

This paper provides an overview of the fundamental principles governing superconductivity and presents a systematic comparison between Type I and Type II superconductors. By exploring their physical characteristics, underlying mechanisms, and practical applications, this discussion aims to highlight the significance of superconductivity in both scientific research and modern technology.


2 Basic Principles of Superconductivity

Superconductivity is defined by a set of remarkable physical properties that set superconducting materials apart from conventional conductors. These properties are not only of great theoretical interest but also form the foundation for a wide range of technological applications.

2.1 Zero Electrical Resistance

Perhaps the most striking feature of superconductivity is the complete disappearance of electrical resistance when a material is cooled below its characteristic critical temperature ((T_c)). In ordinary conductors, electrons experience scattering from impurities, defects, and lattice vibrations (phonons), which leads to energy dissipation in the form of heat. However, in the superconducting state, electrons form correlated pairs known as Cooper pairs, which move through the crystal lattice without scattering, resulting in absolutely no electrical resistance.

As illustrated in Figure 1, the transition into the superconducting state is abrupt and dramatic. The resistivity of the material drops sharply to zero at (T_c), and as long as the temperature remains below this threshold, an electrical current can circulate within a closed loop indefinitely without any loss of energy. This property underlies a range of applications such as magnetic levitation, highly sensitive magnetometers (SQUIDs), and lossless power transmission.

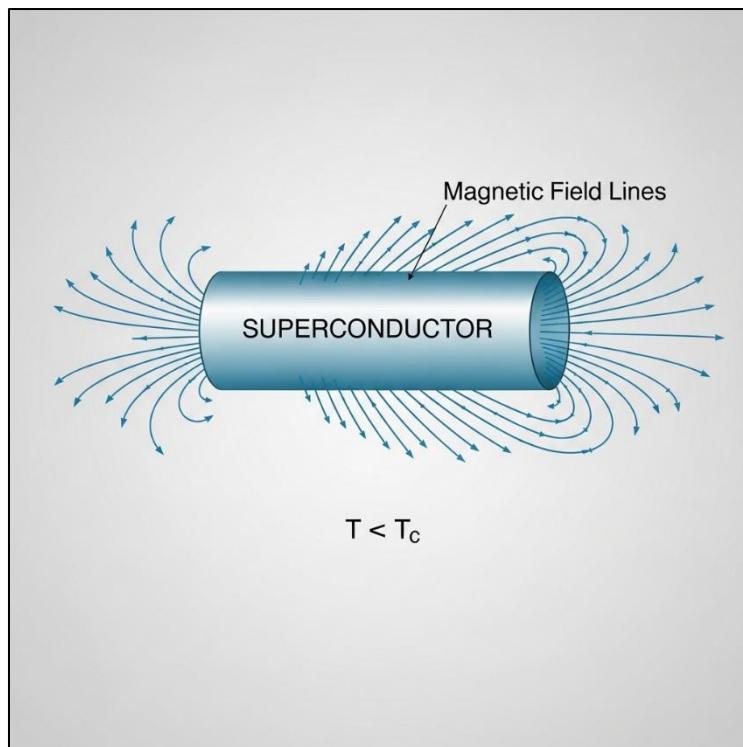


Figure 1 Variation of electrical resistance with temperature showing superconducting transition

2.2 Meissner Effect

Another hallmark of superconductivity is the Meissner effect—the complete expulsion of magnetic flux from the interior of a superconductor as it transitions into the superconducting state. Unlike a perfect conductor, which would simply “freeze” the magnetic field present at the moment it became superconducting, a true superconductor actively repels magnetic fields, ensuring that the magnetic flux inside the material is zero (except for a thin surface layer, the penetration depth).

This phenomenon, depicted in Figure 2, demonstrates that superconductors exhibit perfect diamagnetism. The Meissner effect is a definitive test for superconductivity and highlights the quantum mechanical nature of the phenomenon. It is responsible for effects such as magnetic levitation, where a superconductor can float above a magnet due to repulsive magnetic forces.

Figure 2 Magnetic flux expulsion in a superconductor below the critical temperature (Meissner effect)

2.3 Critical Parameters

The superconducting state is maintained only under certain conditions, defined by three critical parameters:

- Critical Temperature ((T_c)): The highest temperature at which a material exhibits superconductivity. Above (T_c) , thermal energy disrupts the Cooper pairs, and the material reverts to its normal, resistive state.
- Critical Magnetic Field ((H_c)): The maximum magnetic field strength a superconductor can withstand while remaining in the superconducting state. If the applied magnetic field exceeds (H_c) , superconductivity is destroyed and the material becomes normal.
- Critical Current Density ((J_c)): The maximum current density that can flow through the superconductor without breaking Cooper pairs. Exceeding (J_c) generates magnetic fields or heating that can disrupt the superconducting state.

These critical parameters are material-specific and play a pivotal role in determining the suitability of a superconductor for various applications. Exceeding any of these limits results in the loss of superconductivity, highlighting the delicate balance required for exploiting this phenomenon in real-world devices.

3 Microscopic Theory of Superconductivity

The underlying mechanism responsible for superconductivity was first successfully explained by the Bardeen–Cooper–Schrieffer (BCS) theory, developed in 1957 by John Bardeen, Leon Cooper, and Robert Schrieffer. The BCS theory marked a major milestone in condensed matter physics, providing a comprehensive microscopic framework to describe the phenomenon.

At the heart of the BCS theory is the concept of Cooper pairs. In a conventional metal, electrons are typically thought to repel each other due to their like charges. However, BCS theory reveals that at sufficiently low temperatures, an attractive interaction can arise between electrons via the interaction with lattice vibrations, known as phonons. When one electron moves through the crystal lattice, it slightly distorts the lattice, creating a region of positive charge that can attract another electron. This indirect attraction, mediated by phonons, overcomes the natural repulsion between electrons, leading to the formation of pairs of electrons with opposite momenta and spin—these are the Cooper pairs.

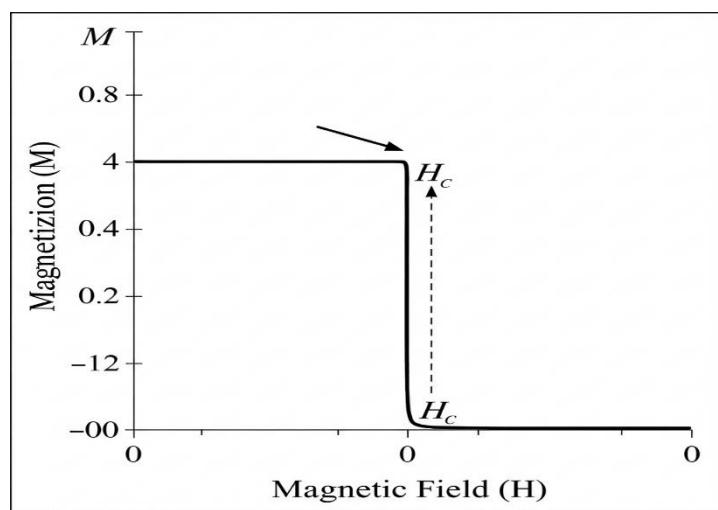
These Cooper pairs are fundamentally different from individual electrons: they act as composite bosons, which means they can occupy the same quantum state. As a result, all Cooper pairs condense into a collective, coherent quantum state

described by a single macroscopic wavefunction. In this state, the movement of Cooper pairs is highly coordinated, and quantum mechanical effects dominate.

A crucial consequence of this collective behavior is that the Cooper pairs move through the lattice without being scattered by impurities, defects, or even lattice vibrations. This is because breaking up a Cooper pair would require an energy greater than what is available at temperatures below the critical temperature (T_c). As a result, electrical resistance vanishes, and current can flow indefinitely without energy loss.

Furthermore, the BCS theory accounts for other key aspects of superconductivity, including the energy gap in the electronic density of states and the characteristic features of the Meissner effect. The BCS framework has been remarkably successful in explaining the properties of conventional (low-temperature) superconductors and forms the basis for ongoing research into new superconducting materials.

4 Classification of Superconductors


Superconductors are primarily classified into two main types—Type I and Type II—based on their magnetic behavior and response to external magnetic fields. This distinction is critical for understanding their physical properties and suitability for various technological applications.

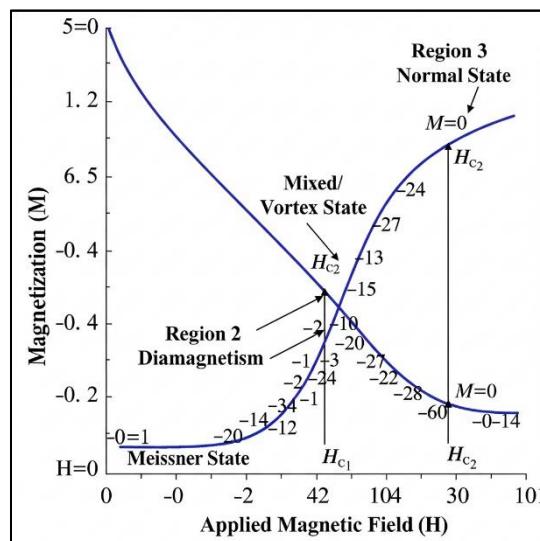
4.1 Type I Superconductors

Type I superconductors are usually pure elemental metals, such as mercury (Hg), lead (Pb), and aluminum (Al). These materials are characterized by a single, sharp critical magnetic field (H_c). When the applied magnetic field is below (H_c), the material exhibits perfect diamagnetism due to the Meissner effect, completely expelling magnetic flux from its interior. This results in a magnetization that remains constant as the field increases, up to the critical value.

Once the external magnetic field exceeds (H_c), superconductivity is destroyed abruptly, and the material reverts to its normal, non-superconducting state, allowing magnetic flux to penetrate freely. This behavior is referred to as an "all-or-nothing" response, as there is no intermediate state between fully superconducting and normal. Because of their relatively low critical fields and sensitivity to impurities, Type I superconductors have limited practical use, mainly serving in fundamental research and demonstration purposes.

Figure 3 illustrates the relationship between magnetization and applied magnetic field for a Type I superconductor, showing the sharp transition at the critical field.

Figure 3 Magnetization versus magnetic field for a Type I superconductor


4.2 Type II Superconductors

Type II superconductors include most alloys, intermetallic compounds, and high-temperature superconducting ceramics. Unlike Type I, these materials are characterized by two distinct critical magnetic fields: a lower critical field (H_{c1}) and an upper critical field (H_{c2}). The behavior of these materials can be divided into three regimes based on the strength of the applied magnetic field:

- Below (H_{c1}): The material behaves like a Type I superconductor, expelling all magnetic flux via the Meissner effect.
- Between (H_{c1}) and (H_{c2}) (Mixed or Vortex State): Magnetic flux begins to penetrate the superconductor in the form of quantized vortices, each carrying a single quantum of magnetic flux. These vortices are surrounded by circulating supercurrents, and the material remains superconducting overall, but with regions of normal conductivity at the vortex cores. The density of vortices increases with the applied field.
- Above (H_{c2}): Superconductivity is completely destroyed, and the material becomes normal.

This mixed state allows Type II superconductors to tolerate much higher magnetic fields than Type I, making them highly valuable for practical applications such as superconducting magnets, MRI machines, and particle accelerators.

Figure 4 shows the magnetic response of a Type II superconductor, highlighting the gradual transition through the vortex state between (H_{c1}) and (H_{c2}).

Figure 4 Magnetization versus magnetic field for a Type II superconductor

5 Comparison Between Type I and Type II Superconductors

The distinction between Type I and Type II superconductors is fundamental for both understanding superconductivity and selecting materials for technological applications. While both types exhibit the hallmark features of zero electrical resistance and the Meissner effect at low magnetic fields, their behavior under increasing external magnetic fields, material composition, and potential uses differ significantly.

Type I superconductors, typically pure elemental metals, are characterized by a single, well-defined critical magnetic field ((H_c)). Below this threshold, they exhibit perfect diamagnetism and expel all magnetic flux, but they lose superconductivity abruptly when the applied field exceeds (H_c). Due to their relatively low critical fields and sensitivity to impurities, their practical applications are limited.

In contrast, Type II superconductors—usually alloys or complex compounds—display two critical magnetic fields: a lower critical field ((H_{c1})) and an upper critical field ((H_{c2})). Between these two values, the material enters a unique mixed or vortex state, where magnetic flux penetrates the superconductor in quantized vortices while superconductivity is maintained in the surrounding regions. This behavior permits Type II superconductors to operate at much higher magnetic fields, making them indispensable in applications such as superconducting magnets, medical imaging (MRI), and high-field research..

Table 1 Comparison of Type I and Type II superconductors

Property	Type I Superconductors	Type II Superconductors
Critical magnetic field	Single critical field (H_c)	Two critical fields (H_{c1} and H_{c2})
Magnetic behavior	Complete flux expulsion	Partial flux penetration (vortex state)
Typical materials	Pure metals (Pb, Hg, Al)	Alloys and compounds (NbTi, Nb3Sn)
Critical field strength	Low	Very high
Practical applications	Limited	Extensive

6 Conclusion

Superconductivity represents a unique and technologically important state of matter characterized by zero resistance and perfect diamagnetism. The fundamental principles governing superconductivity have been well explained through BCS theory. A clear distinction exists between Type I and Type II superconductors in terms of magnetic behavior and applicability. While Type I superconductors are mainly of academic interest, Type II superconductors play a vital role in modern high-field and large-scale applications. Continued research aims to discover materials with higher critical temperatures to enable wider commercial adoption.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] H. Kamerlingh Onnes, "The resistance of pure mercury at helium temperatures," *Commun. Phys. Lab. Univ. Leiden*, vol. 120, 1911.
- [2] M. Tinkham, *Introduction to Superconductivity*, 2nd ed. New York, NY, USA: McGraw-Hill, 1996.
- [3] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, "Theory of superconductivity," *Phys. Rev.*, vol. 108, no. 5, pp. 1175–1204, Dec. 1957.
- [4] C. P. Poole Jr., H. A. Farach, R. J. Creswick, and R. Prozorov, *Superconductivity*, 2nd ed. Amsterdam, The Netherlands: Academic Press, 2007.
- [5] D. R. Tilley and J. Tilley, *Superfluidity and Superconductivity*, 3rd ed. Bristol, U.K.: IOP Publishing, 1990.
- [6] J. E. Hirsch, "BCS theory of superconductivity: It is time to question its validity," *Physica Scripta*, vol. 80, no. 3, p. 035702, 2009.
- [7] V. L. Ginzburg and L. D. Landau, "On the theory of superconductivity," *Zh. Eksp. Teor. Fiz.*, vol. 20, pp. 1064–1082, 1950.
- [8] Y. B. Kim, C. F. Hempstead, and A. R. Strnad, "Critical persistent currents in hard superconductors," *Phys. Rev.*, vol. 129, no. 2, pp. 528–535, 1963.
- [9] A. A. Abrikosov, "On the magnetic properties of superconductors of the second group," *Sov. Phys. JETP*, vol. 5, pp. 1174–1182, 1957.
- [10] R. Wesche, *Physical Properties of High-Temperature Superconductors*, Chichester, U.K.: Wiley, 1998.