
 Corresponding author: Kazi Wahadul Hasan 
Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh. 

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

A production inventory model for the deteriorating goods under COVID-19 disruption 
risk  

Kazi Wahadul Hasan * 

Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, 
Bangladesh. 

World Journal of Advanced Research and Reviews, 2022, 13(01), 355–368 

Publication history: Received on 06 December 2021; revised on 10 January 2022; accepted on 12 January 2022 

Article DOI: https://doi.org/10.30574/wjarr.2022.13.1.0018 

Abstract 

The rapid onset of the COVID-19 epidemic has brought the manufacturing process to a halt. The problem is especially 
serious for deteriorating products because demand for these items is not consistent and the product's worth has 
diminished with time. Many deteriorating product industries are now looking for an appropriate and effective 
disruption recovery plan to help them recover. However, a survey of the literature suggests that there has been little 
research done on developing an effective inventory production model for deteriorating products exposed to COVID-19 
pandemic risks. This research intends to develop a disruption recovery model that considers demand as a time-
dependent quadratic function to find out the optimum number of orders. Two different heuristic algorithms named: 
Genetic Algorithm (GA) and Whale Optimization Algorithm (WOA) have been employed to solve the model and it has 
been found that WOA performs better in terms of convergence. The numerical findings indicate that the price inclination 
rate for the component price and selling price played a pivotal role to maximize net profit. It is expected that by 
employing the proposed model of this research, the industry managers will be greatly benefitted to obtain quick 
recovery from the COVID-19 disruption risk for the deteriorating goods and retain financial stability. 
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1. Introduction

COVID-19 supply and production disruptions of deteriorating products have resulted in a huge profit loss and 
interrupted the UN's achievement of SDG 8 (decent work and economic growth) and SDG 12 (consumption and 
production) [1]. Following the outbreak of the deadliest COVID-19 pandemic, numerous lockdowns and shutdowns 
were imposed, obstructing the transit and distribution of perishable commodities and, as a result, affecting their 
consumption patterns [2]. Restrictions on people's or these goods' movement result in considerable quality loss and 
increased product waste. A suitable recovery mechanism may help the deteriorating product industries in promptly 
resolving the situation and overcoming supply chain weaknesses [3]. 

One of the most pressing difficulties for the industries is determining when and how much to order in order to maximize 
the overall profit connected with the inventory production system. This becomes more paramount as the inventory 
deteriorates or decays. Change, impairment, decay, spoiling, obsolescence, and loss of use or actual worth in a product 
that results in decreased usefulness from the distinctive one, are all examples of deterioration [4]. Furthermore, when 
products decay, it is assumed that their nominal or original worth has decreased [5]. Crops and vegetables, volatile 
liquids, dairy products, medicine, and other commodities are all examples of deteriorating items [6]. Since the stock of 
these products is now at stake amid the COVID-19 pandemic, choosing the best inventory production system for the 
deteriorating products has become a prominent concern. 
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Although industries across the world are now working to improve resiliency in their supply chain networks to fight 
adverse effects of the COVID-19 disruptions [7-8], there is hardly any effective recovery policy for the deteriorating 
commodities. However, most of the deteriorating products are fast selling commodities and so distortion in the 
production or distribution of these goods can lead to countrywide shortage or price hike. Given the vulnerabilities that 
the deteriorating goods are undergoing [9], it is high time to develop a disruption recovery model to prevent shipment 
delays or market stockout situations. 

In this research, an economic order quantity (EOQ) model has been formulated where a quadratic demand function has 
been utilized along with the cost of the components and product selling price for the deteriorating items. The 
logarithmic scale for component cost and selling price was employed to align the model with the real-world situation. 
Backorder costs and lost sales are two significant cost components that have been included due to the occurrence of 
disruptions by the COVID-19 pandemic. Besides, a constant deterioration unit cost has been considered here which is 
also a new addition to the works of contemporary literature. The following research objectives have been targeted to 
accomplish through our research. 

 To construct an inventory production model for the deteriorating products subject to constant deterioration 

rate and COVID-19 disruption risks. 

 To maximize the net profit for the optimal number of orders that should be placed to minimize the COVID-19 

pandemic disruption effects for both the supplier and the seller. 

 To identify the most sensitive model parameters that can alter the overall profit of the industry through 

sensitivity analysis. 

The contents of this article are outlined as follows. In Section 2, a brief overview of relevant literature has been presented 
followed by the description of the problem along with the notations and assumptions in Section 3. In Section 4, the model 
formulation of the proposed inventory system has been illustrated with suitable explanations. Next, the model has been 
solved and the findings have been discussed in Section 5. Sensitivity analysis is discussed in Section 6 followed by the 
managerial implications in Section 7. Finally, the conclusions have been provided in Section 8 along with guidelines that 
can be included in future research. 

2. Literature Review 

In this section, a comprehensive literature review has been presented on the inventory production model that has been 
utilized in this research followed by previous works on disruption recovery and production deteriorations. Potential 
research gaps have been discovered as a result of these findings, which we plan to address through our study. 

2.1. Economic Order Quantity (EOQ) Model 

Over the years, inventory production systems have become a significant area of interest to many researchers. A 
fundamental and mostly used inventory production model is the Economic Order Quantity (EOQ) to determine when to 
order and how much to order [10]. A traditional EOQ model considers the demand from the consumer and then 
calculates the ordering costs, holding costs to determine the overall costs of the inventory. The target is to achieve the 
optimal order quantity at the minimal inventory cost [11]. For the past few decades, researchers have formulated their 
EOQ model under unchanging demand which means that most of the models were constructed assuming the demand 
rate as constant. For instance, [12] developed an EOQ model with fixed demand while considering backlog and shortage. 
[13] Suggested an EOQ model with a constant demand for a powdered drink production unit to minimize the total 
inventory costs. Nonetheless, demand can fluctuate with time and so consideration of time-dependent demand has 
gotten significant attention from contemporary researchers and academicians. To incorporate the fluctuating nature of 
demand, some models have been developed to extend the idea of considering demand as a varying function of time. For 
example, some research works have been performed assuming a linear trend of demand [14-15]. Later various types of 
time-dependent demand such as exponential demands were considered in the EOQ models [16-17].  

2.2. Inventory Model for Deteriorating Products 

Many relevant research works have been identified for multi-echelon inventory production systems of deteriorating 
products. A few studies have been developed to consider the deterioration effect in the EOQ inventory model such as an 
EOQ model with payment delays and unpredictable deteriorate rate [18], a deterministic EOQ model with payment 
delays and changing deterioration rate [19], an EOQ model considering production shortage under ramp type demand 
[20]. Later some recent works have also been explored to analyze the deteriorating products inventory with emerging 
techniques such as two warehouse production systems for deteriorating inventory items with fuzzy demands [21], 
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mitigating deterioration risks for the medicines with the application of Blockchain philosophy [22], etc. Some works 
have also been performed considering different economic conditions such as establishing a multi-layer supply chain 
system for deteriorating goods facing partial backorder and inflations [23], developing an inventory model for the 
deteriorating products with seasonal demands [24], a probabilistic model for deteriorating products inventory with 
Ramp Type Demand Rate under Inflation [25], an integrated production model for deteriorating items considering 
price-dependent demand for two-level trade policy [26], etc.  

2.3. Disruption Risks and Recovery Strategies 

Disruption risks are often considered the primary impediments that raise an imbalance between an efficient inventory 
system and total production costs. Disruptive events are defined as uncertain and unprecedented occurrences such as 
natural calamities, labor strikes, machine breakdowns, process interruption, etc. that hinder the conventional flow of 
value propositions within a supply chain [27]. Disruption sources can be classified into five categories such as (𝑖) 
demand disruptions (𝑖𝑖)  supply disruptions (𝑖𝑖𝑖)  legislative disruptions (𝑖𝑣)  infrastructural disruptions (𝑣) 
catastrophes [28-29]. When there is any disruption in the production system, the production rate becomes lower than 
the demand rate which creates a shortage in the production system.  

In order to recover from disruption risks, many researchers come up with the idea of establishing a resilient supply 
chain system. A resilient supply chain can anticipate the possibility of a production mishap and take appropriate actions 
to counter it. In this regard, many researchers have proposed suitable recovery strategies to mitigate the effects of 
disruptions. For example, [30] had proposed a recovery model for an imperfect single-stage production system. Besides, 
suitable recovery plans for two-stage and three-stage inventory production systems were also developed by the 
researchers [31-32]. Recently, many researchers have tried to configure a resilient supply chain to recover from the 
COVID-19 pandemic risks. For instance, [33] developed an inventory production model with the help of an integer 
programming approach to make the profit maximum amid the COVID-19 outbreak. [34] Designed a sustainable and 
resilient closed-loop supply chain network to incorporate responsiveness in the supply chain configuration during the 
pandemic.  

After analyzing the pertinent contemporary literature, the following research gaps have been identified. 

 There is hardly any study that addressed the recovery plan from the COVID-19 pandemic disruptions for the 

deteriorating products. 

 The cost of the individual component and the selling price of the deteriorating products vary with time in the 

practical scenario which is often overlooked by many researchers. 

 Most of the existing researches is confined to developing a linear programming model for proposing an effective 

recovery mechanism whereas a complex non-linear model may capture the practical scenario more accurately. 

This research aims to cover all these research gaps and propose a suitable recovery plan for the deteriorating products 
amid the COVID-19 pandemic situation.  

3. Problem description 

In this section, the details of the formulated problem have been discussed. We are considering the time-dependent 
quadratic demand of a deteriorating product that is undergoing COVID-19 disruption risk. This inventory problem aims 
to determine the optimal order quantity to maximize the total net profit as much as possible. The structure of the 
production model for a finite time zone is depicted in Figure 1 below. 

 

Figure 1 An inventory system after a single disruption 
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Due to the sudden occurrence of the COVID-19 pandemic, the global supply chain system has been paused for a while, 
the production system of the deteriorating products also undergoes the disruption effect. The production system fails 
to function properly for a certain amount of time. The production again starts after the disruption effect has been 
recovered by developing a resilient supply chain configuration. Nonetheless, the system encounters backorder and lost 
sales cost owing to the disruption effects. In order to fight against the COVID-19 disruption effect, a revised ordering 
policy has been suggested to recover the production in the disruption period, as demonstrated by the dashed line in 
Figure 1. The pre-disruption production plan is also shown using the solid line. As we can see after a certain time, the 
production system returns to its original state. The current stock level gradually reaches zero as shown in the above 
figure. The production process is continuous, so the decision variable (order) is changed with the disruption scenario. 
In a real situation, the production system can face a single disruption or a series of disruptions. However, a resilient 
supply chain system should establish adequate facilities to prevent further losses amid COVID-19 effects. In this 
connection, only a single-stage production system with COVID-19 disruption is considered. The production system is 
assumed to be reliable and no inflation has occurred in this entire time horizon. 

3.1. Notation 

In order to formulate the mathematical model, the following notations have been utilized. 

𝑛 Optimal number of orders which is an integer decision variable for this problem 
𝐶 Capacity of the production system in the entire planning horizon, known to the system 

𝑄𝑗−1 Lot size during 𝑗
𝑡ℎ

cycle, j = 1, 2 … . n 
𝐼(𝑡) Inventory level at time t. 
𝑇𝑗 The time when the inventory level of 𝑗

𝑡ℎ
 cycle reaches zero 

𝑃 Replenish interval length 
𝑈 Production rate (units/time) 

𝑑(𝑡) Demand rate (units/ time), 𝑑(𝑡)  = 𝑎 + 𝑏𝑡 + 𝑐𝑡2;  𝑎, 𝑏, 𝑐 > 0 
𝐴 Component cost ($), where 𝐴 = 𝐴0(1 + 𝐶𝑐)𝑡, A0 is the fixed component cost at 𝑡 = 0 
𝑅 Selling price ($), where 𝑅 = 𝑅0(1 + 𝑆𝑟)𝑡, R0 is the fixed selling price at 𝑡 = 0 
𝐶𝑐  Component cost inclination rate ($/units/unit time) 
𝑆𝑟  Selling price inclination rate ($/units/unit time) 
𝐸 Production interval length 
𝑀 Ordering cost ($/order) 

𝐻𝐶 Holding cost ($/units/unit time) 
𝜓 Deterioration rate assumed to be a constant and 0 <  𝜓 < 1  
𝑇𝑑  Disruption (shortage) period, assumed to be a constant. 
𝐼𝑡  Total idle time for the system 

𝐷𝑐 Total set up time for the system 
𝑆𝑡  Deteriorating cost ($/units/unit time) 
𝜔 Weightage contributing to the backorder cost 
𝐵 Backorder cost ($/order) 
𝐿 Lost sales cost ($/order) 

3.2. Assumptions of the model 

The proposed mathematical model is based on some assumptions which are listed below. 

 The production rate 𝑈 is finite. 

 Both component cost and selling price of the deteriorating product incline at a continuous rate per unit time to 

the end consumer and inclination rate is constant for that entire planning horizon. 

 The deteriorating cost per item must be different from the per-unit component cost. 

 Demand 𝑑(𝑡), follows the quadratic nature of an expression and it can be written as 𝑑(𝑡)  = 𝑎 + 𝑏𝑡 +

𝑐𝑡2;  𝑎, 𝑏, 𝑐 > 0 

 The total planning horizon is finite. 

 No shortage is allowed in the pre-disruption period. 

 Lead time is not changing with each cycle. 

 Deterioration rate, 𝜓 is known and fixed. 

 Return or replacement policies are not considered for deteriorating products. 
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4. Model formulation 

Here, a fixed replenishment interval has been considered. It is aimed to obtain the optimal number of orders, 𝑛 to 
maximize the total amount of profit. The production system has been started at the time, 𝑡 = 0 and the production 

system has been stopped due to the presence of the disruption for the disruption period 𝑇𝑑  . The overall production 

starts when the lot size is 𝑄0. With the progress of time, the inventory level is depleted to fill the consumer demands. At 

the time 𝑡 = 𝑡𝑗, the inventory level of the system in 𝑗𝑡ℎcycle depletes to zero. The inventory level of the system at any 
time, 𝑡 can be described by the following differential equations 

𝑑(𝑡)

𝑑𝑡
+ 𝜓∗𝑑(𝑡) = 𝑈; 𝑃 ≤ 𝑡 ≤ 𝑗𝑃 ( 1 ) 

Which can be written as 

𝑑(𝑡)

𝑑𝑡
= 𝑈 − 𝜓∗(𝑎 + 𝑏𝑡 + 𝑐𝑡2); 𝑃 ≤ 𝑡 ≤ 𝑗𝑃 ( 2 ) 

 

The time period can be expressed as 

T =  E/n ( 3 ) 
 

𝑡𝑘 = 𝑘𝑃, 𝑘 = 1,2,3 … . 𝑛 ( 4 ) 

 
From the boundary rule, 𝐼(𝑡) = 0 at 𝑡 =  𝑘𝑃 and Eq. ( 2 ) becomes 

𝐼(𝑡) = (𝑈 − 𝜓𝑎)(𝑡 − 𝑘𝑃) −
𝑏𝜓

2
(𝑡2 + 𝑃2) −

𝑐𝜓

3
(𝑡3 + 𝑘𝑃3) ( 5 ) 

 

The lot size during the 𝑘𝑡ℎ cycle is 𝐼(𝑡) at 𝑡 =  (𝑘 − 1)𝑃 and we get 

𝑄𝑘−1 = (𝜓𝑎 − 𝑈)𝑃 −
𝑏𝜓

2
(1 − 2𝑘)𝑃2 −

𝑐𝜓

3
(2 + 3𝑘)𝑃3 ( 6 ) 

With the help of Eq. ( 5 ) and Eq. ( 6 ), total inventory cost can be determined as expressed in Eq. ( 7 ). 

Total holding cost 

𝐻𝐶(𝑛) =
𝐴𝑜 ∗ 𝐻𝑐

𝜓
[

𝐶

𝑛𝜓
(exp𝜓𝑛𝑃 − 1) − {𝑎𝑝 −

𝑏𝑃2

2
−

2𝑐𝑃3

3
+

1

2
𝑛(𝑛 + 1)(𝑏𝑃2 − 𝑐𝑃3)}] ( 7 ) 

Total component cost can be obtained by utilizing Eq. ( 8 ). 

Total component cost 

PC (𝑛) = Ao (
𝑃((1 − 𝐶𝑐)𝑛𝑃 − 1)(𝜓𝑎 − 𝑈)

2((1 − 𝐶𝑐)𝑃 − 1)
−

𝑏𝜓𝑃2

2
(

(1 − 𝐶𝑐)𝑛𝑃 − 1

((1 − 𝐶𝑐)𝑃 − 1)
−

2

(𝐶𝑐)2𝑃
)

−
(𝜓𝑐𝑃3)

3
(
2((1 − 𝐶𝑐)𝑛𝑃 − 1)

(1 − 𝐶𝑐)𝑃 − 1
+

3

(𝐶𝑐)2𝑃
))

 ( 8 ) 

 

The deterioration costs of the products can be expressed by using Eq. Error! Reference source not found.. 

Total cost from product deterioration 

DC (𝑛) = Dc [
𝐶

𝑛𝜓
(exp𝜓𝑛𝑃 − 1) − {𝑎𝑝 −

𝑏𝑃2

2
−

2𝑐𝑃3

3
+

1

2
𝑛(𝑛 + 1)(𝑏𝑃2 − 𝑐𝑃3)}] ( 9 ) 
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Because of the COVID-19 disruptions, the shortage may create in the inventory which will be adjusted by the backorder 
and lost sales quantities. The cost components for the adjustments are indicated by Eq. ( 10 ) and Eq.( 11 ). 

Total backorder cost 

𝐵𝐶(𝑛) =
𝐶𝜔

𝑛
𝐵 ∗ (𝑇𝑑 + 𝑛𝑆𝑡 − 0.01(𝑛 − 1)) ( 10 ) 

Total lost sales cost 

𝐿𝐶(𝑛) =
𝐶(1 − 𝜔)

𝑛
𝐿 ∗ (𝑇𝑑 + 𝑛𝑆𝑡 − 0.01(𝑛 − 1)) ( 11 ) 

 

Total ordering cost can be computed by multiplying number of orders with cost per order as expressed in Eq. ( 12 ). 

Total ordering cost 

𝑂𝐶(𝑛) = 𝑀𝑛 ( 12 ) 
 

The total amount of revenue that would be generated by considering the logarithmic selling price per unit is written in 
Eq. ( 13 ). 

Total sales revenue 

𝑆𝑅(𝑛) =
𝑛((𝑅𝑜(𝑆𝑟 + 1)𝑛𝑃)(𝑛𝑎 + 𝑏𝑛𝑝 −

𝑏
log (𝑆𝑟 + 1)

−
2𝑛𝑐𝑃 ∗ 𝑒𝑃

log (𝑆𝑟 + 1) + 1
−

2𝑐 ∗ 𝑒𝑃

log (𝑆𝑟 + 1)
))

−
𝑎𝑆𝑟

log (𝑆𝑟 + 1)

 ( 13 ) 

 

Net profit is a function of 𝑛, so it is needed to find out the interdependency between the independent variable 𝑛 and the 
dependent output Net Profit (NP). The objective function of this model is to maximize NP expressed as: 

Net Profit (NP) = Sales revenue – holding cost – procurement cost – deteriorating cost – ordering cost – backorder cost 
– lost sales cost 

𝑁𝑃 = 𝑆𝑅 − 𝐻𝐶 − 𝑃𝐶 − 𝐷𝐶 − 𝑂𝐶 − 𝐵𝐶 − 𝐿𝐶 

=
𝑛((𝑅𝑜(𝑆𝑟 + 1)𝑛𝑃)(𝑛𝑎 + 𝑏𝑛𝑃 −

𝑏
log (𝑆𝑟 + 1)

−
2𝑐𝑃 ∗ 𝑒𝑃

log (𝑆𝑟 + 1) + 1
−

2𝑐 ∗ 𝑒𝑃

{log (𝑆𝑟 + 1) + 1}2))

−
𝑙𝑜𝑔(𝑆𝑟 + 1)
log (𝑆𝑟 + 1)

−
𝐴0 ∗ 𝐻𝑐

𝜓
[

𝐶
𝑛𝜓

(𝑒𝜓𝑛𝑃 − 1) − {𝑎𝑝 −
𝑏𝑃2

2
−

2𝑐𝑃3

3
+

1
2

𝑛(𝑛 + 1)(𝑏𝑃2 − 𝑐𝑃3)}]

−𝐴0(
𝑃((1 − 𝐶𝑐)𝑛𝑃 − 1)(𝜓𝑎 − 𝑈)

2((1 − 𝐶𝑐)𝑃 − 1)
−

𝑏𝜓𝑃2

2
(

(1 − 𝐶𝑐)𝑛𝑃 − 1

((1 − 𝐶𝑐)𝑃 − 1)
−

2

(𝐶𝑐)2𝑃
)

−
(𝜓𝑐𝑃3)

3
(
2((1 − 𝐶𝑐)𝑛𝑃 − 1)

(1 − 𝐶𝑐)𝑃 − 1
+

3

(𝐶𝑐)2𝑃
)) − 𝐷𝑐[

𝐶

𝑛𝜓
(𝑒4𝑛𝑃 − 1) − {𝑎𝑝 −

𝑏𝑃2

2
−

2𝑐𝑃3

3
+

1

2
𝑛(𝑛

+1)(𝑏𝑃2 − 𝑐𝑃3)}] −
𝐶𝜔

𝑛
𝐵 ∗ (𝑇𝑑 + 𝑛𝑆𝑡 − 𝐼𝑡(𝑛 − 1)) −

𝐶(1 − 𝜔)

𝑛
𝐿(𝑇𝑑 + 𝑛𝑆𝑡 − 𝐼𝑡(𝑛 − 1))

−𝑀𝑛

 ( 14 ) 

Eq. ( 14 ) is the net profit expression that is maximized in this study for the optimal number of orders. 
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5. Numerical Analysis 

In this section, the formulated mathematical model is solved and analyzed with the help of three case studies. To obtain 
the values of model parameters, we rely on the extant literature (e.g., [27], [35]). The mathematical model was coded in 
MATLAB 2018a by using the default settings. The Intel Core i3 processor with 8.00 GB RAM and a 3.40 GHz CPU was 
chosen to run the code smoothly. 

5.1. Solution Approach 

Since the final objective function is non-linear, we need to utilize heuristic algorithms to obtain the optimal solutions. 
For the proposed mathematical model, we have employed two different heuristics named the Genetic Algorithm (GA) 
and the Whale Optimization Algorithm (WOA). Although GA is an old and popular nature-inspired heuristic method to 
solve a non-linear optimization problem [36], it has a slow convergence rate in some test problems to reach the optimal 
solution which limits the fruitfulness of this algorithm. On the contrary, the WOA is a recently evolved heuristic 
approach that shows competitive performance compared to other nature-inspired algorithms [37]. In this research, we 
would solve the model by employing both approaches and then compare their performances.  

The optimal number of orders has been determined and associated net profit is also been calculated. The integer value 
of 𝑛 has been used to determine the optimum profit which is indicated by 𝑛 ∗. The overall model needs to be solved by 
employing an integer programming approach. However, the feasibility and optimality of the model will not be hampered 
since this is an unconstrained optimization problem. Substituting the value of 𝑛 ∗ in 𝑁𝑃 (𝑛 ∗), maximized net profit has 
been obtained. The solution obtained here would provide the maximum in the entire planning horizon. So, the solution 
is both a local and global optimum solution. However, before employing the proposed heuristics, we need to test the 
optimality condition of the developed problem. For a high-order non-linear problem, we know that both the first-order 
necessary condition and second-order sufficient condition must be met. Mathematically, the requirements can be 
expressed by using Eq. ( 15 ) and Eq. ( 16 ) as shown below. 

𝑑(𝑁𝑃)

𝑑𝑛∗
= 0 ( 15 ) 

𝑑2(𝑁𝑃)

𝑑𝑛∗2
< 0 ( 16 ) 

5.2. Numerical Examples 

We have solved the proposed mathematical model by taking appropriate values for each model parameter. At first, we 
find out the range of the model parameters as depicted in Table 1. The range of the model parameters has been collected 
with the help of relevant researchers. Next, three case problems have been conducted to analyze the solutions properly. 
For the first case study, we picked up suitable values of the parameters from Table 1 and then utilize them to solve the 
model. The values of the parameters for the first case study are summarized in Table 2. The parameters for the second 
and third case studies are placed in Table A.1 and Table A.2 under Appendix A. The parameters for the GA and WOA are 
presented in Table 3.  

Table 1 Range of the model parameters 

Parameter Value Parameter Value 

𝐴 1-10 𝐸 2-8 

𝐶𝑐 0.01-0.9 𝐻𝐶 0.0001-0.005 

𝑆𝑡 0.001-0.1 𝐼𝑡 0.01 

𝑅0 0.1-0.9 𝜓 0.05-0.7 

𝑆𝑟 0.5-8 𝐵 400-800 

𝑎 600-1200 𝐿 200-600 

𝑏 300-650 𝑈 400-1000 

𝑐 0.1-0.9 𝑇𝑑 0.1-0.8 



World Journal of Advanced Research and Reviews, 2022, 13(01), 355–368 

362 

Table 2 Selected values of the parameters for the first case study 

Parameter Value Parameter Value 

𝐴 2.2 𝐸 4 

𝐶𝑐 0.04 𝐻𝐶 0.0002 

𝑆𝑡 0.05 𝐼𝑡 0.01 

𝑅
0 0.8 𝜓 0.1 

𝑆𝑟 1.1 𝐵 600 

𝑎 800 𝐿 400 

𝑏 450 𝑈 900 units/week 

𝑐 0.5 𝑇𝑑 0.1 

 

Table 3 Parameters of GA and WOA 

Heuristics 
Parameters 

Notation Details Value 

GA 

𝑁𝑝𝑜𝑝 Number of populations 150 

MR Mutation rate 0.4 

CR Crossover rate 0.5 

Fun. Tol. Function tolerance 1×10-6 

WOA 

𝑁𝑝𝑜𝑝 Number of populations 150 

𝑎 Convergence factor 1 

𝑇𝑚𝑎𝑥  Maximum number of iterations 200 

𝐵. 𝐷 Step size 0.6 

 

Table 4 Solutions obtained from Genetic Algorithm (GA) 

Case  𝒏 𝑵𝑷 CPU run time (milliseconds) 

1. 5 75546 23450 

2. 6 78341 26200 

3. 4 67211 24230 

 

Table 5 Solutions obtained from Whale Optimization Algorithm (WOA) 

Case  𝒏 𝑵𝑷 CPU run time (milliseconds) 

1. 5 75546 18630 

2. 6 78341 21410 

3. 4 67211 20770 
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For the first case study, the optimal value of profit is obtained at 𝑛 = 5. For this solution both Eq. ( 15 ) and Eq. ( 16 ) are 
satisfied. Similarly, for the second and third cases, optimal solutions have been recorded. Identical solutions have been 
obtained from both GA and EOA as summarized in Table 4 and Table 5. However, in terms of CPU elapsed time to 
converge to the optimal solution, EOA takes less time than GA. Therefore, for the proposed mathematical model, it can 
be stated that the EOA performs better than GA in terms of convergence.  

 

Figure 2 Total net profit vs number of orders 

For the first case study, the change of the optimal solution with the change of the number of orders has been illustrated 
graphically in Figure 2. It can be observed from Figure 2 that, with the increase of the order number, NP increases until 
it reaches the optimal solution. However, after the optimal point, NP decreases drastically with the increase of orders. 
Therefore, we can say that the solution found from this model is both a local and global optimum solution. 

6. Sensitivity Analysis 

Sensitivity analysis plays a pivotal role to analyze a mathematical model [38]. In this study, different model parameters 
have been utilized, and changing the value of these parameters will result in an alteration of the value of total profit. 
Although the net profit varied with the fluctuation of all the model parameters, some parameters change the total profit 
very significantly, which are discussed in this section. In order to inspect the changes, 5% increase and 5% decrease of 
the model parameters have been considered as shown in Table 6. The corresponding change of the net profit is also 
shown in Table 6.  

Table 6 Sensitivity Analysis for model parameters 

Parameters Change in % Change of NP in % 

𝑅0 

+5% +29.33% 

-5% -31.36% 

𝐴0 

+5% -0.70% 

-5% +0.72% 

𝑀 
+5% -0.28% 

-5% +0.29% 

𝑈 
+5% +0.23% 

-5% -0.23% 

𝐶𝑐 

+5% +1.45% 

-5% -1.59% 

𝑆𝑟 +5% +49.66% 
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-5% -44.84% 

𝐵 
+5% -4.17% 

-5% +4.16% 

𝐿 
+5% -0.003% 

-5% +0.0029% 

 

Some key decisions regarding sensitivity analysis can be made for the model parameters after analyzing Table 6. For 
instance, the net profit (NP) will be increased if we increase the selling price per unit (𝑅0). However, NP will be 
decreased if the component cost (𝐴0) increases. Similarly, a trade-off relationship has been found between the cost per 
order and the profit. Nonetheless, with the increase of the production rate 𝑈, it will increase the value of NP. 

While considering the change of net profit with respect to the incline rate of component cost (𝐶𝑐) and selling price (𝑆𝑟), 
it has been found that an increasing inclination rate will increase the volume of profits. As the backorder cost per order 
increases, the net profit (NP) will be decreased. The increasing value of lost sales cost per order will decrease the value 
of net profit (NP). On the basis of the above table, it can be clearly stated that lost sales and backorder costs due to 
COVID-19 disruptions have an important contribution to determining the optimum number of orders in order to 
maximize profit. 

 

Figure 3 Individual and Interaction effects from ½ factor factorial analysis 

Table 7 Findings from the ½ factor factorial analysis 

Parameters Effect F value P value 

 𝑅0 6860 8.11 0.00001 

𝑆𝑟 17352 17.36 0.00000 

𝐵 468 0.27 0.6250 

𝐶𝑐 512 0.59 0.5210 

𝑅0* 𝑆𝑟 1890 3.46 0.0150 

𝑅0* 𝐶𝑐 938 1.28 0.1356 

𝑅0* 𝐵 2017 4.29 0.0050 

It is apparent from Table 6 that 𝑹𝟎, 𝑺𝒓, 𝑩, and 𝑪𝒄 are the most crucial parameters to vary the value of the objective 
function significantly than other model parameters. Therefore, the proposed mathematical model is highly sensitive to 
these model parameters and their effects need to be investigated properly. To analyze their effects, a ½ factor factorial 
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analysis has been conducted and the findings have been presented in Table 7 and Figure 3. It is evident from Table 7 
and Figure 3 that 𝑺𝒓 has the highest contribution to the change in the value of the objective function. Nonetheless, the 
interaction effect between 𝑺𝒓  and 𝑹𝟎  is also found significant which symbolizes that the model can be altered 
tremendously if both the inclination rate and original value of the selling price are changed in the same direction. 

7. Managerial Implications 

The research has several implications in terms of managerial perspectives which are discussed below. 

 Configuring a resilient supply chain network: The COVID-19 pandemic is a global crisis that gives a clear 

message to the industries to be proactive rather than reactive. In this study, we discovered that due to COVID-

19 pandemic disruptions, a significant amount of backorder and lost sales costs have been incurred which 

reduce the supply chain surplus of an industry. In this connection, a resilient supply chain configuration should 

be established which will be able to anticipate the further occurrence of any risks in the future and act 

accordingly.  

 Paying special attention to component cost and selling price: Due to the COVID-19 pandemic, consumers’ 

economic condition has been changed significantly and this also influences their buying decisions. The 

component cost and selling price of the deteriorating products have become one of the most significant deciding 

factors to enhance the sales of these products that have been established from this research. Therefore, the 

industry managers of the deteriorating products should pay attention to selling price and component cost. 

 Avoiding placing orders abruptly: This study establishes a strong relationship between numbers of orders and 

total net profit and discovers that placing lower or higher than the optimal number of orders will drastically 

reduce the net revenue of the organization. So, the industry needs to find out the optimal number of orders for 
their production inventory system of the deteriorating products amid COVID-19 disruption risk 

8. Conclusion 

This research proposed a deterministic inventory production system for deteriorating items amid COVID-19 disruption 
risks and considered the deterioration rate constant. This model has vitalized the concept of the EOQ production model 
with quadratic demand function and time-varying component cost as well as the selling price. Moreover, the proposed 
model considered disruption and its effect of it on the production model. Lost sales cost and backorder cost are the two 
main effects associated with production disruption that are faced due to the COVID-19 Pandemic. These are also 
considered in this model. The model has become robust by incorporating the non-linear nature of a complex production 
system.  

The formulated problem is then solved with two nature-inspired algorithms named GA and WOA. Both algorithms 
provide identical solutions for three different cases, however, EOA takes less time to converge in comparison to GA. The 
findings indicate that the net profit has a strong correlation with the number of orders and without determining the 
optimal order numbers, the company may face a huge profit loss. The sensitivity analysis has been conducted to identify 
some crucial parameters that alter the net profit critically. Industry managers may adopt the proposed model for their 
deteriorating product industry to recover from the COVID-19 disruption risks and make profits.  

Recommendations 

In the future, the model can be integrated with the concept of a multi-product inventory system under disruptive 
scenarios. Also, the stochastic nature of the model parameters may be included to deal with the uncertain business 
environment. Deteriorating products may face multiple disruptions in different stages of an inventory system. 
Therefore, multiple disruption cases may also be included in this study. Finally, the model should be tested and validated 
with other recently developed algorithms to justify the applicability of the formulated problem. 
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Appendix A 

Table A.1: Selected values of the parameters for second case study 

Parameter Value Parameter Value 

𝐴 2.0 𝐸 5 

𝐶𝑐 0.05 𝐻𝐶 0.0005 

𝑆𝑡 0.06 𝐼𝑡 0.05 
𝑅

0 0.6 𝜓 0.2 

𝑆𝑟 1.2 𝐵 650 

𝑎 900 𝐿 420 

𝑏 550 𝑈 900 units/week 

𝑐 0.7 𝑇𝑑 0.2 
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Table A.2: Selected values of the parameters for third case study 

Parameter Value Parameter Value 

𝐴 1.8 𝐸 3 

𝐶𝑐 0.06 𝐻𝐶 0.0003 

𝑆𝑡 0.04 𝐼𝑡 0.03 

𝑅
0 0.7 𝜓 0.15 

𝑆𝑟 1.0 𝐵 550 

𝑎 850 𝐿 350 

𝑏 580 𝑈 900 units/week 

𝑐 0.9 𝑇𝑑 0.15 

 

 

 

 


