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Abstract

The g-derivative operator was stated as a convolution of two analytic functions. The necessary and sufficient conditions
for a Janowski’s harmonic g-starlike functions were studied. Also, some subordination properties of Janowski’s analytic
g-starlike functions were studied. This article ends with a few open questions.

Keywords: g-Derivative operator; g-Integral operator; Janowski harmonic functions; Janowski analytic functions.

AMS Subject Classification: 30C45

1. Introduction

Let Ardenote the class of functions fnormalized by

which are analytic in the open unit disc U(1) = U where,
U(r)={z:|z| <r}.
The applications of g-derivative operator D;qdefined by [3] (see also [4]) as

D2 =14+ 307 ket g e (0,1), 24£0

Lab—2

D, flz) |s_u= f{0),

s

(where [k]q= 1+q+---+g*-1) to the so called g-analysis in Geometric Function Theory of Complex Analysis dates back to
late 1980s. It started with the generalization of the class, S’ of starlike functions in U satisfying

= fz)

For=1 - o1 0, m-.{ )

}::} 0, zeld
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The generalized class of starlike function called the class of g-starlike functions of fdenoted by, was defined by Ismail
et al [7] P&y as the following:
i

Definition 1.1 A function f € Axis said to belong to the class’p‘&&. if
2D, (2] 1 ‘ 1
fiz) | —q| 1 )

q€(0,1);zeU.

Meanwhile, in 1869, Thomae [1] introduced the g-integral operator
1 [eY)
ELf@ = [ 1@ dg= =) ) ¢ @
0 =

provided the g-series converges. Jackson [2] also defined the general g-integral operator

A g Ml L]
T flz) = f Floud, ¢ = / Flodg j FlCMd, ¢ ==2(1 - q) er‘ ErS
1« Ml 0

el

provided the g-series converges. Recently, Agrawal and Sahoo [8] defined and studied the class of functions,

Pér.' la) of ¢ -starlike of order alpha. They established some important results which includes Lemma 1.1, stated as:

Lemma 1.1 Let f € Axand q € (0,1). Then

|- [.ID.Z, T Hz} [.'f - |: ap o
L '-'f SR IL{}_{;.H;:;
tfE) lng . (12)

We say that the function 7 :U — C is subordinate to the o : U — C, represented as T <o or 7(z) <o(z) if there exists the
complex-valued function v : U — U, with v(0) = 0, such that

t(z)=o(v(z)), zel.

Previously Janowski, in 1973 introduced the class of functions S*(E,A), for arbitrary fixed numbers, E € (-1,1] and A €
[-1,1) as follows:

Definition 1.2 [23]. Let f€ Ak, and v be analytic in U with v(0) = 0, [v(@)| <1 «(EA)]|

ifand only if

ffi=y
o =Pl

fiz) -

’

for some class of functions P such that

P(v(z)) = (1 + Ev(2))(1 + Av(2))%, zeU.
Janowski determined among other results the bounds for

Re {pl:::l + ’?;“,."f]} =0, Re {Z"“ ["jf"} =0, pePEA
plz) pl) .

He also determined the bounds for |f{z)| and |f(z)| of the function f€ S*(E,A). Many authors like [18] - [28] to mention
but a few had studied some properties of functions in the family S*(E,A).
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Motivated by some applications of g-calculus to the Geometric Function Theory of Complex Analysis introduced and
studied by [7], and by many authors like [5] -[18] to mention but a few, in this article we extend the study of g-calculus
to some subordination properties of the Janowski’s class of harmonic and analytic functions.

The main aim of this article is to define and study the followings:
Define

the g-derivative operator Dzq0n f € Axusing the convolution product of two analytic functions,

PS; 1, (£, A)

the Janowski’s class of harmonic g-starlike functions

PSS, A)

and the Janowski’s class of analytic g-starlike functions
Study

P&, A)

the necessary and sufficient conditions for the function f€ Suto be in the class

the sufficient condition for the function f€ Hoto be in the class
ol
PS4 (€, A

PS: (€, A

the necessary and sufficient conditions for the function f€ PJ°to be in the the class’ ~'¢.7 *
and calculate some subordinate properties of the Janowski analytic g-starlike functions.
Preliminaries Concepts of the g-Class of Janowski Functions

Firstly, we let H denote the class of harmonic functions in the unit disc U and by Ho we denote the class of normalized
Al r o
byJIr (0} = .0 Jrﬂm —1 =10 The function f € Ho can be written as

f=h+g,(2.1)
3
where both h and g are analytic. Also h and g can be expressed as

h(z) =z+ Yy, a; z"and g(z) = byz*,|b| < 1,

that means

e 4]

HEOEDY (w | h,,;wj__ amo=1|b| =1, zcl, fcHy

k=1 . (2.2)

The function h is called the analytic part while g is the co-analytic part of f. By Su we denote the class of functions f € Ho
which are univalent and sense-preserving in U. We note that the class of functions f € Axis the same as the class of
functions f € H for which the co-analytic part vanish. Furthermore, a necessary and sufficient condition for the
Rzl .

= =1

function f€ Hoto be locally univalent and sense preserving in U is that ' #".=!

Secondly, the g-derivative operator D,qon the function f€ Ak can be presented as the convolution of two analytic
functions as follows:
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o o s ul =1
Definition 2.3 Let p € P, such thatl”l\z\-' =1+ L.‘; 2%~ Then the q-derivative,
Dzq0n the function f€ Axis define as follows:
(Tr4epigz) o (D= plzh+ [ —,:,_f?,.,:_], mo 1

| (Tetepdgez) o (PR pla)+ [T oy, me MY {1}

Definition 2.4 The function f€ Ho is harmonic q-starlike function T"b? Hif
(1
ﬁ-rjjarg[ﬁiff[r' explig])|) =0, 2=rexpiol. o 0.2x], rc (0, U 23
or equivalently )
o ) (D 2]
2.4 R,r’: I:_,— i
( . ) i'l'l: :]

where

25) (DY fiz) o= 2(D, ki (z) - 2(D. g1 ()

Remark 2.1 Assume

(Do =) _ 2(D: g1z
a-] --'r[.'?;'
[le:‘grlr'l';.'_:l ..'I:T.-"x_.-.|_lr]l:::l

and substituting ~ Ti=1  for  Jizl  in (1.1) gives (2.4).
We introduce Janowski g-classes of functions as follow:

Let -A < E <A <1, then,

5
* PS r.r H ""_’ "4) denote the class functions f € Susuch that
L @INE | 1ses
ot S -,
=) 11 Az

(2.6)

O P
. and]II ég.ﬁ' &, A) denote the class functions p € P such that
:r-.DTUPNH::NI » | - &=

el 1A @.7)

Necessary and Sufficient Conditions

Using the technique of Dziok [25] we, calculate the necessary and sufficient conditions for the function f€ Suto be in the

PS: 4, (£, A

class

SRS R
Theorem 3.1 Let f € Sy, thenw'Ir €7 "E"r.'-'H- (&, A) if and only if
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f2) xP(z56) # O, (ceClsl=1) (3.1)
where

(A—Ewz+(1+Egz* 2+ E+AK Z— (14 Egz

Pizc) - : - -
s 1— 2],z —gz* 1 — (2,7 4 43°

Proof. Let f € Su of the form (2.1). Then~IIr € pb@:'ﬂ & A) if and only if equation

(2.6) is satisfied, or equivalently

(DL ) 1+ &
Red Do L0701 ‘0, (e, 1]
{{ 12 } Tra /b ke =L

(3.2)

To prove Theorem 3.1, we need to show that conditions (3.1) and (2.6) are equivalent. Since

TR g 2) = 2D RI(2) = hiz) + ST :
(Fom R z) = 2(D. ghilz] =2+t (33

and

izl =hiz) =

From (3.2), we obtain
(1+ ASHDIREFI2) — (1 + £ f(=2)
= (14 A¢)=(D, h)z) — (1 = ECIhiz)

— [(l + A)=z(D. (=) — (1 —EC:][F{.“_:I]

h-l;z}*( 2(1 — Ag) _z-;l—l—b;])

1 — 2],z + q2? 1 — =

[

o s 2(1 1 Ag) B z{1 | &)
9z 1|27+ z* 1-%

= [z)* P izic). (3.4)
Hence, the proofis complete.

Substituting E = -A = -1 in Theorem 3.1 gives the next Corollary:

I € PS4 (=L i and oniy if

Corollary 3.2 Let E = -A = -1 with f € Sn. Then
f2) x®(z;6) # 0, (c€Clsl=1) (3.5)

where
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. - L F i i
Por 4+ (1 —¢hgz? 22— (1 —¢)g?°

Pz = — — -
\EES, I =2 2 — gzt 1— 2|2+ 47"

Next, we show the sufficient condition for function f € Ho to be in the class
PS;y(E,A)
Theorem 3.3 Let f € Ho. If fis defined as (2.2) and satisfies the condition
]
Z (Aper] + melbe) = 24— &)
k=1 , (3.6)
where
A+ (1 +E) =[k]q(1 + A)
and
Ti—(1 + E) = [Kk]q(1 + A). (3.7)
thond € PS4 1E,A4)

Proof. Let f{z) = z then Theorem 3.3 is true. If f € Ho of the form (2.2) and there exist k € N such that ax6= 0, k = 2 with
brk6= 0, since

Az [Klo(A-E), =[klf(A-E), k€N,

then (3.6) gives

S Ik Cagl 1)1 by
[

and

D2 gh(2)] = [Dagg(2)] > 1= by — STk, (el + b)) [

=2

= 1—by—|z] Y [K]y (Jax] + [bel) (1 =B }(1—2])

3

=0, zeU. (48]

L+
=

Since k >[k]qforallke N\ {1}, q € (0,1) then,

|h°(2)| = 19°(2)| 2 |Dzq h(2)| - [Dzqg(2)| 2 0

and

|h°(2)| - 19°(2)| = 0.

Hence, fis locally univalent and sense-preserving in U.
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e PS8

Suppose g is identically zero , Ismail et. al. [7] (see also [8]) proved the univalency of the function~IIr 7. Assume g
is not equivalent to zero, we need to show that z1 6= zz whenever f(z1) # f(z2). If z1, z2 € U with z1 -z2 # 0, since U is
simply connected and convex, then

2()=(1-0z1+{z2€U, =<1

Hence, we can write

Nz2) -flz))l= J, (22 = 20)(Dsgh) (2(D)) + (22 — 20) (D2q9(D) | de¢.  (3.9)

Taking the real parts of equation (3.9) divided by (zz -z1) gives,

(220 — flz1) k . EDUPPR FI B .

R'{ {M} = / R__,F [-—D.L.q‘h',l{_z{f;};l 4 "‘!—.Ih':ll"Dz i
-

- (D ) (0} pdgl.
o — I LZ! - z-J---I

'1
/ Re {':’D;.q ”zlr'a;',' - lD?qG"”‘:J } ”rql, ':'I-J"-“-ﬂ
U
That means

Re (D, h)(=(Cn) - (D08 = Re {{D, 0200 Z[L‘.]q|h_.-,.|

21 el S b
[ k-1

=1 ZL:|U_;.| Z:ﬂ: by .
k2 i1

And

Gin R D=0} — [(Dega) ()] = 0

also Za Tz
'Rf:{'f[' ,_. f L } = ).

(3.12) el

Hence, fis univalent.

JTeEPS 4E.A

Therefore,
such that

) if and only if there exits a complex-valued function v, with v(0) = 0, and |v(z)| <1, z€ U,

L H ey f
(Dot iizl 1 Euvlz)

Fzy L Ar(z), (313

that i . .
ae (DLH (2] — ()

)

(314) APz — E1(z)

<1, zell
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We need to show that

e I'H S a el
|\D_ﬁq Filz) — flz)

|ADLRFI(2) - Ef(2) =0, =zl {0}

v (3.15)

Let r € (0,1) be the radius of U, we have
(DY) — flz)] = [ADER Fiiz) — E5(z)

D (Kl = Vlag=® = [k, = 11by 2F

=2 =

— (A= &)z + > Ak, — Eags® =Y (Al + E); 2

k=2 k=1
< k]~ 1) el et Y (Rl + 1) Bl
fo=2k =1

~(A-Or+ Zj_ (AT = &) lal T = ) (A lkly + €)lbylr
=2 k=1

< r{kzﬂ(akmkwk)rk-l —204- e)} <0.

Hence,
Jlr = FS.':-:_"H :.E- bA.ul

In 1975, Silverman [22] studied the harmonic univalent functions f € Ho with negative coefficient of the form

(e [
f=hty hiz)==z Z |t 2 glz) = { 'k Z by b e [,
k=2 k=2

1) (3.16)

where ar= —|ak|, bx= (-1)9|bk|, k € N \ {1}. We denote such class of functions defined in equation (3.16) by PJ¢.

Next, we calculate the necessary and sufficient for the function f€ P3°to be in the class of functionpé;—ﬁi‘a-‘ “A«"
Ty os . [P LR a T An - y
Theorem 3.4 Let PSHIEA) =PI NPS €A with f € P]°. Then f € pS&'Q!’ (& A ifand only if

Y1 Ak lag| + 7 |be) <2(4-8), (3.17)
where

A+ (1+E)=[k]q(1 + &)

and

Ti=(1+ &) = [Klo(1 + ). (3.18)
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POy (e
Proof. The function=IIr €7 ‘bq-ﬁ (&, A) if and only if

(DIYS)2) — fiz)
APz ~ E1()

<1, zelU

which is equivalent to the following equation:

=
A

S (kg — Dlag] [21* + ([, + 1)[be] 274} fl
2A =€)z = 5, {(Alklg — E)laxl2* + (AlK], + E)lbal 2} |

(3.19)

Letr € (0,1) be the radius of U, with z € U. We have

522 {{Klg = Dlag] + (K] = Lilbelbr* -

1
_-l"\|=|

et L S
A=) = 2000 AR = Efap] = (AR +EBe[FrE 1 (320

The numerator of (3.20) cannot vanish for 0 < r <1. Thus

S HCARL, - Elas| 1 CAR], - E)bg]} w204 E)
kol .

Applying the method of proving Theorem 3.3, the theorem has been proved. Next,we calculate some subordinate

property of the ClaSSPSr,-.,_'F (&, *’J'U.

The Subordination Theory of the analytic Class of Janowski Functions

In this section we assume g is equivalent to zero. Using the technique of [30] we have the following subordination

results.

Lemma 4.1 Let h be starlike in U. Let ¢(0) = a, a € R+ with
Z(Deqd)(2) <h(2). (4.1)
Then

-
- ¥ s - i Iy k! f ] r Iy k!
olz) <a— j RO ey (0)
K] .

Proof. Equation (4.6) is equivalent to

(Do) (2) <z 'h(z). (42)

Calculating the g-integral on both sides of (4.2) from 0 to z gives

-
el = a— [ R e ()
WD .

Next,

Corollary 4.2 Let h be starlike in U. Let ¢p€ P with
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(P gl ~ hiz)
o(2) | (4.3)

Then

1 = L
olz) = pr{ - = r,r. - {/ fi-':i.:,]i:_I'f‘-r:ir-r':-"x‘:;'| }
g — 1) [y ' .

Proof. Let P(z) = Log$(z), then we can rewrite (4.6) as

= (Do P) (2) < Bi2)
equivalently as
(D P) (2] = = 1}:-.[:]. (4.4)
Calculating the g-integral on both sides of (4.4) and applying Lemma 1.1 gives

(L =g
In

Log [z} = / hltf ~dic ()
S '\‘ ) . (45)

Equation (4.5) gives the required result.

Next,

1+ E-' E T 1)
L Az, and ¢p€ P with ¥ PS (&, Ae". Then

- T3 O »
Proof. Let™ €7 'hr.r;-f’ (£, A) then,

;[_’T)[z:ln-_;] 53} . {1 | E'.’_]
The g-integral of equation (4.6) gives the required result.

Next,

."'-Ir = =7 3 |'. )
Corollary 4.4 Assume E =qand A= -q%and ™ (z) €7 ‘E'r.'-'ﬁ' £, .}U

Then,
o z) = — -
1) {1 —[2],2 —qzz}
_ Ing
where 7 = 1 -
Proof. Let
Ky

1 — [_}]G?- —+ fll':.z (47)
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Simple calculation on (4.7) gives

le:r)ua’*‘*— L ]' {l +':_F::I
ﬁ:g |] —_ fll'l"r.'_',_]. (48)

Hence (4.6) can be rewritten as

I. D 1l|---",| '?:I (D::JJK”]{'_:]

lz)

Ke @9
Calculating g-integral of (4.9) gives the required result.
Results and Discussion

Firstly, we present the results in this article as follows:

Let f € Su, we calculated the necessary and sufficient conditions for the function fto be in the class of?j AI

(1
Suppose, f € Ho, we calculated the sufficient condition for fto be in the class of functlon’p i H &, “A)I It 'r = P
Y -ﬂ' ._r’-‘l I

we calculated the necessary and sufficient conditions for fto be in the class of function gl b

Furthermore, with the assumption that g is identically zero, we calculated the some subordination properties of g-class
of functions.

Discussion
We note that

lim PS5, (€. A) = SH{E, Al
q— ’

’

hence the class of function studied by [27], [25] and [26], also

lim P& L (&£.A) - S'[E. A

gl

the class of function studied by [22], [21], [24], [27], [25], [23] and [28] to mention but a few.

Due to the speculated expansion of the g-theory in geometric function theory, we introduce Lemma 4.1 and their
corollaries. Lemma 4.1 is the g-class of the result of Suffridge,[29] (see also [30].)

2. Direction for further research

In conclusions, we extended the g-theory to some harmonic and analytic properties of Janowski functions. In view of
the recent applications of g-theory in Geometric Function Theory, it seem natural to investigate some properties of a g-
Koebe function given by(4.7).

Let Kqdefine by (4.7) be represented as

Ko(2) =z + Xip e 2"

Then, we may have the following:

KC,lz) € PS;

Kq(Z) € PCq, iii. Ck< [k]q,

533



lirn,

¥l Kr_||:'?:| = |:|;:F

World Journal of Advanced Research and Reviews, 2022, 13(02), 523-535

=
s

limg-1[k]q = k, where (iii) - (v) are too obvious.

In view of Clunie and Sheil-Small [21], we state an open problem for harmonic g-Koebe type of function given as follows:

ool z

Definition 6.5 Let the function ™ *~*  1=[2yz+22*qnd
1 | hiz) — [,TI:_S? I—J]:—H+-';z*’ (1]
(6:1) (D, q0lz) — g =(D, R (=) =0 (i)
Solving (6.1) gives

. W gz . . 5 1 gz

D.yhliz)= —5— o Dzl =g g _

\ 'A L 3 J_ e 3 ! 3 J_ s

w—oll = 24") [Tioll— 24") (62

Hence the harmonic g-Koebe functions h and g can be derived from (6.2).

3. Conclusion

The g-derivative operator was stated as a convolution of two analytic functions. The necessary and sufficient conditions
for a Janowski’s harmonic g-starlike functions were studied. Also, some subordination properties of Janowski’s analytic
g-starlike functions were studied.
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