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Abstract 

The integration of battery energy storage systems (BESS) with solar photovoltaic (PV) and wind energy resources 
presents a promising solution for addressing the inherent intermittency of renewable energy sources. This paper 
provides a comprehensive review of optimization approaches for battery energy storage in solar-wind hybrid systems. 
We examine various optimization objectives, methodologies, and constraints that shape the design and operation of 
integrated renewable energy systems with storage. The paper analyzes sizing methodologies, control strategies, 
economic considerations, and technical constraints that influence optimization outcomes. Through comparative 
analysis of different optimization techniques including mathematical programming, heuristic algorithms, and artificial 
intelligence approaches, we identify the strengths and limitations of each method. Several case studies illustrating 
successful implementations in different geographical and regulatory contexts are presented. The review concludes with 
identification of research gaps and future directions for advancing battery storage optimization in renewable energy 
systems. 

Keywords: Battery Energy Storage; Solar PV; Wind Energy; Hybrid Systems; Optimization; Renewable Energy; Energy 
Management; Microgrid 

1. Introduction

The global transition toward renewable energy sources has accelerated rapidly in recent years due to declining costs, 
technological advancements, and environmental concerns. Solar photovoltaic (PV) and wind energy have emerged as 
leading renewable technologies, with global installed capacities reaching unprecedented levels. However, the variable 
and intermittent nature of these resources presents significant challenges for grid integration and reliable power supply 
(Beaudin et al., 2010). 

Battery energy storage systems (BESS) offer a promising solution to address the intermittency issues associated with 
renewable energy sources. By capturing excess energy during periods of high generation and low demand, and 
discharging during periods of low generation and high demand, BESS can transform variable renewable resources into 
dispatchable power sources (Chen et al., 2009). The integration of BESS with solar PV and wind energy creates hybrid 
systems capable of providing reliable power with minimal environmental impact. 

Optimizing the design and operation of BESS in solar-wind hybrid systems involves complex decision-making across 
multiple dimensions, including system sizing, component selection, operational strategies, and economic 
considerations. The optimization problem is further complicated by various constraints related to battery 
characteristics, system reliability requirements, economic objectives, and environmental factors (Zhao et al., 2015). 
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This paper provides a comprehensive review of optimization approaches for BESS in solar-wind hybrid systems. We 
examine the various objectives, methodologies, and constraints that shape the optimization problem, with a focus on 
practical applications and real-world case studies. The review covers both design-phase optimization (system sizing 
and component selection) and operational optimization (dispatch strategies and energy management). 

The remainder of this paper is organized as follows: Section 2 describes the components and configurations of solar-
wind-battery systems. Section 3 discusses the fundamental objectives and constraints in BESS optimization. Section 4 
provides an in-depth review of optimization methodologies and algorithms. Section 5 presents case studies and 
practical implementations. Section 6 identifies research gaps and future directions, and Section 7 concludes the paper. 

2. Solar-Wind-Battery System Components and Configurations 

2.1. System Components 

A typical solar-wind-battery hybrid system consists of the following main components: 

• Solar PV Array: Converts solar radiation into direct current (DC) electricity. PV performance depends on factors 
such as irradiance, temperature, module technology, orientation, and shading (Skoplaki and Palyvos, 2009). 

• Wind Turbines: Convert kinetic energy from wind into mechanical energy, which is then converted to electrical 
energy. Wind turbine output depends on wind speed, air density, turbine characteristics, and installation height 
(Khaligh and Onar, 2010). 

• Battery Energy Storage: Stores excess energy and provides power when generation is insufficient. Common 
battery technologies include lead-acid, lithium-ion, flow batteries, and sodium-sulfur batteries, each with 
distinct characteristics regarding energy density, cycle life, efficiency, and cost (Divya and Østergaard, 2009). 

• Power Conversion Systems: Include DC-DC converters, DC-AC inverters, and AC-DC rectifiers that facilitate 
power flow between system components and with the external grid, if applicable (Carrasco et al., 2006). 

• Energy Management System (EMS): The central controller that implements optimization algorithms and 
control strategies to manage power flows within the system (Olatomiwa et al., 2016). 

2.2. System Configurations 

Solar-wind-battery systems can be configured in various ways depending on the application requirements, geographical 
conditions, and economic considerations. Table 1 summarizes the main configuration types and their characteristics. 

Table 1 Solar-Wind-Battery System Configurations 

Configuration Description Advantages Limitations 

Off-grid (Stand-
alone) 

Operates independently from 
the main grid, supplying local 
loads 

Energy independence; 
Suitable for remote areas 

Requires larger storage 
capacity; Higher reliability 
concerns 

Grid-connected Connected to the main grid, 
allowing power exchange 

Increased reliability; 
Potential for energy trading 

Subject to grid regulations; 
May have limited control 

AC-coupled Components connected to a 
common AC bus 

Flexibility in component 
location; Modular 
expansion 

Multiple conversion stages; 
Lower efficiency 

DC-coupled Components connected to a 
common DC bus 

Fewer conversion stages; 
Higher efficiency 

Limited distance between 
components; DC protection 
challenges 

Hybrid-coupled Combination of AC and DC 
coupling 

Optimizes efficiency; 
Flexible integration 

Increased complexity; Higher 
control requirements 

The selection of an appropriate configuration depends on factors such as load requirements, resource availability, 
geographical conditions, regulatory framework, and economic considerations. Each configuration presents distinct 
optimization challenges and opportunities (Sikder and Jansson, 2018). 
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2.3. Battery Technologies and Characteristics 

Battery technology selection significantly impacts the performance and economics of solar-wind-battery systems. Table 
2 compares the characteristics of common battery technologies used in renewable energy applications. 

Table 2 Comparison of Battery Technologies for Renewable Energy Applications 

Technology Energy 
Density 
(Wh/kg) 

Power 
Density 
(W/kg) 

Cycle Life Efficiency 
(%) 

Self-discharge 
(%/month) 

Cost 
($/kWh) 

Lead-acid 30-50 75-300 500-1,000 70-85 3-20 100-200 

Lithium-ion 100-265 250-680 1,000-10,000 85-95 1-5 300-800 

Flow batteries 20-40 70-180 12,000-14,000 65-85 0.5-2 250-800 

Sodium-sulfur 100-240 90-230 2,500-4,500 75-90 ~0 300-500 

Nickel-cadmium 40-60 150-300 1,000-2,000 65-80 5-20 400-800 

Note: Data compiled from Ibrahim et al. (2008), Zhao et al. (2015), and Koohi-Kamali et al. (2013). Cost figures represent approximate ranges as of 
2019. 

The selection of battery technology for a specific application involves trade-offs among various factors including 
performance characteristics, lifetime, environmental impact, safety considerations, and costs. For solar-wind 
applications, cycle life and depth-of-discharge capabilities are particularly important due to the daily cycling patterns 
typical in renewable energy systems (Díaz-González et al., 2012). 

3. Objectives and Constraints in BESS Optimization 

3.1. Optimization Objectives 

The optimization of battery energy storage in solar-wind systems can pursue various objectives, depending on the 
stakeholder perspective and application context. Common optimization objectives include: 

• Economic Objectives:  

o Minimization of total system cost (capital, operational, and replacement costs) 
o Maximization of revenue from energy sales or services 
o Minimization of payback period or maximization of return on investment 
o Reduction of electricity purchase from the grid (for grid-connected systems) 

• Technical and Performance Objectives:  

o Maximization of system reliability (e.g., minimizing loss of load probability) 
o Minimization of energy loss 
o Maximization of renewable energy utilization 
o Minimization of battery degradation 
o Smoothing of power fluctuations 

• Environmental Objectives:  

o Minimization of greenhouse gas emissions 
o Minimization of environmental impact throughout the system lifecycle 
o Maximization of renewable energy penetration 
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Many optimization problems adopt multi-objective approaches that seek to balance trade-offs among competing 
objectives. This requires techniques such as Pareto optimization, weighted sum approaches, or goal programming to 
find optimal compromises (Yang et al., 2008). 

3.2. Technical Constraints 

BESS optimization is subject to various technical constraints that ensure feasible and reliable system operation. Key 
constraints include: 

• Battery-related Constraints:  
o State of charge (SoC) limits 
o Charging and discharging rate limits 
o Cycle life considerations 
o Temperature operating range 
o Self-discharge rates 

• System Balance Constraints:  
o Power balance at each time step 
o Energy balance over the optimization horizon 
o Reserve requirements 

• Component Constraints:  
o Maximum and minimum capacity limits 
o Ramp rate limitations 
o Conversion efficiency considerations 

• Reliability Constraints:  
o Loss of load probability (LOLP) requirements 
o System availability targets 
o Power quality standards 

Mathematical formulations of these constraints vary depending on the specific optimization approach and the level of 
detail in the system model. More sophisticated models may incorporate nonlinearities and dynamics that better 
represent real-world battery behavior, at the cost of increased computational complexity (Bordin et al., 2017). 

3.3. Economic Considerations 

Economic factors play a crucial role in BESS optimization for solar-wind systems. Key economic considerations include: 

• Investment Costs:  
o Initial capital costs for batteries, renewable generators, and supporting infrastructure 
o Installation and integration costs 
o Replacement costs based on component lifetimes 

• Operational Costs:  
o Maintenance and operation 
o Energy purchase costs (for grid-connected systems) 
o Degradation-related costs 

• Revenue Streams:  
o Energy arbitrage (buying/storing at low prices, selling at high prices) 
o Capacity payments 
o Ancillary services (frequency regulation, voltage support, etc.) 
o Demand charge reduction 
o Reliability benefits 

• Policy and Regulatory Factors:  
o Incentives and subsidies for renewable energy and storage 
o Carbon pricing or emissions trading schemes 
o Feed-in tariffs or net metering policies 
o Capacity market mechanisms 
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The economic optimization of BESS often employs metrics such as levelized cost of energy (LCOE), net present value 
(NPV), internal rate of return (IRR), or payback period to evaluate different design and operational strategies 
(Hoppmann et al., 2014). 

3.4. Temporal Considerations and Uncertainty 

The temporal dimension adds significant complexity to BESS optimization in solar-wind systems: 

• Time Horizons: Optimization can span multiple time scales, from short-term operational decisions (seconds to 
hours) to long-term planning (years to decades). 

• Temporal Resolution: The choice of time step (minutes, hours, days) affects computational requirements and 
solution accuracy. 

• Uncertainty Sources:  

o Weather and renewable resource variability 
o Load demand uncertainty 
o Market price fluctuations 
o Component performance degradation 
o Regulatory changes 

• Forecasting Methods: Various forecasting techniques are employed to predict renewable generation, load 
demand, and electricity prices for optimization purposes (Wang et al., 2017). 

Approaches to handling uncertainty in BESS optimization include stochastic programming, robust optimization, 
scenario analysis, and model predictive control with rolling horizons (Bertsimas et al., 2013). 

4. Optimization Methodologies and Algorithms 

4.1. System Sizing Optimization 

Determining the optimal capacity of solar PV, wind turbines, and battery storage is a fundamental design question. Table 
3 summarizes key methodologies used for system sizing optimization. 

Table 3 System Sizing Optimization Methodologies 

Methodology Description Advantages Limitations Example 
Studies 

Analytical 
Methods 

Direct calculation based 
on energy balance 
equations 

Computationally efficient; 
Transparent 

Simplified assumptions; 
Limited constraint 
handling 

Kaabeche et 
al. (2011) 

Iterative 
Simulation 

Sequential simulation of 
system performance 
under different 
configurations 

Detailed system 
modeling; Handles 
nonlinearities 

Computationally 
intensive; May not find 
global optimum 

Diaf et al. 
(2008) 

Linear 
Programming 
(LP) 

Optimization with 
linear objective function 
and constraints 

Efficient solvers available; 
Guaranteed global 
optimum for convex 
problems 

Requires linearized 
models; May not 
capture all system 
dynamics 

Akram et al. 
(2018) 

Mixed-Integer 
Linear 
Programming 
(MILP) 

LP with integer decision 
variables 

Can model discrete 
decisions (e.g., equipment 
selection) 

Higher computational 
complexity than LP 

Alsaidan et 
al. (2016) 
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Dynamic 
Programming 
(DP) 

Breaking complex 
problems into simpler 
subproblems 

Handles time sequence 
decisions effectively 

Suffers from "curse of 
dimensionality" 

Chen et al. 
(2011) 

Genetic 
Algorithms (GA) 

Evolution-inspired 
search technique 

Handles nonlinear, non-
convex problems; No 
derivative information 
needed 

Computationally 
intensive; No guarantee 
of global optimum 

Koutroulis 
et al. (2006) 

Particle Swarm 
Optimization 
(PSO) 

Swarm intelligence-
based method 

Simple implementation; 
Good for multi-modal 
spaces 

Parameter tuning 
required; May converge 
prematurely 

Kaviani et al. 
(2009) 

Hybrid Methods Combination of two or 
more techniques 

Leverages strengths of 
multiple approaches 

Increased complexity Maleki et al. 
(2017) 

The selection of an appropriate sizing methodology depends on factors such as problem complexity, available data, 
computational resources, and the specific objectives and constraints of the application (Siddaiah and Saini, 2016). 

4.2. Operational Optimization 

Once the system is designed and installed, operational optimization determines the optimal dispatch of the battery and 
other components in real-time or near-real-time. Table 4 summarizes key methodologies for operational optimization. 

Table 4 Operational Optimization Methodologies 

Methodology Description Advantages Limitations Example 
Studies 

Rule-based 
Control 

Predefined rules 
based on system 
states 

Simple implementation; 
Low computational 
requirements 

Sub-optimal 
performance; Limited 
adaptability 

Daud and 
Mohamed 
(2012) 

Model Predictive 
Control (MPC) 

Optimization over a 
receding horizon with 
feedback 

Handles constraints 
effectively; Adapts to 
changing conditions 

Requires accurate 
system models; 
Computationally 
intensive 

Pereira et al. 
(2018) 

Dynamic 
Programming 

Optimization by 
breaking into 
sequential decisions 

Handles nonlinearities 
and temporal 
dependencies 

Computational 
complexity increases 
with state space 

Wu et al. 
(2015) 

Reinforcement 
Learning 

Learning optimal 
policies through 
environment 
interaction 

Adapts to changing 
conditions; No explicit 
model required 

Training data 
requirements; 
Convergence issues 

Vázquez-
Canteli and 
Nagy (2019) 

Fuzzy Logic 
Control 

Control based on 
fuzzy rules and 
linguistic variables 

Handles imprecision and 
uncertainty; Intuitive rule 
formulation 

Rule definition 
complexity; Sub-optimal 
performance 

Arcos-Aviles 
et al. (2018) 

Neural Networks Learning control 
policies from data 

Can capture complex 
relationships; Fast 
execution after training 

Black-box nature; 
Training data 
requirements 

Reikard 
(2009) 

Operational optimization strategies often need to balance multiple objectives such as maximizing renewable energy 
utilization, minimizing grid dependency, extending battery lifetime, and optimizing economic performance (Palma-
Behnke et al., 2013). 
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4.3. Comparative Analysis of Optimization Techniques 

Different optimization techniques offer varying advantages and limitations when applied to BESS in solar-wind systems. 
Table 5 provides a comparative analysis of major optimization approaches. 

Table 5 Comparative Analysis of Optimization Techniques 

Feature Mathematical 
Programming 

Metaheuristic 
Algorithms 

AI-based Methods 

Problem Types Linear, convex problems Non-convex, complex 
problems 

Data-driven, adaptive problems 

Global Optimality Guaranteed for convex 
problems 

Not guaranteed Not guaranteed 

Computation 
Time 

Fast for linear problems Moderate to high High during training, fast execution 

Constraint 
Handling 

Explicit Through penalty 
functions 

Implicit through learning 

Modeling 
Complexity 

Requires mathematical 
formulation 

Flexible, black-box 
approach 

Data-dependent 

Uncertainty 
Handling 

Through stochastic or robust 
formulations 

Scenario-based 
approaches 

Learning-based adaptation 

Examples LP, MILP, NLP, MINLP GA, PSO, Simulated 
Annealing 

Neural Networks, Fuzzy Logic, 
Reinforcement Learning 

Key References Luna-Rubio et al. (2012) Yang et al. (2008) Vázquez-Canteli and Nagy (2019) 

The selection of an appropriate optimization technique depends on the specific characteristics of the problem, including 
its mathematical structure, dimensionality, constraint types, and the nature of uncertainty (González et al., 2015). 

4.4. Integrated Design and Operation Optimization 

While system sizing and operational optimization are often addressed separately, there is growing recognition of the 
benefits of integrated approaches that simultaneously optimize system design and operational strategies. Integrated 
approaches can capture the interactions between design decisions and operational performance, leading to more cost-
effective solutions. 

Methods for integrated optimization include: 

• Bi-level Programming: Hierarchical optimization with design decisions at the upper level and operational 
decisions at the lower level (Bahramirad et al., 2012). 

• Multi-time Scale Optimization: Addressing different time scales (long-term planning and short-term operation) 
within a unified framework (Mehleri et al., 2012). 

• Scenario-based Stochastic Programming: Incorporating uncertainty through scenario generation while 
optimizing both design and operation (Baringo and Conejo, 2011). 

• Decomposition Methods: Breaking the integrated problem into smaller subproblems that can be solved 
iteratively (Brekken et al., 2011). 

Integrated approaches typically result in better overall system performance but at the cost of increased computational 
complexity. 
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5. Case Studies and Practical Implementations 

5.1. Off-grid Applications 

Off-grid solar-wind-battery systems provide electricity access in remote areas where grid extension is economically 
impractical or technically challenging. Table 6 summarizes selected case studies of off-grid applications. 

Table 6 Case Studies of Off-grid Solar-Wind-Battery Systems 

Location System 
Configuration 

Optimization 
Approach 

Key Findings Reference 

Remote village, 
Algeria 

6 kW PV, 7 kW wind, 
48 kWh battery 

Genetic Algorithm for 
sizing 

Hybrid system reduced cost 
by 15% compared to single-
source systems 

Kaabeche et al. 
(2011) 

Island 
community, 
Malaysia 

200 kW PV, 80 kW 
wind, 240 kWh battery 

HOMER software with 
sensitivity analysis 

Renewable fraction of 71%; 
Payback period of 7.3 years 

Ngan and Tan 
(2012) 

Telecom station, 
Nigeria 

5 kW PV, 3 kW wind, 
28 kWh battery 

Particle Swarm 
Optimization 

Battery size reduction of 
30% through optimal 
dispatch 

Olatomiwa et 
al. (2016) 

Remote village, 
India 

24 kW PV, 15 kW wind, 
96 kWh battery 

Multi-objective 
Genetic Algorithm 

Trade-off solution between 
reliability and cost; LOLP < 
1% 

Kanase-Patil et 
al. (2010) 

These case studies demonstrate that well-optimized hybrid systems can provide reliable power supply while 
minimizing costs and maximizing renewable energy utilization. The optimization approaches typically focus on 
reliability and economic objectives, with battery storage playing a crucial role in balancing supply and demand (Khare 
et al., 2016). 

5.2. Grid-connected Applications 

Grid-connected solar-wind-battery systems can provide various benefits including energy arbitrage, peak shaving, and 
grid support services. Table 7 summarizes selected case studies of grid-connected applications. 

Table 7 Case Studies of Grid-connected Solar-Wind-Battery Systems 

Location System 
Configuration 

Optimization 
Approach 

Key Findings Reference 

Commercial 
facility, USA 

500 kW PV, 100 kW 
wind, 300 kWh 
battery 

Mixed-Integer Linear 
Programming 

25% reduction in demand 
charges; ROI of 12% 

Crespo-
Vazquez et al. 
(2018) 

Distribution 
network, Spain 

2 MW PV, 3 MW wind, 
1.5 MWh battery 

Model Predictive 
Control 

15% increase in renewable 
energy utilization; Voltage 
regulation improved 

Tenfen and 
Finardi (2015) 

University 
campus, China 

800 kW PV, 500 kW 
wind, 1 MWh battery 

Stochastic Dynamic 
Programming 

Energy cost reduction of 
18%; Peak demand reduction 
of 22% 

Wu et al. 
(2015) 

Microgrid, 
Germany 

1.2 MW PV, 1.5 MW 
wind, 1 MWh battery 

Multi-agent system 
with market 
mechanisms 

Self-consumption increased 
by 35%; Grid support 
services provided 

Olivares et al. 
(2014) 
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These case studies highlight the multiple value streams that can be captured through optimized operation of grid-
connected systems. The optimization approaches typically focus on economic objectives while satisfying technical 
constraints and grid requirements (Hoppmann et al., 2014). 

5.3. Factors Affecting Optimization Outcomes 

The outcomes of BESS optimization in solar-wind systems are influenced by various factors, including: 

• Geographical and Climatic Conditions: Solar radiation, wind patterns, and temperature profiles affect 
renewable generation potential and battery performance. 

• Load Characteristics: The temporal profile, magnitude, and flexibility of electricity demand influence storage 
requirements and operational strategies. 

• Market Structure and Regulations: Electricity pricing mechanisms, renewable incentives, and grid connection 
regulations shape economic optimization outcomes. 

• Technology Characteristics: Efficiency, degradation patterns, and operational constraints of solar PV, wind 
turbines, and batteries affect system performance. 

• Optimization Approach: The choice of methodology, objective function, constraints, and treatment of 
uncertainty influence the resulting design and operation. 

Understanding these factors is crucial for translating theoretical optimization approaches into practical 
implementations that deliver value in real-world conditions (Merei et al., 2016). 

6. Research Gaps and Future Directions 

Despite significant advances in BESS optimization for solar-wind systems, several research gaps and challenges remain: 

6.1. Battery Modeling and Degradation 

More accurate models of battery degradation that capture the complex relationships between operating conditions and 
capacity fade are needed for long-term optimization. Future research should focus on: 

• Integrating electrochemical aging models into system-level optimization 
• Developing computationally efficient degradation models suitable for optimization 
• Validating degradation models with long-term field data 
• Optimizing operation to balance immediate benefits against long-term degradation costs 

6.2. Uncertainty Management 

Improved methods for handling the inherent uncertainties in renewable generation, load demand, and market 
conditions would enhance optimization outcomes. Promising directions include: 

• Advanced forecasting techniques for solar, wind, and load profiles 
• Robust optimization approaches that ensure performance under worst-case scenarios 
• Distributionally robust optimization that leverages partial information about uncertainty distributions 
• Integration of short-term weather forecasts into real-time control strategies 

6.3. Multi-service Optimization 

Leveraging BESS to provide multiple services simultaneously can improve economic viability. Future research should 
address: 

• Optimal allocation of battery capacity and power capability among different services 
• Coordination of potentially conflicting service requirements 
• Market mechanisms and pricing structures for multiple services 
• Regulatory frameworks enabling multi-service business models 
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6.4. Scalability and Computational Efficiency 

As system size and complexity increase, computational efficiency becomes crucial. Promising approaches include: 

• Decomposition methods for large-scale optimization problems 
• Machine learning techniques to approximate complex optimization solutions 
• Distributed optimization algorithms for coordinated control of multiple systems 
• Cloud computing and parallel processing implementations 

6.4.1. Integrated Energy Systems 

Expanding optimization beyond electricity to include thermal energy, transportation, and other sectors offers 
opportunities for additional efficiencies. Research directions include: 

• Co-optimization of electrical and thermal storage 
• Integration of electric vehicle charging and vehicle-to-grid capabilities 
• Sector coupling between electricity, heating/cooling, and hydrogen production 
• Multi-carrier energy systems optimization 

Addressing these research gaps will contribute to more effective design and operation of BESS in solar-wind systems, 
facilitating higher renewable energy penetration and more sustainable energy systems (Weitemeyer et al., 2015). 

7. Conclusion 

This paper has provided a comprehensive review of battery energy storage optimization in solar-wind hybrid systems. 
We have examined the various components and configurations of these systems, the objectives and constraints that 
shape the optimization problem, and the methodologies and algorithms employed for both system sizing and 
operational optimization. 

The review of case studies demonstrates that well-optimized solar-wind-battery systems can deliver significant benefits 
in both off-grid and grid-connected applications. However, the optimization outcomes are influenced by various factors 
including geographical conditions, load characteristics, market structures, and technology parameters. 

Despite significant progress in this field, several research challenges remain, particularly regarding battery degradation 
modeling, uncertainty management, multi-service optimization, computational efficiency, and integrated energy 
systems. Addressing these challenges will require interdisciplinary approaches combining expertise in 
electrochemistry, power systems, optimization theory, economics, and computer science. 

As battery costs continue to decline and renewable generation expands, the importance of effective optimization 
approaches for BESS in solar-wind systems will only increase. Advanced optimization methodologies that can handle 
the complexity, uncertainty, and multi-objective nature of these systems will be essential for realizing the full potential 
of integrated renewable energy solutions with storage. 

References 

[1] Akram, U., Khalid, M., & Shafiq, S. (2018). Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid 
system. IET Renewable Power Generation, 12(1), 72-80. 

[2] Alsaidan, I., Khodaei, A., & Gao, W. (2016). A comprehensive battery energy storage optimal sizing model for 
microgrid applications. IEEE Transactions on Power Systems, 33(4), 3968-3980. 

[3] Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy logic-based energy management 
system design for residential grid-connected microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. 

[4] Bahramirad, S., Reder, W., & Khodaei, A. (2012). Reliability-constrained optimal sizing of energy storage system 
in a microgrid. IEEE Transactions on Smart Grid, 3(4), 2056-2062. 

[5] Baringo, L., & Conejo, A. J. (2011). Wind power investment within a market environment. Applied Energy, 88(9), 
3239-3247. 



World Journal of Advanced Research and Reviews, 2021, 12(03), 768-778 

778 

[6] Beaudin, M., Zareipour, H., Schellenberglabe, A., & Rosehart, W. (2010). Energy storage for mitigating the 
variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 14(4), 302-
314. 

[7] Bertsimas, D., Brown, D. B., & Caramanis, C. (2013). Theory and applications of robust optimization. SIAM Review, 
53(3), 464-501. 

[8] Bordin, C., Anuta, H. O., Crossland, A., Gutierrez, I. L., Dent, C. J., & Vigo, D. (2017). A linear programming approach 
for battery degradation analysis and optimization in offgrid power systems with solar energy integration. 
Renewable Energy, 101, 417-430. 

[9] Brekken, T. K., Yokochi, A., Von Jouanne, A., Yen, Z. Z., Hapke, H. M., & Halamay, D. A. (2011). Optimal energy 
storage sizing and control for wind power applications. IEEE Transactions on Sustainable Energy, 2(1), 69-77. 

[10] Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galván, E., Portillo-Guisado, R. C., Prats, M. M., León, J. I., & 
Moreno-Alfonso, N. (2006). Power-electronic systems for the grid integration of renewable energy sources: A 
survey. IEEE Transactions on Industrial Electronics, 53(4), 1002-1016. 

[11] Chen, C., Duan, S., Cai, T., Liu, B., & Hu, G. (2011). Smart energy management system for optimal microgrid 
economic operation. IET Renewable Power Generation, 5(3), 258-267. 

[12] Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, Y. (2009). Progress in electrical energy storage system: A 
critical review. Progress in Natural Science, 19(3), 291-312. 

[13] Crespo-Vazquez, J. L., Carrillo, C., Diaz-Dorado, E., Martinez-Lorenzo, J. A., & Noor-E-Alam, M. (2018). A machine 
learning based stochastic optimization framework for a wind and storage power plant participating in energy 
pool market. Applied Energy, 232, 341-357. 

[14] Daud, A. K., & Mohamed, A. (2012). An improved control method of battery energy storage system for hourly 
dispatch of photovoltaic power sources. Energy Conversion and Management, 57, 86-90. 

[15] Diaf, S., Diaf, D., Belhamel, M., Haddadi, M., & Louche, A. (2008). A methodology for optimal sizing of autonomous 
hybrid PV/wind system. Energy Policy, 36(11), 5708-5718. 

[16] Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2012). A review of energy storage 
technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16(4), 2154-2171. 

[17] Divya, K. C., & Østergaard, J. (2009). Battery energy storage technology for power systems—An overview. Electric 
Power Systems Research, 79(4), 511-520. 

[18] González, A., Riba, J. R., Rius, A., & Puig, R. (2015). Optimal sizing of a hybrid grid-connected photovoltaic and 
wind power system. Applied Energy, 154, 752-762. 

[19] Hoppmann, J., Volland, J., Schmidt, T. S., & Hoffmann, V. H. (2014). The economic viability of battery storage for 
residential solar photovoltaic systems–A review and a simulation model. Renewable and Sustainable Energy 
Reviews, 39, 1101-1118. 

[20] Ibrahim, H., Ilinca, A., & Perron, J. (2008). Energy storage systems—characteristics and comparisons. Renewable 
and Sustainable Energy Reviews, 12(5), 1221-1250. 

[21] Kaabeche, A., Belhamel, M., & Ibtiouen, R. (2011). Sizing optimization of grid-independent hybrid 
photovoltaic/wind power generation system. Energy, 36(2), 1214-1222. 

[22] Kanase-Patil, A. B., Saini, R. P., & Sharma, M. P. (2010). Integrated renewable energy systems for off grid rural 
electrification of remote area. Renewable Energy, 35(6), 1342-1349. 

[23] Kaviani, A. K., Riahy, G. H., & Kouhsari, S. M. (2009). Optimal design of a reliable hydrogen-based stand-alone 
wind/PV generating system, considering component outages. Renewable Energy, 34(11), 2380-2390. 

[24] Khaligh, A., & Onar, O. C. (2010). Energy harvesting: solar, wind, and ocean energy conversion systems. CRC press. 

[25] Khare, V., Nema, S., & Baredar, P. (2016). Solar–wind hybrid renewable energy system: A review. Renewable and 
Sustainable Energy Reviews, 58, 23-33. 

[26] Koohi-Kamali, S., Tyagi, V. V., Rahim, N. A., Panwar, N. L., & Mokhlis, H. (2013). Emergence of energy storage 
technologies as the solution for reliable operation of smart power systems: A review. Renewable and Sustainable 
Energy Reviews, 25, 135-165. 

[27] Koutroulis, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone 
photovoltaic/wind-generator systems using genetic algorithms. Solar Energy, 80(9), 


