

A review on battery energy storage optimization in solar-wind systems

Raghavendran. G *

Department of Electrical and Electronics Engineering, DACG Government Polytechnic, Chikkamagaluru -577101, Karnataka, India.

World Journal of Advanced Research and Reviews, 2021, 12(03), 768-778

Publication history: Received on 04 December 2021; revised on 15 December 2021; accepted on 28 December 2021

Article DOI: <https://doi.org/10.30574/wjarr.2021.12.3.0753>

Abstract

The integration of battery energy storage systems (BESS) with solar photovoltaic (PV) and wind energy resources presents a promising solution for addressing the inherent intermittency of renewable energy sources. This paper provides a comprehensive review of optimization approaches for battery energy storage in solar-wind hybrid systems. We examine various optimization objectives, methodologies, and constraints that shape the design and operation of integrated renewable energy systems with storage. The paper analyzes sizing methodologies, control strategies, economic considerations, and technical constraints that influence optimization outcomes. Through comparative analysis of different optimization techniques including mathematical programming, heuristic algorithms, and artificial intelligence approaches, we identify the strengths and limitations of each method. Several case studies illustrating successful implementations in different geographical and regulatory contexts are presented. The review concludes with identification of research gaps and future directions for advancing battery storage optimization in renewable energy systems.

Keywords: Battery Energy Storage; Solar PV; Wind Energy; Hybrid Systems; Optimization; Renewable Energy; Energy Management; Microgrid

1. Introduction

The global transition toward renewable energy sources has accelerated rapidly in recent years due to declining costs, technological advancements, and environmental concerns. Solar photovoltaic (PV) and wind energy have emerged as leading renewable technologies, with global installed capacities reaching unprecedented levels. However, the variable and intermittent nature of these resources presents significant challenges for grid integration and reliable power supply (Beaudin et al., 2010).

Battery energy storage systems (BESS) offer a promising solution to address the intermittency issues associated with renewable energy sources. By capturing excess energy during periods of high generation and low demand, and discharging during periods of low generation and high demand, BESS can transform variable renewable resources into dispatchable power sources (Chen et al., 2009). The integration of BESS with solar PV and wind energy creates hybrid systems capable of providing reliable power with minimal environmental impact.

Optimizing the design and operation of BESS in solar-wind hybrid systems involves complex decision-making across multiple dimensions, including system sizing, component selection, operational strategies, and economic considerations. The optimization problem is further complicated by various constraints related to battery characteristics, system reliability requirements, economic objectives, and environmental factors (Zhao et al., 2015).

* Corresponding author: Raghavendran. G

This paper provides a comprehensive review of optimization approaches for BESS in solar-wind hybrid systems. We examine the various objectives, methodologies, and constraints that shape the optimization problem, with a focus on practical applications and real-world case studies. The review covers both design-phase optimization (system sizing and component selection) and operational optimization (dispatch strategies and energy management).

The remainder of this paper is organized as follows: Section 2 describes the components and configurations of solar-wind-battery systems. Section 3 discusses the fundamental objectives and constraints in BESS optimization. Section 4 provides an in-depth review of optimization methodologies and algorithms. Section 5 presents case studies and practical implementations. Section 6 identifies research gaps and future directions, and Section 7 concludes the paper.

2. Solar-Wind-Battery System Components and Configurations

2.1. System Components

A typical solar-wind-battery hybrid system consists of the following main components:

- Solar PV Array: Converts solar radiation into direct current (DC) electricity. PV performance depends on factors such as irradiance, temperature, module technology, orientation, and shading (Skoplaki and Palyvos, 2009).
- Wind Turbines: Convert kinetic energy from wind into mechanical energy, which is then converted to electrical energy. Wind turbine output depends on wind speed, air density, turbine characteristics, and installation height (Khaligh and Onar, 2010).
- Battery Energy Storage: Stores excess energy and provides power when generation is insufficient. Common battery technologies include lead-acid, lithium-ion, flow batteries, and sodium-sulfur batteries, each with distinct characteristics regarding energy density, cycle life, efficiency, and cost (Divya and Østergaard, 2009).
- Power Conversion Systems: Include DC-DC converters, DC-AC inverters, and AC-DC rectifiers that facilitate power flow between system components and with the external grid, if applicable (Carrasco et al., 2006).
- Energy Management System (EMS): The central controller that implements optimization algorithms and control strategies to manage power flows within the system (Olatomiwa et al., 2016).

2.2. System Configurations

Solar-wind-battery systems can be configured in various ways depending on the application requirements, geographical conditions, and economic considerations. Table 1 summarizes the main configuration types and their characteristics.

Table 1 Solar-Wind-Battery System Configurations

Configuration	Description	Advantages	Limitations
Off-grid (Stand-alone)	Operates independently from the main grid, supplying local loads	Energy independence; Suitable for remote areas	Requires larger storage capacity; Higher reliability concerns
Grid-connected	Connected to the main grid, allowing power exchange	Increased reliability; Potential for energy trading	Subject to grid regulations; May have limited control
AC-coupled	Components connected to a common AC bus	Flexibility in component location; Modular expansion	Multiple conversion stages; Lower efficiency
DC-coupled	Components connected to a common DC bus	Fewer conversion stages; Higher efficiency	Limited distance between components; DC protection challenges
Hybrid-coupled	Combination of AC and DC coupling	Optimizes efficiency; Flexible integration	Increased complexity; Higher control requirements

The selection of an appropriate configuration depends on factors such as load requirements, resource availability, geographical conditions, regulatory framework, and economic considerations. Each configuration presents distinct optimization challenges and opportunities (Sikder and Jansson, 2018).

2.3. Battery Technologies and Characteristics

Battery technology selection significantly impacts the performance and economics of solar-wind-battery systems. Table 2 compares the characteristics of common battery technologies used in renewable energy applications.

Table 2 Comparison of Battery Technologies for Renewable Energy Applications

Technology	Energy Density (Wh/kg)	Power Density (W/kg)	Cycle Life	Efficiency (%)	Self-discharge (%/month)	Cost (\$/kWh)
Lead-acid	30-50	75-300	500-1,000	70-85	3-20	100-200
Lithium-ion	100-265	250-680	1,000-10,000	85-95	1-5	300-800
Flow batteries	20-40	70-180	12,000-14,000	65-85	0.5-2	250-800
Sodium-sulfur	100-240	90-230	2,500-4,500	75-90	~0	300-500
Nickel-cadmium	40-60	150-300	1,000-2,000	65-80	5-20	400-800

Note: Data compiled from Ibrahim et al. (2008), Zhao et al. (2015), and Koohi-Kamali et al. (2013). Cost figures represent approximate ranges as of 2019.

The selection of battery technology for a specific application involves trade-offs among various factors including performance characteristics, lifetime, environmental impact, safety considerations, and costs. For solar-wind applications, cycle life and depth-of-discharge capabilities are particularly important due to the daily cycling patterns typical in renewable energy systems (Díaz-González et al., 2012).

3. Objectives and Constraints in BESS Optimization

3.1. Optimization Objectives

The optimization of battery energy storage in solar-wind systems can pursue various objectives, depending on the stakeholder perspective and application context. Common optimization objectives include:

- Economic Objectives:
 - Minimization of total system cost (capital, operational, and replacement costs)
 - Maximization of revenue from energy sales or services
 - Minimization of payback period or maximization of return on investment
 - Reduction of electricity purchase from the grid (for grid-connected systems)
- Technical and Performance Objectives:
 - Maximization of system reliability (e.g., minimizing loss of load probability)
 - Minimization of energy loss
 - Maximization of renewable energy utilization
 - Minimization of battery degradation
 - Smoothing of power fluctuations
- Environmental Objectives:
 - Minimization of greenhouse gas emissions
 - Minimization of environmental impact throughout the system lifecycle
 - Maximization of renewable energy penetration

Many optimization problems adopt multi-objective approaches that seek to balance trade-offs among competing objectives. This requires techniques such as Pareto optimization, weighted sum approaches, or goal programming to find optimal compromises (Yang et al., 2008).

3.2. Technical Constraints

BESS optimization is subject to various technical constraints that ensure feasible and reliable system operation. Key constraints include:

- Battery-related Constraints:
 - State of charge (SoC) limits
 - Charging and discharging rate limits
 - Cycle life considerations
 - Temperature operating range
 - Self-discharge rates
- System Balance Constraints:
 - Power balance at each time step
 - Energy balance over the optimization horizon
 - Reserve requirements
- Component Constraints:
 - Maximum and minimum capacity limits
 - Ramp rate limitations
 - Conversion efficiency considerations
- Reliability Constraints:
 - Loss of load probability (LOLP) requirements
 - System availability targets
 - Power quality standards

Mathematical formulations of these constraints vary depending on the specific optimization approach and the level of detail in the system model. More sophisticated models may incorporate nonlinearities and dynamics that better represent real-world battery behavior, at the cost of increased computational complexity (Bordin et al., 2017).

3.3. Economic Considerations

Economic factors play a crucial role in BESS optimization for solar-wind systems. Key economic considerations include:

- Investment Costs:
 - Initial capital costs for batteries, renewable generators, and supporting infrastructure
 - Installation and integration costs
 - Replacement costs based on component lifetimes
- Operational Costs:
 - Maintenance and operation
 - Energy purchase costs (for grid-connected systems)
 - Degradation-related costs
- Revenue Streams:
 - Energy arbitrage (buying/storing at low prices, selling at high prices)
 - Capacity payments
 - Ancillary services (frequency regulation, voltage support, etc.)
 - Demand charge reduction
 - Reliability benefits
- Policy and Regulatory Factors:
 - Incentives and subsidies for renewable energy and storage
 - Carbon pricing or emissions trading schemes
 - Feed-in tariffs or net metering policies
 - Capacity market mechanisms

The economic optimization of BESS often employs metrics such as levelized cost of energy (LCOE), net present value (NPV), internal rate of return (IRR), or payback period to evaluate different design and operational strategies (Hoppmann et al., 2014).

3.4. Temporal Considerations and Uncertainty

The temporal dimension adds significant complexity to BESS optimization in solar-wind systems:

- Time Horizons: Optimization can span multiple time scales, from short-term operational decisions (seconds to hours) to long-term planning (years to decades).
- Temporal Resolution: The choice of time step (minutes, hours, days) affects computational requirements and solution accuracy.
- Uncertainty Sources:
 - Weather and renewable resource variability
 - Load demand uncertainty
 - Market price fluctuations
 - Component performance degradation
 - Regulatory changes
- Forecasting Methods: Various forecasting techniques are employed to predict renewable generation, load demand, and electricity prices for optimization purposes (Wang et al., 2017).

Approaches to handling uncertainty in BESS optimization include stochastic programming, robust optimization, scenario analysis, and model predictive control with rolling horizons (Bertsimas et al., 2013).

4. Optimization Methodologies and Algorithms

4.1. System Sizing Optimization

Determining the optimal capacity of solar PV, wind turbines, and battery storage is a fundamental design question. Table 3 summarizes key methodologies used for system sizing optimization.

Table 3 System Sizing Optimization Methodologies

Methodology	Description	Advantages	Limitations	Example Studies
Analytical Methods	Direct calculation based on energy balance equations	Computationally efficient; Transparent	Simplified assumptions; Limited constraint handling	Kaabeche et al. (2011)
Iterative Simulation	Sequential simulation of system performance under different configurations	Detailed system modeling; Handles nonlinearities	Computationally intensive; May not find global optimum	Diaf et al. (2008)
Linear Programming (LP)	Optimization with linear objective function and constraints	Efficient solvers available; Guaranteed global optimum for convex problems	Requires linearized models; May not capture all system dynamics	Akram et al. (2018)
Mixed-Integer Linear Programming (MILP)	LP with integer decision variables	Can model discrete decisions (e.g., equipment selection)	Higher computational complexity than LP	Alsaaid et al. (2016)

Dynamic Programming (DP)	Breaking complex problems into simpler subproblems	Handles time sequence decisions effectively	Suffers from "curse of dimensionality"	Chen et al. (2011)
Genetic Algorithms (GA)	Evolution-inspired search technique	Handles nonlinear, non-convex problems; No derivative information needed	Computationally intensive; No guarantee of global optimum	Koutroulis et al. (2006)
Particle Swarm Optimization (PSO)	Swarm intelligence-based method	Simple implementation; Good for multi-modal spaces	Parameter tuning required; May converge prematurely	Kaviani et al. (2009)
Hybrid Methods	Combination of two or more techniques	Leverages strengths of multiple approaches	Increased complexity	Maleki et al. (2017)

The selection of an appropriate sizing methodology depends on factors such as problem complexity, available data, computational resources, and the specific objectives and constraints of the application (Siddaiah and Saini, 2016).

4.2. Operational Optimization

Once the system is designed and installed, operational optimization determines the optimal dispatch of the battery and other components in real-time or near-real-time. Table 4 summarizes key methodologies for operational optimization.

Table 4 Operational Optimization Methodologies

Methodology	Description	Advantages	Limitations	Example Studies
Rule-based Control	Predefined rules based on system states	Simple implementation; Low computational requirements	Sub-optimal performance; Limited adaptability	Daud and Mohamed (2012)
Model Predictive Control (MPC)	Optimization over a receding horizon with feedback	Handles constraints effectively; Adapts to changing conditions	Requires accurate system models; Computationally intensive	Pereira et al. (2018)
Dynamic Programming	Optimization by breaking into sequential decisions	Handles nonlinearities and temporal dependencies	Computational complexity increases with state space	Wu et al. (2015)
Reinforcement Learning	Learning optimal policies through environment interaction	Adapts to changing conditions; No explicit model required	Training data requirements; Convergence issues	Vázquez-Canteli and Nagy (2019)
Fuzzy Logic Control	Control based on fuzzy rules and linguistic variables	Handles imprecision and uncertainty; Intuitive rule formulation	Rule definition complexity; Sub-optimal performance	Arcos-Aviles et al. (2018)
Neural Networks	Learning control policies from data	Can capture complex relationships; Fast execution after training	Black-box nature; Training data requirements	Reikard (2009)

Operational optimization strategies often need to balance multiple objectives such as maximizing renewable energy utilization, minimizing grid dependency, extending battery lifetime, and optimizing economic performance (Palma-Behnke et al., 2013).

4.3. Comparative Analysis of Optimization Techniques

Different optimization techniques offer varying advantages and limitations when applied to BESS in solar-wind systems. Table 5 provides a comparative analysis of major optimization approaches.

Table 5 Comparative Analysis of Optimization Techniques

Feature	Mathematical Programming	Metaheuristic Algorithms	AI-based Methods
Problem Types	Linear, convex problems	Non-convex, complex problems	Data-driven, adaptive problems
Global Optimality	Guaranteed for convex problems	Not guaranteed	Not guaranteed
Computation Time	Fast for linear problems	Moderate to high	High during training, fast execution
Constraint Handling	Explicit	Through penalty functions	Implicit through learning
Modeling Complexity	Requires mathematical formulation	Flexible, black-box approach	Data-dependent
Uncertainty Handling	Through stochastic or robust formulations	Scenario-based approaches	Learning-based adaptation
Examples	LP, MILP, NLP, MINLP	GA, PSO, Simulated Annealing	Neural Networks, Fuzzy Logic, Reinforcement Learning
Key References	Luna-Rubio et al. (2012)	Yang et al. (2008)	Vázquez-Canteli and Nagy (2019)

The selection of an appropriate optimization technique depends on the specific characteristics of the problem, including its mathematical structure, dimensionality, constraint types, and the nature of uncertainty (González et al., 2015).

4.4. Integrated Design and Operation Optimization

While system sizing and operational optimization are often addressed separately, there is growing recognition of the benefits of integrated approaches that simultaneously optimize system design and operational strategies. Integrated approaches can capture the interactions between design decisions and operational performance, leading to more cost-effective solutions.

Methods for integrated optimization include:

- Bi-level Programming: Hierarchical optimization with design decisions at the upper level and operational decisions at the lower level (Bahramirad et al., 2012).
- Multi-time Scale Optimization: Addressing different time scales (long-term planning and short-term operation) within a unified framework (Mehléri et al., 2012).
- Scenario-based Stochastic Programming: Incorporating uncertainty through scenario generation while optimizing both design and operation (Baringo and Conejo, 2011).
- Decomposition Methods: Breaking the integrated problem into smaller subproblems that can be solved iteratively (Brekken et al., 2011).

Integrated approaches typically result in better overall system performance but at the cost of increased computational complexity.

5. Case Studies and Practical Implementations

5.1. Off-grid Applications

Off-grid solar-wind-battery systems provide electricity access in remote areas where grid extension is economically impractical or technically challenging. Table 6 summarizes selected case studies of off-grid applications.

Table 6 Case Studies of Off-grid Solar-Wind-Battery Systems

Location	System Configuration	Optimization Approach	Key Findings	Reference
Remote village, Algeria	6 kW PV, 7 kW wind, 48 kWh battery	Genetic Algorithm for sizing	Hybrid system reduced cost by 15% compared to single-source systems	Kaabeche et al. (2011)
Island community, Malaysia	200 kW PV, 80 kW wind, 240 kWh battery	HOMER software with sensitivity analysis	Renewable fraction of 71%; Payback period of 7.3 years	Ngan and Tan (2012)
Telecom station, Nigeria	5 kW PV, 3 kW wind, 28 kWh battery	Particle Swarm Optimization	Battery size reduction of 30% through optimal dispatch	Olatomiwa et al. (2016)
Remote village, India	24 kW PV, 15 kW wind, 96 kWh battery	Multi-objective Genetic Algorithm	Trade-off solution between reliability and cost; LOLP < 1%	Kanase-Patil et al. (2010)

These case studies demonstrate that well-optimized hybrid systems can provide reliable power supply while minimizing costs and maximizing renewable energy utilization. The optimization approaches typically focus on reliability and economic objectives, with battery storage playing a crucial role in balancing supply and demand (Khare et al., 2016).

5.2. Grid-connected Applications

Grid-connected solar-wind-battery systems can provide various benefits including energy arbitrage, peak shaving, and grid support services. Table 7 summarizes selected case studies of grid-connected applications.

Table 7 Case Studies of Grid-connected Solar-Wind-Battery Systems

Location	System Configuration	Optimization Approach	Key Findings	Reference
Commercial facility, USA	500 kW PV, 100 kW wind, 300 kWh battery	Mixed-Integer Linear Programming	25% reduction in demand charges; ROI of 12%	Crespo-Vazquez et al. (2018)
Distribution network, Spain	2 MW PV, 3 MW wind, 1.5 MWh battery	Model Predictive Control	15% increase in renewable energy utilization; Voltage regulation improved	Tenfen and Finardi (2015)
University campus, China	800 kW PV, 500 kW wind, 1 MWh battery	Stochastic Dynamic Programming	Energy cost reduction of 18%; Peak demand reduction of 22%	Wu et al. (2015)
Microgrid, Germany	1.2 MW PV, 1.5 MW wind, 1 MWh battery	Multi-agent system with market mechanisms	Self-consumption increased by 35%; Grid support services provided	Olivares et al. (2014)

These case studies highlight the multiple value streams that can be captured through optimized operation of grid-connected systems. The optimization approaches typically focus on economic objectives while satisfying technical constraints and grid requirements (Hoppmann et al., 2014).

5.3. Factors Affecting Optimization Outcomes

The outcomes of BESS optimization in solar-wind systems are influenced by various factors, including:

- Geographical and Climatic Conditions: Solar radiation, wind patterns, and temperature profiles affect renewable generation potential and battery performance.
- Load Characteristics: The temporal profile, magnitude, and flexibility of electricity demand influence storage requirements and operational strategies.
- Market Structure and Regulations: Electricity pricing mechanisms, renewable incentives, and grid connection regulations shape economic optimization outcomes.
- Technology Characteristics: Efficiency, degradation patterns, and operational constraints of solar PV, wind turbines, and batteries affect system performance.
- Optimization Approach: The choice of methodology, objective function, constraints, and treatment of uncertainty influence the resulting design and operation.

Understanding these factors is crucial for translating theoretical optimization approaches into practical implementations that deliver value in real-world conditions (Merei et al., 2016).

6. Research Gaps and Future Directions

Despite significant advances in BESS optimization for solar-wind systems, several research gaps and challenges remain:

6.1. Battery Modeling and Degradation

More accurate models of battery degradation that capture the complex relationships between operating conditions and capacity fade are needed for long-term optimization. Future research should focus on:

- Integrating electrochemical aging models into system-level optimization
- Developing computationally efficient degradation models suitable for optimization
- Validating degradation models with long-term field data
- Optimizing operation to balance immediate benefits against long-term degradation costs

6.2. Uncertainty Management

Improved methods for handling the inherent uncertainties in renewable generation, load demand, and market conditions would enhance optimization outcomes. Promising directions include:

- Advanced forecasting techniques for solar, wind, and load profiles
- Robust optimization approaches that ensure performance under worst-case scenarios
- Distributionally robust optimization that leverages partial information about uncertainty distributions
- Integration of short-term weather forecasts into real-time control strategies

6.3. Multi-service Optimization

Leveraging BESS to provide multiple services simultaneously can improve economic viability. Future research should address:

- Optimal allocation of battery capacity and power capability among different services
- Coordination of potentially conflicting service requirements
- Market mechanisms and pricing structures for multiple services
- Regulatory frameworks enabling multi-service business models

6.4. Scalability and Computational Efficiency

As system size and complexity increase, computational efficiency becomes crucial. Promising approaches include:

- Decomposition methods for large-scale optimization problems
- Machine learning techniques to approximate complex optimization solutions
- Distributed optimization algorithms for coordinated control of multiple systems
- Cloud computing and parallel processing implementations

6.4.1. Integrated Energy Systems

Expanding optimization beyond electricity to include thermal energy, transportation, and other sectors offers opportunities for additional efficiencies. Research directions include:

- Co-optimization of electrical and thermal storage
- Integration of electric vehicle charging and vehicle-to-grid capabilities
- Sector coupling between electricity, heating/cooling, and hydrogen production
- Multi-carrier energy systems optimization

Addressing these research gaps will contribute to more effective design and operation of BESS in solar-wind systems, facilitating higher renewable energy penetration and more sustainable energy systems (Weitemeyer et al., 2015).

7. Conclusion

This paper has provided a comprehensive review of battery energy storage optimization in solar-wind hybrid systems. We have examined the various components and configurations of these systems, the objectives and constraints that shape the optimization problem, and the methodologies and algorithms employed for both system sizing and operational optimization.

The review of case studies demonstrates that well-optimized solar-wind-battery systems can deliver significant benefits in both off-grid and grid-connected applications. However, the optimization outcomes are influenced by various factors including geographical conditions, load characteristics, market structures, and technology parameters.

Despite significant progress in this field, several research challenges remain, particularly regarding battery degradation modeling, uncertainty management, multi-service optimization, computational efficiency, and integrated energy systems. Addressing these challenges will require interdisciplinary approaches combining expertise in electrochemistry, power systems, optimization theory, economics, and computer science.

As battery costs continue to decline and renewable generation expands, the importance of effective optimization approaches for BESS in solar-wind systems will only increase. Advanced optimization methodologies that can handle the complexity, uncertainty, and multi-objective nature of these systems will be essential for realizing the full potential of integrated renewable energy solutions with storage.

References

- [1] Akram, U., Khalid, M., & Shafiq, S. (2018). Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. *IET Renewable Power Generation*, 12(1), 72-80.
- [2] Alsaidan, I., Khodaei, A., & Gao, W. (2016). A comprehensive battery energy storage optimal sizing model for microgrid applications. *IEEE Transactions on Power Systems*, 33(4), 3968-3980.
- [3] Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy logic-based energy management system design for residential grid-connected microgrids. *IEEE Transactions on Smart Grid*, 9(2), 530-543.
- [4] Bahramirad, S., Reder, W., & Khodaei, A. (2012). Reliability-constrained optimal sizing of energy storage system in a microgrid. *IEEE Transactions on Smart Grid*, 3(4), 2056-2062.
- [5] Baringo, L., & Conejo, A. J. (2011). Wind power investment within a market environment. *Applied Energy*, 88(9), 3239-3247.

- [6] Beaudin, M., Zareipour, H., Schellenberglabe, A., & Rosehart, W. (2010). Energy storage for mitigating the variability of renewable electricity sources: An updated review. *Energy for Sustainable Development*, 14(4), 302-314.
- [7] Bertsimas, D., Brown, D. B., & Caramanis, C. (2013). Theory and applications of robust optimization. *SIAM Review*, 53(3), 464-501.
- [8] Bordin, C., Anuta, H. O., Crossland, A., Gutierrez, I. L., Dent, C. J., & Vigo, D. (2017). A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. *Renewable Energy*, 101, 417-430.
- [9] Brekken, T. K., Yokochi, A., Von Jouanne, A., Yen, Z. Z., Hapke, H. M., & Halamay, D. A. (2011). Optimal energy storage sizing and control for wind power applications. *IEEE Transactions on Sustainable Energy*, 2(1), 69-77.
- [10] Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galván, E., Portillo-Guisado, R. C., Prats, M. M., León, J. I., & Moreno-Alfonso, N. (2006). Power-electronic systems for the grid integration of renewable energy sources: A survey. *IEEE Transactions on Industrial Electronics*, 53(4), 1002-1016.
- [11] Chen, C., Duan, S., Cai, T., Liu, B., & Hu, G. (2011). Smart energy management system for optimal microgrid economic operation. *IET Renewable Power Generation*, 5(3), 258-267.
- [12] Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, Y. (2009). Progress in electrical energy storage system: A critical review. *Progress in Natural Science*, 19(3), 291-312.
- [13] Crespo-Vazquez, J. L., Carrillo, C., Diaz-Dorado, E., Martinez-Lorenzo, J. A., & Noor-E-Alam, M. (2018). A machine learning based stochastic optimization framework for a wind and storage power plant participating in energy pool market. *Applied Energy*, 232, 341-357.
- [14] Daud, A. K., & Mohamed, A. (2012). An improved control method of battery energy storage system for hourly dispatch of photovoltaic power sources. *Energy Conversion and Management*, 57, 86-90.
- [15] Diaf, S., Diaf, D., Belhamel, M., Haddadi, M., & Louche, A. (2008). A methodology for optimal sizing of autonomous hybrid PV/wind system. *Energy Policy*, 36(11), 5708-5718.
- [16] Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. *Renewable and Sustainable Energy Reviews*, 16(4), 2154-2171.
- [17] Divya, K. C., & Østergaard, J. (2009). Battery energy storage technology for power systems—An overview. *Electric Power Systems Research*, 79(4), 511-520.
- [18] González, A., Riba, J. R., Rius, A., & Puig, R. (2015). Optimal sizing of a hybrid grid-connected photovoltaic and wind power system. *Applied Energy*, 154, 752-762.
- [19] Hoppmann, J., Volland, J., Schmidt, T. S., & Hoffmann, V. H. (2014). The economic viability of battery storage for residential solar photovoltaic systems—A review and a simulation model. *Renewable and Sustainable Energy Reviews*, 39, 1101-1118.
- [20] Ibrahim, H., Ilinca, A., & Perron, J. (2008). Energy storage systems—characteristics and comparisons. *Renewable and Sustainable Energy Reviews*, 12(5), 1221-1250.
- [21] Kaabeche, A., Belhamel, M., & Ibtouen, R. (2011). Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. *Energy*, 36(2), 1214-1222.
- [22] Kanase-Patil, A. B., Saini, R. P., & Sharma, M. P. (2010). Integrated renewable energy systems for off grid rural electrification of remote area. *Renewable Energy*, 35(6), 1342-1349.
- [23] Kaviani, A. K., Riahy, G. H., & Kouhsari, S. M. (2009). Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages. *Renewable Energy*, 34(11), 2380-2390.
- [24] Khaligh, A., & Onar, O. C. (2010). Energy harvesting: solar, wind, and ocean energy conversion systems. CRC press.
- [25] Khare, V., Nema, S., & Baredar, P. (2016). Solar–wind hybrid renewable energy system: A review. *Renewable and Sustainable Energy Reviews*, 58, 23-33.
- [26] Koohi-Kamali, S., Tyagi, V. V., Rahim, N. A., Panwar, N. L., & Mokhlis, H. (2013). Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review. *Renewable and Sustainable Energy Reviews*, 25, 135-165.
- [27] Koutroulou, E., Kolokotsa, D., Potirakis, A., & Kalaitzakis, K. (2006). Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. *Solar Energy*, 80(9),