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Abstract 

Gut microbiota can influence cell differentiation, metabolism, and immune function and is key for the normal 
development and future health of early infants. Several factors have been reported to be related to the microbiota 
composition of neonates, such as gestational age, delivery mode, feeding method, antibiotics consumption, and 
ethnicity, among others. So we investigated the relationship between gestational age and the composition and predicted 
function of the gut microbiota of neonates and early infants by sequencing the 16S rRNA gene present in stool samples 
obtained from 100 prospectively enrolled full-term and preterm newborns. In the 3-day-old neonates samples, the 
prominent genera in the full-term group were Escherichia-Shigella, Streptococcus, Bifidobacterium, and Bacteroides, 
while in the preterm group, Staphylococcus, Streptococcus, Escherichia-Shigella and Clostridium were the most abundant 
genera identified. There were statistical difference between two groups(P<0.05). Moreover, the predominant genera in 
the full-term group were Bifidobacterium, Lactobacillus, Bacteroides, and Clostridium , whereas the main genera in the 
preterm group were Escherichia-Shigella, Clostridium, Bifidobacterium and Bacteroides, in stool samples from 30-42-
day-old infants. We found the α-diversity in 3-day-old group was significantly lower than in the 30-42-day-old group 
whether it’s full-term or preterm (P<0.001). Functional inference analysis revealed higher levels of biodegradation and 
metabolism of carbohydrates, vitamins in the full-term group than in the preterm group, both in neonates and early 
infants, which may contribute to the stability of the microbiota in the full-term group. There were significant differences 
in the composition and predicted function of the gut microbiota of early infants due to gestational age. The 16S 
sequencing technology was an effective and reliable tool in the detection of gut microbiota in early infants.  
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1. Introduction

The gut microbiota is important for the normal development and future health of early infants, and can greatly impact 
on metabolism, cell differentiation, and immune function[1] [2] [3]. During the neonatal period, gut microbiota 
development is influenced from the colonization stage to maturity, by several early-life factors, such as gestational age, 
delivery and feeding method, and antibiotics consumption, especially in infants and young children [4] [5] [6].These 
factors will condition the appearance of medical conditions, for example, obesity [7]. 

Nevertheless, when and how the microbial communities acquire composition and function feature during the early life 
of a person remains unknow. Recently, the effects of gestational age on the gut microbiota of infants has been subjected 
to scrutiny. At present, there are few studies about how gestational age affects the composition and predicted function 
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of the gut microbiota of infants from different ethnicities; however, to the best of our knowledge, Chinese population 
have not been studied. Currently, a databank of the gut microbiota of Chinese early infants is under construction.  

In order to study the effects of gestational age on the gut microbiota of neonates and early infants, 100 newborns were 
enrolled for sampling during 30-42 days after delivery. Stool sample sequencing analyses of the 16S rRNA gene were 
performed to study the structure and predicted function of the microbiota of 3- and 30-42-day-old infants.  

2. Material and methods 

2.1. Volunteers  

We enrolled 100 newborns (47 boys and 53 girls), of which 61 were born full-term and 39 preterm. All newborns were 
Han Chinese ethnicity，born between the 12th of May of 2019 and the 10th of December of 2020, did not receive 
perinatal antibiotics, and the registered time between premature rupture of membranes and delivery was less than 18 
hours. The birth weight of full-term infants was 2.5-4 kg, while that of preterm infants was below 2.5 kg. There were no 
statistical differences between the two groups regarding gender, delivery mode, and time of premature rupture of 
membranes. Chromosomal abnormalities, congenital malformations and critical illness with short life expectancy were 
excluded. The detailed information is presented in Table 1.This project was approved by the Ethics Board of The First 
People’s Hospital of Xiaoshan (Protocol Number: 2019-XS-05). All participants signed the informed consent.  

Table 1 Description of 100 participants included in the present study 

 Gestational age   

Group Full-term 

n=61  

Preterm 

n=39 

P value 

Sex(%)   0.892 

 boys 29 (47.5%) 18 (46.2%)  

 girls 32 (52.5%) 21 (53.8%)  

Premature rupture of membranes(h) 3.2 ± 2.0 3.4 ± 2.4 0.579 

Feeding(%)3-day-old   0.739 

 Breast-fed 28 (45.9%) 15 (38.5%)  

 Mixed-fed 19 (31.1%) 13 (33.3%)  

 Fomula-fed 14 (23.0%) 11 (28.2%)  

Feeding(%)30-42-day-old   0.975 

 Breast-fed 26 (42.6%) 16 (41.0%)  

 Mixed-fed 19 (31.1%) 12 (30.8%)  

 Fomula-fed 16 (26.2%) 11 (28.2%)  

Mean ± SD for continuous variables: P value was calculated by weighted linear regression model. 
% for categorical variables: P value was calculated by weighted chi-square test. 

 

2.2. Sample Collection and Processing 

200 mg of specimens were collected at days 3 and 30-42 after birth by the parents, moved to 2 ml centrifuge tubes, and 
mixed with 1 ml RNA. All specimens were placed at 4℃ for 8-12 hours, then were frozen at -80℃. The DNA extracted 
from the specimens were pooled and sequenced, PCR amplification, fluorescence quantification, and through the 
construction and sequencing of a MiSeq Library by Bio-science (Hangzhou, Zhejiang).  

2.3. 16S rRNA Gene Sequencing Analysis 

From the extracted DNA, the hypervariable regions of the 16S ribosomal gene were sequenced and an interactive cloud 
analysis of the microbiota diversity was conducted. α-diversity (diversity within samples) and β-diversity (between 
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samples) was evaluated by the OTU (operational taxonomic unit) table. Sobs indices were determined as α-diversity 
and the significance was calculated using Student’s t-test. Phylogenetic (UniFrac) distance matrices were determined 
for β-diversity measurements. The R package vegan was used to generate community heatmaps and Qiime 1.9.1 was 
used to generate cumulative distribution plots of β-diversity distances. The software PICRUSt 1.0.0 was used to generate 
heatmap-based KEGG pathways for the predicted functions. 

2.4. Statistical Analysis 

The SPSS 22.0 software was used to statistical analysis. For normal distributed data, student’s t-test was performed and 
for nonnormal data the Wilcoxon signed-rank test was used to compare the two groups. P <0.05 was considered 
statistically significant. 

3. Results  

3.1. Effects of gestational age on the composition of the gut microbiota 

The composition of the gut microbiota of full-term and preterm in 3-day-old neonates is shown in Figures 1 while 30-
42-day-old infants is shown in Figures 2. In Figure 1, Escherichia-Shigella, Streptococcus, Bifidobacterium, and 
Bacteroides were the most abundant genera found in the full-term group, while Staphylococcus, Streptococcus, 
Escherichia-Shigella and Clostridium were the predominate genera in the preterm group. There was significant 
difference between the two groups.(P<0.05). As shown in Figure 2, Bifidobacterium, Lactobacillus, Bacteroides, and 
Clostridium were the main observed genera in the full-term group, whereas Escherichia-Shigella, Clostridium, 
Bifidobacterium and Bacteroides were more abundant in the preterm group. These differences in microbial composition 
were statistically significant (P<0.05).  

 

Figure 1 Gut microbiota community composition of two groups (full-term and preterm) in 3-day-old neonates 

 (A) Gut microbiota community heatmap analysis of two groups on Genus level. (B) Wilcoxon rank-sum test bar 
plot between 2 groups on Genus level. (C) Principal coordinate analysis (PCoA) on unweighted UniFrac 
distances between the neonatal microbiota is shown along the first two principal coordinate (PC) axes. Each 
point is colored by gestational age and represents a sample: Full-term, blue; Preterm, red. (D) PCoA box 
diagram. Represents the discrete distribution of two groups of samples on the PC1 axis: Full-term, blue; 
Preterm, red. 
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Figure 2 Gut microbiota community composition of 2 groups (full-term and preterm) in 30-42-day-old infants 

 (A) Gut microbiota community heatmap analysis of 2 groups on Genus level. (B) Wilcoxon rank-sum test bar 
plot between 2 groups on Genus level. (C) Principal coordinate analysis (PCoA) on unweighted UniFrac 
distances between the infants gut microbiota is shown along the first two principal coordinate (PC) axes. Each 
point is colored by gestational age and represents a sample: Full-term, blue; Preterm, red. (D) PCoA box 
diagram. Represents the discrete distribution of two groups of samples on the PC1 axis: Full-term, blue; 
Preterm, red. 

3.2. Sobs indices analysis for α- diversity measurements 

in Figure 3,student’s t-test was used to calculate the sobs indices of the gut microbiota present in the full-term and 
preterm groups at days 3- and 30-42 after birth. Although microbiota was detected in all stool samples from 3-day-old 
neonates, their sobs indices (α-diversity) was significantly lower than that of the 30-42-day-old group, irrespectively of 
the gestational age (P<0.001). 

 

Figure 3 Student’s t-test for sobs indices of full-term and preterm groups' gut microbiota at 2 points (in 3 days and 
30-42-day-old) 

 (A) Sobs indices at the 2 points of full-term infants. (B)Sobs indices at the 2 points of preterm infants. 
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3.3. Predicted function of the gut microbiota 

In Figure 4, the predicted function of the gut microbiota of the full-term and preterm groups at days 3- and 30-42 after 
birth is shown. Heatmap of the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway level 2 at 2 points 
belonging to the categories that showed statistical differences between full-term and preterm groups. Compared to the 
preterm group, the full-term group of both neonates and infants presented a higher metabolic and biodegradation rates 
of carbohydrates, vitamins, and xenobiotics, which favours the stability of their microbiota community. 

 

Figure 4 Predicted function of the gut microbiota : Heatmap of KEGG pathway level 2 

 (A) Heatmap of KEGG pathway level 2 showing distinct microbial gene profiles of 2 groups’ stool in 3 days after 
birth: Full-term, green; Preterm, black. (B) Heatmap of KEGG pathway level 2 showing distinct microbial gene 
profiles of 2 groups in 30-42-day-old: Full-term, blue; Preterm, red. 

4. Discussion 

In this study, the levels of beneficial microorganisms such as Bifidobacterium, Lactobacillus, and Bacteroides in full-term 
group were higher than in preterm, at days 3 and 30-42 after birth. These data were consistent with previous findings 
by Arboleya S et al. [8]. It has been reported that lactate and acetate, the primary and end metabolic products of the 
metabolism of Bifidobacterium, a member of the Actinobacteria phylum, are an important energy sources for 
colonocytes [9]. Moreover, these bacteria can also produce basic nutrients, including riboflavin and folate [10]. 
Lactobacillus can adjust the normal flora and improve function of the gastrointestinal tract.  

In stool samples from 3-day-old neonates, the levels of Staphylococcus were significantly higher in the preterm group 
than in the full-term, which confirmed the observations previously published on the typical composition of gut 
microbiota of early infant stools at this age [11]. The levels of Escherichia-Shigella were significantly lower in preterm 
infants than in full-term, this microbial group was considered derived from maternal stools [12]. The level of 
Streptococcus and Clostridium were higher in the preterm group than in the full term. In this sense, the presence of 
Streptococcus in the intestines of infants during early life is usually not harmed as these are human symbiotic bacteria; 
however, it is important to note that they are also conditional pathogens; and Clostridium is an enteropathogenic 
bacterium [13]. In the stools from 30-42-day-old infants, the genera Escherichia-Shigella was more abundant in the 
preterm group than in the full-term. Escherichia-Shigella has been considered by former researcher to be a harbinger of 
dysbiosis and health harm [14]. This bacterial formation could be explained by the fact that compared to full-term 
infants, preterm infants were more common born by cesarean section and placed into a highly sanitized intensive care 
environment, separated from their mother. An endpoint of 30-42 days after delivery was chosen because at this age 
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infants have not been exposed to a wide range of environmental sources of microbes due to limited person-to-person 
contact. 

The predicted function analysis found that compared to the preterm group, the full-term group presented higher levels 
of biodegradation and metabolism of carbohydrates, vitamins which help to the stability of gut microbiota. 

It is important to note that the feeding habits of the infants were variable at the end of this study. Therefore, the 
limitation is that the effect of feeding habits on the results cannot be ruled out between the full-term and preterm 
groups. 

There are nine hypervariable specificity regions in the bacterial 16S rRNA gene that vary depending on the genus or 
species. Therefore, 16S rRNA is considered the most important indicator for bacterial phylogenetic, and strain 
identification, even at the species level [15]. 16S rRNA Amplicon Sequencing analysis and taxonomic identification are 
important means for researching microbiota composition in environment samples [16]. At present, 16S sequencing 
technology is gradually being developed in China. For example, Nanjing’ Jinling Hospital used 16S sequencing 
technology to detect constipation in a mouse model; and Shanghai Jiao Tong University used 16S sequencing technology 
to detect a gut microbiota-targeted dietary intervention [17] [18]. In this study, we used 16S sequencing technology to 
characterize the gut microbiota in early infants and provided scientific and accurate data resources for the 
establishment of an early infant gut microbiota databank. 

Overall, our results indicated that the capacity of the gut of preterm infants to establish a normal microbiota, in terms 
of composition and function, is lower than that of full-term infants; this deficiency was observed at both time points 
studied. Due to the important influence of the microbiota during early life on the maturation of the immune system, this 
inability may produce a risk for their future health. We believe that routine treatment of preterm infants with probiotics 
could help with the establishment of a healthy microbiota. 

5. Conclusion 

There were significant differences in the composition and predicted function of the gut microbiota and the level of 
probiotics in early infants owing to gestational age. 16S sequencing technology is reliable and effective in the detection 
of gut microbiota in early infants.  
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