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Abstract 

In this paper, we study the necessary and sufficient time to explore constantly connected dynamics graphs by a mobile 
entity (agent). A dynamic graph is constantly connected if for each time units, there exists a stable connected spanning 
tree [10]. We focus on the case where the underlying graph is a cactus-path (graph reduced to a path of 𝑘 rings in which 
two neighbor rings have at most one vertex in common) and we assume that the agent knows the dynamics of the graph. 
We show that 5𝑛 −  𝛩(1) time units are necessary and sufficient to explore any constantly connected dynamic graph 
based on the cactus-path 𝐶ℎ2,𝑛 (composed of two same size rings𝑛). The upper bound is generalized on dynamic graphs 
based on cacti-paths with 𝑘 rings. We show that for any constantly connected dynamic graph of size 𝑁 based on a cactus-
path, 4𝑁 − 𝑚𝑎𝑥{𝑛1, 𝑛𝑘}  − 3𝑘 − 3 time units are sufficient to explore the graph, with 𝑘  the length of the path, 𝑁 =
∑ 𝑛𝑖

𝑘
𝑖=1 − 𝑘 + 1 the size of the dynamic graph and 𝑛𝑖  the size of the ring which is at position 𝑖 starting from left to right.  

Keywords: Dynamic graph; Exploration; Mobile agent; Cactus-path 

1. Introduction

A mobile entity named agent which moves in a dynamic network (modeled by a dynamic graph), of which it does not 
know the structure, must visit all of its vertices or edges. This classical problem in algorithms by mobile agents named 
exploration has been much studied in static networks since the seminal paper of Claude Shannon [11]. It is motivated 
by its applications in logic, complexity, and robotics. Concerning dynamic graphs, only the cases of periodic dynamic 
graphs [6, 8] and constantly connected dynamic rings [3, 7, 1] have been studied. This is partly due to the fact that 
communications networks have long been assumed to be static. Since a decade, researchers began to model dynamic 
networks using dynamic graphs. Many more or less equivalent models which take into account the extreme dynamics 
of certain communication networks have been developed. One of the first models developed, and also one of the most 
classic is the evolving graph model [5]. In all its generality, the evolving graphs allow to model a large set of synchronous 
dynamic networks (see Section 2 for definitions). Consequently, to obtain interesting results, it is almost always 
necessary to formulate hypotheses allowing to reduce the possibilities of dynamic graphs generated by the model. Let 
us cite for example the assumption of periodicity of edges (dynamic edge-periodic graphs), where we assume that each 
edge of the underlying graph appears and disappears periodically, and the hypothesis of constant connectivity, for 
which the graph must be connected at all times. This last hypothesis, very classic, was generalized by Kuhn, Lynch and 
Oshman [9] by the notion of 𝑇-interval-connectivity. Roughly speaking, given an integer 𝑇 ≥ 1, a dynamic graph is 𝑇-
interval-connected if for any window of 𝑇 time units, there is a connected spanning subgraph that is stable throughout 
the period. (The notion of constant connectivity is equivalent to the notion of 1-interval connectivity.) This new notion, 
which captures connection stability over time, allows to derive interesting results: the 𝑇-interval- connectivity allows a 
saving of a factor of approximately 𝛩(𝑇) on the number of messages necessary and sufficient to carry out an exchange 
of information between all the vertices of network [4, 9].  
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In this paper, we assume that the agent knows the dynamics of the network and we give an upper bound on the 
exploration time of constantly connected dynamic graphs based on cacti-paths of size 𝑛 (cacti reduced to a path of 𝑘 
rings). A cactus is a connected graph in which two cycles have at most one vertex in common (see Section 2). 

Our results. We show that to explore the constantly connected dynamic graphs based on the cactus-path 𝐶ℎ2,𝑛 , 
5𝑛 𝛩(1) time units are necessary and sufficient. The upper bound is generalized on all cacti-paths of size 𝑘. We show 
that for any constantly connected dynamic graph of size 𝑁 based on a cactus-path, 4𝑁 − 𝑚𝑎𝑥{𝑛1, 𝑛𝑘} − 3𝑘 − 3 time 
units are sufficient to explore the graph, with 𝑘 the length of the path, 𝑁 = ∑ 𝑛𝑖

𝑘
𝑖=1 − 𝑘 + 1 the size of the dynamic graph 

and 𝑛𝑖 the size of the ring which is at position 𝑖 starting from left to right.  

2. Preliminaries 

This section provides precise definitions of the concepts and models informally mentioned above. We also give some 
previous results from the literature on the problem studied. The proofs of the theorems mentioned in this section are 
given in [9]. 

2.1. Definition 1. (Dynamic graph)  

A dynamic graph is a pair𝒢 = (𝑉, ℰ), where 𝑉 is a set of 𝑛 static vertices, and ℰ is a function which maps every integer 
𝑖 ≥ 1 to a set ℰ(𝑖) of undirected edges on 𝑉. 

2.2. Definition 2. (Underlying graph) 

Given a dynamic graph𝒢 = (𝑉, ℰ), the static graph 𝐺 = (𝑉,∪  ℰ(𝑖)) is called the underlying graph of 𝒢. Conversely, the 
dynamic graph 𝒢 is said to be based on the static graph𝐺. 

2.3. Definition 3. (Constant connectivity) 

A dynamic graph 𝒢 is said to be constantly connected if, for any integer i, the static graph 𝐺𝑖 = (𝑉, ℰ(𝑖)) is connected. 

2.4. Definition 4. (Cactus)  

A cactus is a simple graph 𝐺 =  (𝑉, 𝐸) in which two connected cycles have at most one vertex in common [2].  

2.5. Definition 5. (Cactus-path)  

A cactus-path is a cactus such that, if we represent the cycles by vertices and the connections between cycles by edges, 
we obtain a path (see Figure 1).  

The length of the path is the number of cycles of the cactus-path. In the following, we denote it by 𝑘. In the figure 1, we 
give an example of cactus-path of length 4 

 

Figure 1 Example of Cactus-path of length 4 

In this paper, we consider dynamic graphs based on a cactus-path of size𝑛. A mobile entity, called agent, operates on 
these dynamic graphs. The agent can traverse at most one edge per time unit. We say that an agent explores a dynamic 
graph if and only if it visits all its vertices. We also assume that the agent knows the dynamics of the graph, that is to say, 
the times of appearance and disappearance of the edges of the dynamic graph.  
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In this article, we will use the following results from the literature. 

Theorem 1. [7] For any integer 𝑛 ≥ 3 and for any constantly connected dynamic graph based on a ring with 𝑛 vertices, 
there exists an agent (algorithm), Explore-ring, exploring this dynamic graph in time at most 2𝑛 − 3 (assuming that 
the agent knows the dynamics of the graph).  

Theorem 2. [10] For any constantly connected dynamic graph on n vertices, at most 𝑛 − 1 time units are sufficient for 
an agent to go from any vertex to any other vertex in the graph, when the agent knows the dynamics of the graph. 

3. Particular case 

In this section, we consider the constantly connected dynamic graphs based on the cactus-path 𝐶ℎ2,𝑛  (see figure 2) 
composed of two rings of the same size𝑛, and we give the time complexity of its exploration 

 

Figure 2 The Cactus-path 𝑪𝒉𝟐,𝒏 

3.1. Upper bound 

We start by giving an upper bound on the exploration time of constantly connected dynamic graphs based on 𝐶ℎ2,𝑛. The 

algorithm we are using here is very simple. And we show in the following that it is optimal. Let’s describe it. If the agent 
begins his exploration on the vertex common to both cycles, then he explores the leftmost ring first and then moves on 
to the next. Otherwise he explores the starting ring, then he moves on to the next ring and explores it. The ring 
exploration algorithm we use is the Explore-ring algorithm whose complexity is given by Theorem 1. 

Theorem 3. For any integer 𝑛 ≥ 3 and for any constantly connected dynamic graph based on 𝐶ℎ2,𝑛, there exists an agent 

(algorithm), exploring this dynamic graph in time at most 5𝑛 − 7 time units, with 𝑛 the size of each ring (the agent 
knows the dynamics of the graph). 

Proof. The complexity of the algorithm is 5𝑛 − 7 because, to explore the starting ring, the agent pays at most 2𝑛 −
3 time units (exploration time of a ring with 𝑛 vertices cf. Theorem 1). Going to the vertex common to both cycles cost 
at most 𝑛 − 1 time units cf. Theorem 2. Once on the vertex in common, all that remains is to explore the second ring, 
which costs at most 2𝑛 − 3 other time units. So in total, the agent will pay at most 5𝑛 − 7 time units to explore any 
constantly connected dynamic graph based on 𝐶ℎ2,𝑛.  

3.2. Lower bound 

In this section, we show that the simple algorithm described in the section 3.1 is almost optimal. We have the following 
theorem which proves it.  

Theorem 4. For any integern ≥ 3, there exists a constantly connected dynamic graph based on Ch2,n, such that any 
agent must pays at least 5n − 8 time units to explore it, with n the size of each ring. This bound remains even if the agent 
knows the dynamics of the graph. 

Proof. For any integer𝑛 ≥ 3, we define the constantly connected dynamic graph 𝒢 based on 𝐶ℎ2,𝑛 as follows. Let 𝐴𝑛 and 

𝐴′𝑛  be the two rings which compose 𝐶ℎ2,𝑛 . Let 𝑣0, 𝑣1, … , 𝑣𝑛−1 , respectively 𝑢0, 𝑢1, … , 𝑢𝑛−1 , be the vertices of  𝐴𝑛 , 
respectively 𝐴′𝑛, in the clockwise direction. Without loss of generality, suppose the exploration starts from the vertex 
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𝑣0 at time0. The two rings are connected as follows to form 𝐶ℎ2,𝑛 . The vertex 𝑢0 is attached to the vertex 𝑣3. In the 
following, we assume that the two vertices form one, and if we are on the ring 𝐴𝑛, it is called 𝑣3, otherwise its name is 𝑢0. 
The dynamic graph 𝒢 is built as follows (see Figure 3):  

 The edge {𝑣0, 𝑣1} is absent during the time interval [0, 𝑛 −  2). 

 The edge {𝑣1, 𝑣2} is absent during the time interval [𝑛 − 1, 2𝑛 −  2). 

 The edge {𝑣2, 𝑣3} is absent during the time interval [2𝑛 − 2, 5𝑛). 

 The edge {𝑢0, 𝑢1} is absent during the time interval [0, 2𝑛 − 5) ∪ [3𝑛 − 6, 4𝑛 − 7). 

 The edge {𝑢1, 𝑢2} is absent during the time interval [2𝑛 − 5, 3𝑛 − 6) ∪ [4𝑛 − 7, 5𝑛). 

 

Figure 3 Constantly connected dynamic graph based on 𝑪𝒉𝟐,𝒏 achieving the worst-case exploration time 

Note that 𝒢 is connected at each unit of time, so it is constantly connected. Note also that 𝑣3 and 𝑢0 is the same vertex. 
Consider any agent (algorithm). We now prove that the time the agent uses to explore 𝒢 is at least 5𝑛 − 8 time units. To 
explore the dynamic graph, the agent must visit the set of vertices of 𝒢 in particular the vertices 𝑣1, 𝑣2, 𝑣3, 𝑢1 and 𝑢2. We 
consider the following cases. 

3.3. Case 1 the vertex 𝒗𝟏 is explored before 𝒗𝟐, 𝒖𝟏 and 𝒖𝟐. 

According to the order of visit of the vertices 𝑣2, 𝑢1 and𝑢2, we have the following bounds. 

 If the agent visits 𝑣1, 𝑣2, 𝑢1 then 𝑢2 in that order 

 To visit  𝑣1 without going through the vertex 𝑣2, the agent must necessarily go through the edge {𝑣0, 𝑣1}. By 

construction, the edge {𝑣0, 𝑣1} is only present after 𝑛 − 2 time units. So the agent will pay at least 𝑛 − 1 time 

units to visit  𝑣1 for the first time. In addition, the edge {𝑣1, 𝑣2} is absent during the time interval [𝑛 − 1, 2𝑛 −

 2). So to visit  𝑣2 after visiting 𝑣1, the fastest way is to go around the ring 𝐴𝑛 and pay 𝑛 − 1 other time units. So 

to visit  𝑣2 for the first time, the agent pay at least 2𝑛 − 2 time units. Once the vertices  𝑣1 and  𝑣2 have been 

visited, the agent will visit the vertices  𝑢1 and 𝑢2. Since the vertices  𝑢1 and  𝑢2 lie on the ring 𝐴′𝑛, the agent 

must go to the attachment vertex (𝑣3) to switch to the other part of the dynamic graph. The edge {𝑣2, 𝑣3} being 

disconnected during the time interval [2𝑛 −  2, 5𝑛), so the agent will pay at least 3𝑛 − 3 time units to arrive on 

 𝑣3 after visiting  𝑣1 and 𝑣2. Once on the vertex  𝑣3 ( 𝑢0), to visit  𝑢1 without going through 𝑢2, the agent must go 

through the edge {𝑢0, 𝑢1}, which is absent during the time interval [3𝑛 −  6, 4𝑛 − 7). So the agent will pay at 

least 4𝑛 − 6 time units to visit  𝑢1 for the first time. To visit  𝑢2 after visiting 𝑢1, the best way is to go around the 

ring 𝐴′𝑛 paying 𝑛 − 1 other time units, because the edge {𝑢1, 𝑢2} is absent during the time interval [4𝑛 − 7, 5𝑛). 

So the agent will visit the vertex 𝑣2 for the first time after 5𝑛 − 7 time units. 

 If the agent visits 𝑣1, 𝑣2, 𝑢2 then 𝑢1 in that order 
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 In the previous paragraph, we showed that the agent pays at least 3𝑛 − 3 time units to arrive on  𝑣3  after 

visiting  𝑣1 and  𝑣2 for the first time. Once on  𝑣3 ( 𝑢0), to visit  𝑢2 before visiting 𝑢1, the agent pays at least 𝑛 −

2 other time units because the path 𝑢0,𝑢𝑛−1, · · · ,𝑢2 is of length 𝑛 − 2. So to visit  𝑢2 for the first time without 

going through 𝑢1, the agent pays at least 4𝑛 − 5 time units. To visit 𝑢1 after visiting 𝑢2, the fastest way is to go 

around the ring through 𝑢0 and paying 𝑛 − 1 other time units, because the edge {𝑢1, 𝑢2} is absent during the 

time interval [4𝑛 − 7, 5𝑛). So to visit  𝑢1 for the first time the agent pays at least 5𝑛 − 6 time units. 

 If the agent visits 𝑣1, 𝑢1, 𝑣2 then 𝑢2 in that order 

 In the previous paragraph, we showed that the agent pays at least 𝑛 − 1 time units to visit  𝑣1 for the first time 

without going through 𝑣2. After visiting 𝑣1, to visit  𝑢1 before 𝑣2, the agent must go to 𝑣3 without going through 

 𝑣2 which costs him 𝑛 − 2 other time units. So the agent pays at least 2𝑛 − 3 time units to arrive on 𝑣3 after 

visiting 𝑣1. Once on 𝑢0, the edge {𝑢0, 𝑢1} is present so it pays one more time unit to visit 𝑢1. So the agent pays 

2𝑛 − 2 time units to visit 𝑢1 after visiting 𝑣1. To visit 𝑣2 after visiting 𝑣1 and  𝑢1 and before visiting 𝑢2, the agent 

must go to 𝑢0 without going through 𝑢2 this costs him one time unit. So the agent will be on 𝑢0 at sooner after 

2𝑛 − 1 time units. Once on 𝑢0, the fastest way to visit 𝑣2 is to pay 𝑛 − 1 time units through 𝑣0 because the edge 

{𝑣3, 𝑣2} is absent during the time interval [2𝑛 − 2, 5𝑛). So the agent pays at least 3𝑛 − 2 time units to visit 𝑣2 

for the first time. Now he only has to visit  𝑢2 to finish his exploration. To visit 𝑢2, the agent must go to 𝑣3, as 

the edge {𝑣3, 𝑣2} is absent during the time interval [2𝑛 − 2, 5𝑛), then the faster way is to pay 𝑛 − 1 other time 

units by going through 𝑣0. So the agent pays at least 4𝑛 − 3 time units to arrive on  𝑣3 after visiting 𝑣2 for the 

first time. The edge {𝑢1, 𝑢2} is absent during the time interval [4𝑛 − 7, 5𝑛). So once on 𝑢0, the fastest way to 

visit  𝑢2 is to override  𝑢1 and pay 𝑛 − 2 other time units. So to visit  𝑢2 for the first time, the agent pays at least 

5𝑛 − 5 time units. 

 If the agent visits 𝑣1, 𝑢1, 𝑢2 then 𝑣2 in that order 

 The previous paragraph shows that to visit  𝑢1 for the first time after visiting 𝑣1, the agent pays at least 2𝑛 − 2 

time units. To visit  𝑢2 for the first time after visiting 𝑢1, the agent pays at least 3𝑛 − 5 time units. To visit 𝑣2 

after visiting 𝑢2 for the first time, the agent must go to the vertex 𝑢0. As the edge {𝑢0, 𝑢1} is absent during the 

time interval [3𝑛 − 6, 4𝑛 − 7). Then the fastest is to go around the ring by paying 𝑛 − 2 other time units. So the 

agent pays at least 4𝑛 − 7 time units to arrive on  𝑢0 after visiting 𝑢2 for the first time. Once on 𝑢0, to visit 𝑣2, 

the fastest way is to pay 𝑛 − 1 time units crossing the whole ring because the edge {𝑣2, 𝑣3} is absent during the 

time interval [2𝑛 − 2, 5𝑛). So the agent pays at least 5𝑛 − 8 time units to visit 𝑣2 for the first time. 

 If the agent visits 𝑣1, 𝑢2, 𝑢1 then 𝑣2 in that order 

 We have shown that to visit  𝑣1 and go to the vertex 𝑣3, the agent pays at least 2𝑛 − 3 time units. Once on 𝑣3, to 

visit 𝑢2 without going through 𝑢1, the agent pays at least 𝑛 − 2 other time units. So to visit 𝑢2 for the first time, 

the agent pays at least 3𝑛 − 5 time units. To visit 𝑢1 after visiting 𝑢2, the agent pays one more time units since 

the edge {𝑢1, 𝑢2} is present. To visit 𝑣2 after visiting 𝑢1, the agent pays at least 4𝑛 − 5 time units to visit 𝑢0. Once 

on 𝑢0, to visit 𝑣2, the fastest way is to go around the ring via 𝑣0 because the edge {𝑣3, 𝑣2} is absent during the 

time interval [2𝑛 − 2, 5𝑛). So the agent pays at least 5𝑛 − 6 time units to visit 𝑣2 for the first time. 

 If the agent visits 𝑣1, 𝑢2, 𝑣2 then 𝑢1 in that order 

 The previous paragraph shows that to visit 𝑢2 after visiting 𝑣1, the agent pays at least 3𝑛 − 5 time units. To visit 

 𝑣2 after visiting  𝑢2 and before visiting 𝑢1, the agent must go to the vertex  𝑢0 without going through 𝑢1. Which 

costs at least 𝑛 − 2 time units. So to get to  𝑢0 after visiting  𝑢2 for the first time, the agent pays at least 4𝑛 − 7 

time units. Once on 𝑢0, to visit 𝑣2 for the first time the agent pays at least 5𝑛 − 8 time units because the edge 

{𝑣2, 𝑣3} is absent during the time interval [2𝑛 − 2, 5𝑛). To visit 𝑢1 after visiting 𝑣2, the agent must go to 𝑣3. The 

edge {𝑣2, 𝑣3} is absent during the time interval [2𝑛 − 2, 5𝑛), therefore the agent pays at least 5𝑛 + 1 time units 

to arrive on 𝑣3 after visiting 𝑣2. Once at 𝑣3, it takes one more time unit to visit 𝑢1 for the first time. So the agent 

pays 5𝑛 + 2 to visit 𝑢1 for the first time. 

 We do similar analyzes to case 1 to prove the other cases, and we get the lower bound 5𝑛 − 8 claimed in the 

theorem. 

4. General Case 

We show here that the algorithm describe in section 3.1 can be generalized by considering constantly connected 
dynamic graphs based on cacti-paths of length 𝑘 ≥ 1 composed of 𝑘 rings of same or different sizes. Let’s describe the 
generalized algorithm before giving its complexity. The algorithm we denote Explore-Cactus-path is very simple. From 
the starting vertex, the agent goes to the leftmost ring before starting his exploration. Once on the leftmost cycle, he 
explores it then he passes over the connecting vertex of the next ring not yet explored, and so on until he explores the 



World Journal of Advanced Research and Reviews, 2021, 12(01), 355–361 

360 

whole graph. The ring exploration algorithm we use is the Explore-ring algorithm whose complexity is given by 
Theorem 1.  

Theorem 5. For any integerN ≥ 3 , k ≥ 1and for any constantly connected dynamic graph based on a cactus-path 
composed of k  rings, the algorithm Explore-Cactus-path allows to explore this dynamic graph in at most 4N −

max{n1, nk}  − 3k − 3 time units, where k is the length of the path, N = ∑ ni
k
i=1 − k + 1 the size of the dynamic graph 

and ni the size of the ring which is at position i from left to right. 

Proof 

Let 𝑁 ≥ 3, 𝑘 ≥ 1, 𝐺 a cactus-path composed of 𝑘 cycles, and 𝒢 a constantly connected dynamic graph based on 𝐺. Let 𝑛𝑖  
be the size of the ring which is at position 𝑖 starting from left to right and 𝑁 = ∑ 𝑛𝑖

𝑘
𝑖=1 − 𝑘 + 1 the number of vertices of 

the dynamic graph. Let A be an agent executing the Explore-Cacti-path algorithm. To go to the leftmost cycle, the agent 
pays at most 𝑁 − 1 time units (cf. Theorem 2). To explore a cycle and move on to the next cycle, the agent executes the 
algorithm Explore-ring and pays at most three times the size of the current ring minus four time units (cf. Theorem 1 
and Theorem 2). These two procedures are executed 𝑘 − 1 times. So according to the starting cycle, the agent will pay 
at most ∑ (3𝑛𝑖

𝑘
𝑖=2 − 4) or ∑ (3𝑛𝑖

𝑘−1
𝑖=1 − 4) time units to explore the first 𝑘 − 1 cycles and go to the connecting vertex of 

the last cycle. To explore the last cycle, twice its size minus three time units are sufficient (cf. Theorem 1). So to explore 

the dynamic graph, the agent pays at most 𝑚𝑖𝑛(∑ (3𝑛𝑖
𝑘−1
𝑖=1 − 4) + 2𝑛𝑘 − 3 + 𝑁 − 1, ∑ (3𝑛𝑖

𝑘
𝑖=2 − 4 ) + 2𝑛1 − 3 + 𝑁 − 1) 

time units. Which is at most4𝑁 − 𝑚𝑎𝑥{𝑛1, 𝑛𝑘}  − 3𝑘 − 3. This conclude the proof. 

5. Conclusion 

In this paper, we studied the time complexity for exploring constantly connected dynamic graphs based on cacti-paths, 
under the assumption that the agent knows the dynamics of the graph. We first considered the particular case of 
underlying graph 𝐶ℎ2,𝑛, and we have shown that 5𝑛 −  𝛩(1) time units are necessary and sufficient to explore it. And 

we then generalized the upper bound on all cacti-paths. This study opens several perspectives. An interesting question 
to investigate would be if T-interval connectivity (for 𝑇 ≥ 1) allows to save a significant factor in the exploration time. 
A further perspective is to consider the exploration problem of dynamic graphs using more than one agent, assuming 
standard models of communication between the agents. The objective would be to study whether dynamic graph 
exploration can be performed more efficiently by using more than one agent. 
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