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Abstract 

Background: While the anatomy of the medial part of the knee has been extensively described, the muscular 
connections to the superficial medial collateral ligament (sMCL) have not been sufficiently studied. The purpose of this 
study is to describe the anatomy of the musculo-ligamentous connection between the sMCL and the Vastus Medialis 
Obliquus muscle (VMO), and to describe its anatomy. 

Methods: Six Human Cadaveric knees were used in this study. Donors were 4 males and 2 females with a mean age of 
49 years old. Dissection was performed in fixed knee extension and directed to show the area of the proximal 
attachment of the sMCL. 

Results: A musculo ligamentous connection between the distal portion of the Vastus medialis Obliquus muscle and the 
sMCL has been identified in our entire specimens. The mean mid substance width of this connection was 9.75 (8.7 -10.8) 
mm, the mean length was 29.3 (22.2-36.4) mm and the mean thickness was 1.3 (0.9-1.7) mm. 

Conclusion: The proximal femoral attachment of the sMCL is directly connected to the distal end of VMO. This 
connection may show that the sMCL can possibly assist in the dynamic stabilization of the knee during extension against 
valgus stress, through its tension by the contracted VMO muscle. 
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1. Introduction

The medial knee stabilizers are the most frequently injured ligaments of the knee. Also, the medial collateral ligament 
(MCL) is injured in at least 42 % of knees with ligamentous injuries [1], being much more common inyounger population 
and in males more than females [2]. Secondary to a mechanism of injury including forceful knee valgus stress and/ or 
external rotation, and with increased prevalence of injury during certain athletic activities such as soccer and skiing [3], 
MCL injury can occur in isolation, orin association with anterior cruciate ligament injury, and medial meniscustears [4]. 
Classically, most of isolated MCL injuries could heal with conservative management, but high-grade or chronic injury 
may lead to chronic knee instability [5] and may necessitate surgical repair orre construction. Complete knowledge of 
the anatomy of the MCL could help int he management of medial side knee injuries, whether a conservative or surgical 
intervention was planned, to obtain favorable clinical results. 
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1.1. Anatomical considerations 

The medial side of the knee has been classically described as being three layered [6]. The first layer, being most 
superficial, includes the Sartorius muscle and its investing fascia. The second layer includes the sMCL, posterioroblique 
ligament(POL), medial patellofemoral ligament (MPFL) and the musculo-tendinous attachments of the 
Semimembranosus. The third and deepest layer consists of the deep MCL and the joint capsule. 
The two components of the MCL (superficial and deep) lie in the middle and deepest layers respectively and are 
separated by a bursa [ 8]. 
The medial side of the knee contains both dynamic and static stabilizers that contribute to the resistance of valgus and 
rotational forces. Static stabilizers of the medial knee include the sMCL, the deep MCL and the POL[9]. The medial 
dynamic stabilizers are the Semimembranosus complex, the quadriceps, and the pes anserinus. The MCL is the main 
stabilizer against valgus stress at lower flexion angles, and is known to provide 78%of the restraining force against 
valgus injury at 25 degrees of knee flexion, and 57% of the restraining forces against valgus stress in full knee extension. 
The POL, ACL and posteromedial capsule aid to provide most of the remaining restraint in full extension[10]. 

The sMCL origin is a round to oval depression posterior and 65 proximal to the femoral epicondyle. Proximal and 
posterior to the sMCL origin, the superficial and central arms of the POL are attached to bone near to the medial 
gastrocnemius tubercle. The superficial and central arms of the POLrun distally to insert into the distal tibial expansion 
of the semimembranosus and its tibial attachment, the posteromedial aspect of the medial meniscus, the meniscotibial 
portion of the posteromedial capsule, and the posteromedial part of the tibia [11]. The medial patellofemoral ligament 
is afibrous structure that extends from a broad area along the supero media laspect of the medial border of the patella 
and also from terminal end of the VMO muscle, and run medially and posteriorly to insert into the bone and soft tissue 
between the medial femoral epicondyle and the femoral attachments of the adductor magnus tendon into the adductor 
tubercle offemur [ 10]. 
In his description of the anatomy of the knee, Muller W [13] noted thepresence of ligamentous connection between the 
vastus medialis muscle and its fascial covering, and the area of MCL origin around the medial femoral epicondyle (MFE). 
Muller W [13] stated that on the femur these ligamentous collagenous fibers are in close association with the normal 
ligament and even appear to be blended with it over part of their course, and they terminate directly or indirectly to the 
vastus medialis muscle, and aids in active tension of MCL during motion. Based on that, Indlicato P [7] has also 
mentioned that the MCL is dynamized by the contraction of the Vastus Medialis during active extension through this 
connection. However; the anatomy of this connection has not been described in any further literature. This Cadaveric 
study aims to identify and illustrate the anatomy of this connection. 

2. Material and methods 

2.1. Cadaveric Knees  

Six frozen and unpaired human cadaveric knees were utilized for this study. All the cadaveric specimens were available 
in our medical schools for researchers. The specimens were 3 right and 3 left knees without known pre existing knee 
surgery, belong to 4 males and 2 females. The mean age of the donors was 49 years (range 47 to 52). Each specimen 
was frozen at -20°C and thawed overnight prior to dissection. Each knee was transected ~35 cm above and below the 
joint line. The specimen was then aligned in a full extension position which was maintained throughout the dissection 
and measurements. 

2.2. Anatomical dissection 

First, the skin and subcutaneous tissue were dissected. The pes anserinustendons (sartorius, gracilis, and 
semitendinosus tendon) and the MPFL were detached from their distal attachments during dissection. Identification of 
thes MCL in the middle layer of the medial knee compartment is done. Thes MCL origin around the medial epicondyle 
was identified and carefully raised and followed proximally to the direction of the vastus medialis. At this stage, a 
Musculo ligamentous connection between the sMCL and VM was identified and raised carefully off the bone. 
Measurements were performed using the digital caliber ruler device (range 0-150 mm, precision 0.02mm). 

3. Results 

3.1. Musculo-Ligamentous connection between the VMO and sMCL 

In all our specimens, we have dissected and proven a musculo-ligamentous connection, closely related to the underlying 
bone that extends between theVMO muscle and the uppermost fibers and anterior border of sMCL at its origin around 
the medial epicondyle. (Fig 1,2,3-6).This connection consists of mainly ligamentous and few muscle fibers. It originates 



World Journal of Advanced Research and Reviews, 2021, 12(01), 431–438 

433 

from the posterior border of distal end of theVMO muscle proper and the fascia covering it above the medial epicondyle. 
Also it has contribution from the adductor fascia and tendon. Then it extends distally, being closely related to the 
underlying bone, to cover the superior most portion of the medial femoral epicondyle, blending with the most superficial 
fibers of superior and anterior border of sMCL fibers in a fan shaped manner. (Fig 1, 2, 4, 5). 

The shape and size of this connection varies from a specimen to another, depending on the muscle mass and the length 
of the limb, being more defined in specimens with good muscle mass. The length of the ligamentous portion of this 
connection from its origin at the VM to its end at the sMCL ranged from 22.2 to 36.4 (average 29.3) mm. We have divided 
it into thirds and measured the antero -posterior width for each one third. The average widths were 12.6-15.7 (14.1) 
mm, 14, 1-17.5 (15.8) mm and 8.7 -10.8 (9.75) mm for the proximal, distal and middle parts respectively. The thickness 
of this connection was not uniform, being thicker and broader proximally then tapering distally till it ends in the sMCL. 
In our specimens, the average mid substance thickness was about 0.9-1.7 (1.3) mm. The ligamentous fibers 
measurements in this connection are summarized in table 1. 

Table 1 Measurements of sMCL-VMO connection: Range, (Average) 

Proximal 

insertion 

width 

Distal 

insertion 

width 

Mid 

substance 

Width 

Length Mid 

substance 

thickness 

site 

12.6-15.7 

(14.1) mm 

 

14.1-17.5 

(15.8) mm 

 

8.7 -10.8 

(9.75) mm 

 

22.2-36.4 

(29.3) mm 

 

0.9-1.7 

(1.3) mm 

 

Measurement 

 

 

Figure 1 Cadaveric exposure showing the Medial Femoral Epicondyle (ME), the Vastus Medialis muscle (VM), the 
superficial Medial Collateral ligament origin (sMCL). The soft tissue structures were not elevated off the bone. Note the 
bright ligamentous fibers that originate from the undersurface and posterior border of VMO muscle and the fascia 
covering its tendon before joining the medial border of patella,). Then it extends distally, to cover the medial femoral 
epicondyle (ME), and then to blend with the most superficial fibers of superior and anterior border of sMCL fibers at 
the level of their origin from the Medial epicondyle 
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Figure 2 Cadaveric exposure of the medial knee shows the Musculo Ligamentous connection between the Vastus 
Medialis Obliquus (VMO) and the origin of the Superficial Medial Collateral Ligament (s MCL) from the Medial 
Epicondyle (ME). Note the contribution of the fascial covering VMO tendon to the connecting fibers. Reprinted with 
permission from Michel Bonnin: The Knee Joint, Surgical techniques and strategies, Springer – Verlag France, Paris, 
2012 [3] 

 

Figure 3 Simplified illustration of the connecting sleeve between the VMO and s MCL 
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Figure 4 Cadaveric knee sample. Note the forceps pointed musculo ligamentous tissue that extends from the lower 
fibers of VMO to the area of sMCL origin from the medial epicondyle 

 

Figure 5 Clinical photos, illustrating the connection between the s MCL and VMO, dissection done during a surgery for 
recurrent patellar dislocation 

 

Figure 6 Cadaveric knee sample. Note the elevated musculo ligamentous connection from the distal end of Vastus 
Medialis to the sMCL origin from the medial epicondyle 

 

 
  

 
  



World Journal of Advanced Research and Reviews, 2021, 12(01), 431–438 

436 

4. Discussion 

This study aims at determining the morphology of the connecting sleeve between the sMCL and the VMO. To our 
knowledge, there are no reports quantifying this connection except a short note by Muller W [13], who pointed out the 
existence of ligamentous collagenous fibers that can be traced beyond the ideal lines of the MCL origin. Muller W [13] 
mentioned that these fibers dynamize the MCL through its attachment to the Vastus Medialis and adductors, and stated 
that the sMCL fibers are protected from possible overstretching through its attachment to a dynamic, mobile structures 
as the muscle. In our study, we found that this connection to originate as muscular fibers from the VMO, and takes 
contributions from the adductor tendon and its covering fascia, to run distally as thin ligamentous fibers, closely related 
to the underlying bone to blend with the superior and anterior borders of the MCL at its origin from the medial 
epicondyle (Fig 1, 2, 4, 6).This connection may be overlooked due to many reasons; the first is that it arises from a small 
portion from the posterior border of most distal end of the VMO, and may be easily unnoticed in specimen with thin 

VMO muscle 171 mass. Also, this connection could be closely related to the underlying bone and often needs to be 
elevated carefully to expose it. 

As mentioned in literature, the POL portion of the MCL was classically believed to assess in the dynamic stability of the 
knee during knee flexion, through its connection to the Semimembranosus tendon [16], while the sMCL itself was 
classically stated to be a static knee stabilizer. The presence of a direct connection between the sMCL and VMO may 
change the concept about the pure static function of the sMCL. Moreover, we found that in specimens with a well-defined 
VMO muscle mass, and subsequently more defined connecting fibers; the anterior portion of the s MCL which receives 
the insertion of this connection is more prominent and thicker than the rest of the s MCL. That’s why we believe that 
the anterior portion of the s MCL is adynamized portion through its connection to the active structures. Injuries to knee 
ligaments are very common. It has been estimated that the incidence could be at 2/1000 people per year in the general 
population witha much higher incidence in those who are involved in sports activities. Ninety percent of knee ligament 
injuries involve the anterior cruciate ligament (ACL) and the medial collateral ligament [12]. Basic science and clinical 
studies have revealed that a ruptured MCL can heal spontaneously [16], however, laboratory studies have shown that 
its ultra-structure and biochemical composition may remain significantly changed [14]. 

Furthermore, the mechanical properties of the ligament substance remain substantially inferior to those of normal 
ligaments even after years of remodeling [11]. Thus, there has been a tremendous need for knowledge regarding 
ligament anatomy to better understand ligament injuries, healingand remodeling in hope to develop new and improved 
treatment strategies. 

The limitless ability of the dynamized portion of the ligament to best rengthened by training may lead to increased 
ability to adapt higher performance, and could explain why the well-trained athletes suffer fewer injuries than fewer 
ones, and why less lower extremity muscle mass was associated with greater laxity and less stiffness in frontal and 
transverse planes. This also may contribute to the disproportionally higher laxities andreduced stiffnesses observed in 
females in these planes more than males, and why instabilities are particularly disabling in individuals with poor 
muscular strength [13, 18]. Muller W [13] postulated that flail knee after poliomyelitis is a consequence of laxity of the 
"rigid" ligaments due to chronic overstretching, when they can no longer be protected from excessive stress bya n 
actively dynamized ligament component Shultz et al [19], concluded that transverse plane laxity and stiffness, or varus 
and valgus instabilities, may be modifiable through strength training interventions that promote changes in muscle 
characteristics (e.g. muscle cross-sectional area) thus contribute to more dynamic joint stability during sport activity. 
Through its connections to the static structures, a good muscle function could add considerable dynamic properties to 
the static structures and increase its ability to withstand stresses. Although, the biomechanical value of such small 
connection between the VMO and the sMCL might be less likely to significantly affect the knee stability, we believe that 
proper rehabilitation program for the medial knee instability should focus on increasing the VMO muscle mass and 
hence increasing the efficiency both the dynamic and static knee stabilizers functions. We admit several limitation of 
this study. First, is being only a descriptive study, while a biomechanical assessment of these findings would be most 
appropriate for investigating its value. Second, more specimens are needed to properly assessing the size of such 
connection. We believe that more specimens and biomechanical assessment would be most appropriate to illustrate 
such anatomical connection. In summary, this study describes the anatomy of musculo ligamentous connection between 
the VMO and the sMCL in human knee specimens. Morework is needed to quantitatively determine the bio mechanical 
value of this connection in dynamization of the MCL during various degrees of knee movement. 
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5. Conclusion 

 The proximal femoral attachment of the sMCL is directly connected to the distal end of VMO. This connection may show 
that the sMCL can possibly assist in the dynamic stabilization of the knee during extension against valgus stress, through 
its tension by the contracted VMO muscle. 
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