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Abstract 

Thyroid adenomas (TA) are benign tumors, but there is a 20% possibility of malignant transformation. The 
distinguishing between the TA and thyroid cancer (TC) is tricky, therefore new TA biomarkers are needed. Furthermore, 

the role of chemical elements (ChE) in etiology and pathogenesis of TA is unclear. The aim of this exploratory study was 
to evaluate whether significant changes in the thyroid tissue levels of twenty chemical elements (ChE) Al, B, Ba, Br, Ca, 
Cl, Cu, Fe, I, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and Zn exist in the adenomatous transformed thyroid. Thyroid tissue levels 
of twenty ChE were prospectively evaluated in 19 patients with TA and 105 healthy inhabitants. Measurements were 
performed using a combination of non-destructive and destructive methods: instrumental neutron activation analysis 
and inductively coupled plasma atomic emission spectrometry, respectively. Tissue samples were divided into two 
portions. One was used for morphological study while the other was intended for ChE analysis. It was found that 
contents of of Al, B, Br, Cl, Cu, Na, and Zn are significantly higher whereas the levels of I some lower. in TA than in normal 
tissues. It was supposed that the changes in levels Al, B, Br, Cl, Cu, I, Na, and Zn in thyroid tissue can be used as TA 
markers.  

Keywords: Thyroid adenomas; Intact thyroid; Chemical elements; Biomarkers for adenoma diagnosis; Instrumental 
neutron activation analysis; Inductively coupled plasma atomic emission spectrometry 

1. Introduction

Thyroid adenomas (TA) are homogenous, solitary, encapsulated benign tumors, more common in females, and have a 
good prognosis [1]. However, because there is a 20% possibility of malignant transformation, TA should be 
differentiated from other thyroid nodular diseases such as nodular goiter (NG) and thyroid cancer (TC). The 
distinguishing between the TA and TC is tricky, therefore new differential diagnostics and TA biomarkers are needed 
[2,3].  

For over 20th century, there was the dominant opinion that NG, including TA, is the simple consequence of iodine (I) 
deficiency. However, it was found that NG is a frequent disease even in those countries and regions where the population 
is never exposed to I shortage [4]. Moreover, it was shown that I excess has severe consequences on human health and 
associated with the presence of thyroidal disfunctions and autoimmunity, nodular and diffuse goiters, adenomas and 
malignant tumors of gland [5-8]. It was also demonstrated that besides the I deficiency and excess many other dietary, 
environmental, and occupational factors are associated with the NG incidence [9-11]. Among them a disturbance of 
evolutionary stable input of many (ChE) in human body after industrial revolution plays a significant role in etiology of 
thyroidal disorders [12].  
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Besides I involved in thyroid function, other ChE have also essential physiological functions such as maintenance and 
regulation of cell function, gene regulation, activation or inhibition of enzymatic reactions, and regulation of membrane 
function [13]. Essential or toxic (goitrogenic, mutagenic, carcinogenic) properties of ChE depend on tissue-specific need 
or tolerance, respectively [13]. Excessive accumulation or an imbalance of the ChE may disturb the cell functions and 
may result in cellular degeneration, death, benign or malignant transformation [13-15].  

In our previous studies the complex of in vivo and in vitro nuclear analytical and related methods was developed and 
used for the investigation of I and other ChE contents in the normal and pathological thyroid [16-22]. Level of I in the 
normal thyroid was investigated in relation to age, gender and some non-thyroidal diseases [23,24]. After that, 
variations of ChE content with age in the thyroid of males and females were studied and age- and gender-dependence 
of some ChE was observed [25-41]. Furthermore, a significant difference between some ChE contents in normal and 
cancerous thyroid was demonstrated [42-47].  

To date, the etiology and pathogenesis of TA has to be considered as multifactorial. The present study was performed 
to clarify the role of some TE in the TA etiology. Having this in mind, our aim was to assess the aluminum (Al), boron 

(B), barium (Ba), bromine (Br), calcium (Ca), chlorine (Cl), coper (Cu), iron (Fe), I, potassium (K), lithium (Li), 
magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P), sulfur (S), silicon (Si), strontium (Sr), vanadium (V), 
and zinc (Zn) mass fraction contents in TA tissue using a combination of non-destructive and destructive methods: 
instrumental neutron activation analysis with high resolution spectrometry of short-lived radionuclides (INAA-SLR) 
and inductively coupled plasma atomic emission spectrometry (ICPAES), respectively. A further aim was to compare 
the levels of these twenty ChE in the adenomatous thyroid with those in normal gland of apparently healthy persons.  

All studies were approved by the Ethical Committees of the Medical Radiological Research Centre (MRRC), Obninsk. All 
the procedures performed in studies involving human participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments, or 
with comparable ethical standards.  

2. Material and methods 

All patients suffered from TA (n=19, 16 females and 3 males, mean age MSD was 4111 years, range 22-55) were 
hospitalized in the Head and Neck Department of the Medical Radiological Research Centre. Thick-needle puncture 
biopsy of suspicious nodules of the thyroid was performed for every patient, to permit morphological study of thyroid 
tissue at these sites and to estimate their TE contents. For all patients the diagnosis has been confirmed by clinical and 
morphological results obtained during studies of biopsy and resected materials. Histological conclusion for all thyroidal 
lesions was the TA. 

Normal thyroids for the control group samples were removed at necropsy from 105 deceased (mean age 4421 years, 
range 2-87), who had died suddenly. Samples were obtained within 48 hours after a sudden death. The majority of 
deaths were due to trauma. A histological examination in the control group was used to control the age norm conformity, 
as well as to confirm the absence of micro-nodules and latent cancer. 

All tissue samples were divided into two portions using a titanium scalpel [48]. One was used for morphological study 
while the other was intended for ChE analysis. After the samples intended for ChE analysis were weighed, they were 
freeze-dried and homogenized [49]. 

The pounded samples weighing about 10 mg (for biopsy) and 100 mg (for resected materials) were used for ChE 
measurement by INAA-SLR. The content of Br, Ca, Cl, I, K, Mg, Mn, and Na were determined by INAA-SLR using a 
horizontal channel equipped with the pneumatic rabbit system of the WWR-c research nuclear reactor (Branch of 
Karpov Institute, Obninsk). After non-destructive INAA-SLR investigation the thyroid samples were used for ICP-AES. 
The samples were decomposed in autoclaves. Simultaneously, the same procedure was performed in autoclaves without 
tissue samples (containing only HNO3+H2O2+ deionized water), and the resultant solutions were used as control 
samples. Sample aliquots were used to determine the Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and Zn mass 
fractions by ICP-AES using the Spectrometer ICAP-61 (Thermo Jarrell Ash, USA). The determination of the ChE content 
in aqueous solutions was made by the quantitative method using calibration solutions (High Purity Standards, USA) of 
0.5 and 10 mg/L of each element. The calculations of the ChE content in the probe were carried out using software of a 
spectrometer (ThermoSPEC, version 4.1). 
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Information detailing with the NAA-SLR and ICP-AES methods used and other details of the analysis were presented in 
our earlier publications concerning ChE contents in human thyroid, scalp hair, and prostate[33,34,50-55]. 

To determine contents of the ChE by comparison with a known standard, biological synthetic standards (BSS) prepared 
from phenol-formaldehyde resins were used [56]. In addition to BSS, aliquots of commercial, chemically pure 
compounds were also used as standards. Ten sub-samples of certified reference material (CRM) IAEA H-4 (animal 
muscle) and five sub-samples of CRM of the Institute of Nuclear Chemistry and Technology (INCT, Warszawa, Poland) 
INCT-SBF-4 Soya Bean Flour, INCT-TL-1 Tea Leaves, and INCT-MPH-2 Mixed Polish Herbs were treated and analyzed in 
the same conditions that thyroid samples to estimate the precision and accuracy of results. 

A dedicated computer program for INAA mode optimization was used [57]. All thyroid samples were prepared in 
duplicate, and mean values of ChE contents were used. Mean values of ChE contents were used in final calculation for 
the Br, Fe, Rb, and Zn mass fractions measured by two methods. Using Microsoft Office Excel, a summary of the statistics, 
including, arithmetic mean, standard deviation, standard error of mean, minimum and maximum values, median, 
percentiles with 0.025 and 0.975 levels was calculated for ChE contents. The difference in the results between two 
groups (normal thyroid and TA) was evaluated by the parametric Student’s t-test and non-parametric Wilcoxon-Mann-
Whitney U-test.  

3. Results  

Table 1 depicts our data for Br, Ca, Cl, K, Mg, Mn, and Na mass fractions in ten sub-samples of CRM IAEA H-4 (animal 
muscle) certified reference material and the certified values of this material. 

Table 1 INAA-SLR data of chemical element contents in the IAEA H-4 (animal muscle) reference material compared to 
certified values (mg/kg on dry mass basis) 

Element Certified values This work results 

 Mean 95% confidence interval Type MeanSD 

Br 4.1 3.5 – 4.7 C 5.00.9 

Ca 188 163 – 213 C 23859 

Cl 1890 1810 – 1970 C 1950230 

K 15800 15300 – 16400 C 162003800 

Mg 1050 990 – 1110 C 1100190 

Mn 0.52 0.48 – 0.55 N 0.550.11 

Na 2060 1930 – 2180 C 2190140 

Mean - arithmetical mean, SD - standard deviation, C - certified values, N - non-certified values 

Table 2 presents our data for Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and Zn mass fractions in five sub-samples 
of INCT-SBF-4 Soya Bean Flour, INCT-TL-1 Tea Leaves and INCT-MPH-2 Mixed Polish Herbs certified reference 
materials and the certified (or informative) values of this material 

The comparison of our results for the Ca, K, Mg, Mn, and Na mass fractions (mg/kg, dry mass basis) in the normal human 
thyroid obtained by both INAA-SLR and ICP-AES methods is shown in Table 3. 
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Table 2 ICP-AES data of chemical element contents in Certified Reference Materials (MSD, mg/kg on dry mass basis) 

Element Soya Bean Flour 

(INCT-SBF-4) 

Tea Leaves 

(INCT-TL-1) 

Mixed Polish Herbs 

(INCT-MPH-2) 

Certificate This work 

result 

Certificate This work 

result 

Certificate This work 

result 

Al 45.53.7 37.11.4 2290280 224861 670111 48579 

B 39.94.0 34.51.4 26a 24.81.2 - 28.88.1 

Ba 7.300.23 7.380.23 43.23.9 44.72.6 32.52.5 32.20.6 

Ca 2467170 2737190 5820520 6296360 10800700 10250294 

Cu 14.30.5 14.20.8 20.41.5 19.71.1 7.770.53 8.280.47 

Fe 90.84.0 80.56.9 432a 49339 460a 45933 

K 24230830 252301090 170001200 178101320 191001200 20280870 

Li - 0.00470.0018 - 0.2170.034 - 0.5740.044 

Mg 300582 2983340 2240170 2415115 2920180 2955159 

Mn 32.31.1 30.01.0 1570110 1628145 19112 1975 

Na - 10.23.4 24.73.2 24.23.5 350a 33817 

P 6555355 6782248 1800a 2457150 2500a 3022481 

S 4245471 4468529 2470250 2500230 2410140 2409159 

Si - 26.74.8 - 32534 - 26864 

Sr 9.320.46 8.760.21 20.81.7 19.81.0 37.62.7 37.42.1 

V - ≤0.22 2.00.4 1.80.2 0.950.16 0.900.04 

Zn 52.31.3 54.86.6 34.72.7 36.03.7 33.52.1 32.06.1 

M - arithmetic mean, SD - standard deviation, a Informative values 

 

Table 3 Comparison of the mean values (MSEM) of the chemical element mass fractions (mg/kg, on dry-mass basis) 
in the normal human thyroid (males and females combined) obtained by both NAA-SLR and ICP-AES methods 

Element NAA-SLR (M1) ICP-AES (M2) ∆, % 

Ca 1692±109 1633±108 3.5 

K 6071±306 6764±298 -11.4 

Mg 285±17 308±17 -8.1 

Mn 1.35±0.07 1.21±0.07 10.4 

Na 6702±178 7154±201 -6.7 

M – arithmetic mean, SEM – standard error of mean, ∆=[(M1 – M2)/M1] ∙100%. 

Table 4 presents certain statistical parameters (arithmetic mean, standard deviation, standard error of mean, minimal 
and maximal values, median, percentiles with 0.025 and 0.975 levels) of the Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, Mn, 
Na, P, S, Si, Sr, V, and Zn mass fraction in normal and adenomatous thyroid. 
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Table 4 Some statistical parameters of Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and Zn mass fraction 
(mg/kg, dry mass basis) in normal and adenomatous thyroid 

Tissue Element Mean SD SEM Min Max Median P 0.025 P 0.975 

Normal Al 10.5 13.4 1.8 0.800 69.3 6.35 1.19 52.9 

n=105 B 0.476 0.434 0.058 0.200 2.30 0.300 0.200 1.73 

 Ba 1.12 1.15 0.15 0.0480 5.00 0.680 0.0838 4.48 

 Br 14.9 11.0 1.2 1.90 54.1 11.6 2.56 49.3 

 Ca 1682 999 106 373 5582 1454 444 4183 

 Cl 3400 1452 174 1030 6000 3470 1244 5869 

 Cu 4.08 1.22 0.14 0.500 7.15 4.10 1.57 6.41 

 Fe 223 95 10 52.0 489 210 72.8 432 

 I 1841 1027 107 114 5061 1695 230 4232 

 K 6418 2625 290 1914 15293 5948 2947 13285 

 Li 0.0208 0.0155 0.0022 0.0015 0.0977 0.0178 0.0041 0.0487 

 Mg 296 134 16 66.0 930 284 95.8 541 

 Mn 1.28 0.56 0.07 0.470 4.04 1.15 0.537 2.23 

 Na 6928 1730 175 3686 13453 6835 3974 10709 

 P 4290 1578 207 496 8996 4221 1360 7323 

 S 8259 2002 263 644 11377 8399 3662 11208 

 Si 50.8 46.9 6.2 5.70 180 36.0 7.11 174 

 Sr 3.81 2.93 0.34 0.100 12.6 2.90 0.365 11.3 

 V 0.102 0.039 0.005 0.0200 0.250 0.100 0.0440 0.192 

 Zn 94.8 39.6 4.2 7.10 215 88.5 34.9 196 

Adenoma Al 34.3 24.1 9.1 8.70 78.4 30.6 9.53 74.1 

n=19 B 3.38 2.74 1.12 1.00 7.30 3.00 1.00 7.01 

 Ba 3.06 4.07 1.54 0.410 11.7 1.40 0.454 10.7 

 Br 394 397 125 11.6 1080 203 22.5 1033 

 Ca 1370 1030 311 52.0 3582 1252 136 3353 

 Cl 7722 3785 1262 1757 13824 9085 2043 113179 

 Cu 17.6 14.0 5.7 4.10 35.2 13.8 4.28 35.0 

 Fe 429 405 108 52.3 1360 335 53.3 1326 

 I 962 1013 232 131 3906 476 170 3591 

 K 5603 2727 756 797 10099 5741 937 9600 

 Li 0.0401 .0.0236 0.0100 0.0185 0.0680 0.0341 0.0186 0.0678 

 Mg 236 108 30 15.0 397 269 36.9 376 

 Mn 1.67 1.88 0.54 0.100 6.12 0.805 0.210 5.50 

 Na 9747 4746 1316 2319 18734 9100 2728 18038 

 P 4930 1945 735 2982 8932 4300 3072 8395 

 S 10536 2968 1122 7865 16706 9486 8017 15970 

 Si 114 106 40 15.2 346 83.7 24.6 310 

 Sr 3.30 2.18 0.63 0.420 6.70 2.85 0.582 6.69 

 V 0.140 0.041 0.020 0.110 0.200 0.125 0.111 0.195 

 Zn 129 50 13 57.7 251 137 61.3 225 
M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min – minimum value, Max – maximum value, P 0.025 – percentile 

with 0.025 level, P 0.975 – percentile with 0.975 level. 
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Table 5 Median, minimum and maximum value of means Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and 
Zn contents in the normal and adenomatous thyroid according to data from the literature in comparison with our results 
(mg/kg, dry mass basis) 

Tissue Published data [Reference] This work 

Element Median of 

means 

(n)* 

Minimum of 

means 

M or M±SD, (n)** 

Maximum of 

means 

M or M±SD, (n)** 

Males and 
females 

M±SD 

Norm     

Al 33.6 (12) 0.33 (-) [58] 420 (25) [59] 10.5±13.4 

B 0.151 (2) 0.084 (3) [60] 0.46 (3) [60] 0.476±0.434 

Ba 0.67 (7) 0.0084 (83) [61] ≤5.0 (16) [62] 1.12±1.15 

Br 18.1 (11) 5.12 (44) [63] 28444 (14) [64] 16.3±11.6 

Ca 1600 (17) 840240 (10) [65] 3800320 (29) [65] 1663±999 

Cl 6800 (5) 80480 (4) [66] 8000 (-) [67] 3400±1452 

Cu 6.0 (61) 0.16 (83) [61] 22022 (10) [66] 3.93±1.43 

Fe 252 (21) 56 (120) [68] 3360 (25) [59] 223±95 

I 1888 (95) 1598 (23) [69] 57722708 (50) [70] 1841±1027 

K 4300 (17) 46.44.8 (4) [66] 6090 (17) [62] 6418±2625 

Li 6.3 (2) 0.092 (-) [71] 12.6 (180) [72] 0.0208±0.0154 

Mg 390 (16) 3.5 (-) [58] 1520 (20) [73] 296±134 

Mn 1.62 (40) 0.076 (83) [61] 69.27.2 (4) [66] 1.28±0.56 

Na 8000 (9) 438 (-) [74] 100005000 (11) [75] 6928±1730 

P 2860 (10) 16 (7) [76] 7520 (60) [63] 4290±1578 

S 11000 (3) 4000 (-) [67] 11800 (44) [63] 8259±2002 

Si 16.0 (3) 0.97 (-) [58] 1436 (40) [77] 50.8±46.9 

Sr 0.61 (9) 0.055 (83) [61] 46.84.8 (4) [66] 3.81±2.93 

V 0.065 (6) 0.0124 (2) [78] 18±2 (4) [66] 0.1020.039 

Zn 110 (56) 2.1 (-) [58] 820204 (14) [64] 94.8±39.7 

Adenoma     

Al - - - 34.3±24.1 

B - - - 3.38±2.74 

Ba - - - 3.06±4.07 

Br 38 (4) 11 (5) [79] 777 (1) [80] 394±397 

Ca 2298(4) 900 (1) [65] 3500 (1) [65] 1370±1030 

Cl 864 (1) 864±84 (4) [66] 864±84 (4) [66] 7722±3785 

Cu 11.0 (7) 1.24 (46) [81] 29 (5) [79] 17.6±14.0 

Fe 92.5 (4) 15 (5) [79] 2100208 (4) [66] 429±405 

I 640(13) 80 (1) [79] 2800 (1) [82] 962±1013 
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K 3650 (3) 72,8±7,2 (4) [66] 5600 (1) [79] 5603±2727 

Li - - - 0.0401±.0.0236 

Mg - - - 236±108 

Mn 1.28 (4) 0.40 (46) [81] 57,6±6,0 (4) [66] 1.67±1.88 

Na - - - 9747±4746 

P - - - 4930±1945 

S - - - 10536±2968 

Si - - - 114±106 

Sr 27.2 (1) 27.2±2.4 (4) [66] 27.2±2.4 (4) [66] 3.30±2.18 

V 16.8 (1) 16.81.6 (4) [66] 16.81.6 (4) [66] 0.140±0.041 

Zn 68.5 (8) 21.0 (130) [83] 330±282 (9) [84] 129±50 

M –arithmetic mean, SD – standard deviation, (n)* – number of all references, (n)** – number of samples. 

The comparison of our results with published data for Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and Zn 
mass fraction in normal and adenomatous thyroid [58-84] is shown in Table 5. 

The ratios of means and the difference between mean values of Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, Mn, Na, P, S, Si, Sr, 
V, and Zn mass fractions in normal and adenomatous thyroid are presented in Table 6. 

Table 6 Differences between mean values (MSEM) of Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and 
Zn mass fraction (mg/kg, dry mass basis) in normal and adenomatous thyroid 

Element Thyroid tissue Ratio 

Norm 

n=105 

Adenoma 

n=19 

Student’s t-test 

p 

U-test 

p 

Adenoma 

to Norm 

Al 10.5±1.8 34.3±9.1 0.040 ≤0.01 3.27 

B 0.476±0.058 3.38±1.12 0.048 ≤0.01 7.10 

Ba 1.12±0.15 3.06±1.54 0.256 >0.05 2.73 

Br 14.9±1.2 394±125 0.014 ≤0.01 26.4 

Ca 1682±106 1370±311 0.360 >0.05 0.81 

Cl 3400±174 7722±1262 0.0089 ≤0.01 2.27 

Cu 4.08±0.14 17.6±5.7 0.064 ≤0.05 4.31 

Fe 223±10 429±108 0.081 >0.05 1.92 

I 1841±107 962±232 0.0020 ≤0.01 0.52 

K 6418±290 5603±756 0.330 >0.05 0.87 

Li 0.0208±0.0022 0.0401±0.0100 0.103 >0.05 1.93 

Mg 296±16 236±30 0.088 >0.05 0.80 

Mn 1.28±0.07 1.67±0.54 0.488 >0.05 1.30 

Na 6928±175 9747±1316 0.054 ≤0.05 1.41 

P 4290±207 4930±735 0.430 >0.05 1.15 

S 8259±263 10536±1122 0.091 >0.05 1.28 

Si 50.8±6.2 114±40 0.165 >0.05 2.24 

Sr 3.81±0.34 3.30±0.63 0.482 >0.05 0.87 

V 0.102±0.005 0.140±0.020 0.159 >0.05 1.37 

Zn 94.8±4.2 129±13 0.023 ≤0.01 1.36 
M – arithmetic mean, SEM – standard error of mean, statistically significant values are in bold. 
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4. Discussion 

4.1. Precision and accuracy of results 

A good agreement of our results for the Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn, Na, P, S, Sr, V, and Zn mass fractions with 
the certified values of CRM IAEA H-4, INCT-SBF-4, INCT-TL-1, and INCT-MPH-2 (Tables 1 and 2) as well as the similarity 
of the means of the Ca, K, Mg, Mn, and Na mass fractions in the normal human thyroid determined by both INAA-SLR 
and ICP-AES methods (Table 3) demonstrates an acceptable precision and accuracy of the results obtained in the study 
and presented in Tables 4-6. 

The mean values and all selected statistical parameters were calculated for twenty ChE (Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, 
Li, Mg, Mn, Na, P, S, Si, Sr, V, and Zn) mass fractions (Table 4). The mass fraction of Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, 
Mn, Na, P, S, Si, Sr, V, and Zn were measured in all, or a major portion of normal and adenomatous thyroid samples.  

4.2. Comparison with published data 

The means obtained for Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn, Na, P, S, Si, Sr, V, and Zn mass fraction, as shown in Table 
5, agree well with the medians of mean values reported by other researches for the human thyroid, including samples 
received from persons who died from different non-thyroid diseases. The mean obtained for Li is two orders of 
magnitude lower than the median of previously reported data. Moreover, it is outside the range of previously reported 
means. A number of values for ChE mass fractions were not expressed on a dry mass basis by the authors of the cited 
references. Hence we calculated these values using published data for water 75% [85] and ash 4.16% on dry mass basis 
[86] contents in thyroid of adults. 

In adenomatous tissues our results for Br, Ca, Cu, Fe, I, Mn, and Zn contents were within the range of published means, 
while mean for K was some higher the upper level of the previously reported range of means (Table 5). Only one 
published article on Cl, Sr, and V contents in the adenomatous thyroid samples was found in the literature [66]. The 
mean obtained in the present study for Sr and V content in the adenomatous thyroid were approximately one and two 
order of magnitude, respectively, lower, whereas for Cl was one order of magnitude higher than published results . No 
published data referring Al, B, Ba, Li, Mg, Na, P, S, and Si contents of adenomatous thyroid were found. 

The range of means of Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and Zn level reported in the literature 
for normal and for adenomatous thyroid vary widely (Table 5). This can be explained by a dependence of ChE content 
on many factors, including “normality” of thyroid samples (see above), the region of the thyroid, from which the sample 
was taken, age, gender, ethnicity, mass of the gland, and the adenoma stage, histology and functional activity. Not all 
these factors were strictly controlled in cited studies. Another and, in our opinion, leading cause of inter-observer 
variability can be attributed to the accuracy of the analytical techniques, sample preparation methods, and inability of 
taking uniform samples from the affected tissues. It was insufficient quality control of results in these studies. In many 
reported papers tissue samples were ashed or dried at high temperature for many hours. In other cases, thyroid samples 
were treated with solvents (distilled water, ethanol, formalin etc). There is evidence that by use of these sample 
preparation methods some quantities of certain ChE are lost as a result of this treatment That concern not only such 
volatile halogen as Br, but also other ChE investigated in the study [87,88]. 

4.3. Effect of adenomatous transformation on ChE contents 

From Table 6, it is observed that in TA the mass fraction of Al, B, Br, Cl, Cu, Na and Zn are approximately 3.3, 7.1, 26.4, 
2.3, 4.3, 1.41, and 1.4 times, respectively, higher than in normal tissues of the thyroid. In contrast, the mass fraction of I 
is 48% lower. Thus, if we accept the ChE contents in thyroid glands in the control group as a norm, we have to conclude 
that with a adenomatous transformation the levels of Al, B, Br, Cl, Cu, Na, and Zn in thyroid tissue significantly increased, 
whereas the level of I decreased. 

4.4. Role of ChE in adenomatous transformation of the thyroid 

Characteristically, elevated or reduced levels of ChE observed in adenomatous thyroid are discussed in terms of their 
potential role in the initiation and promotion of TA. In other words, using the low or high levels of the ChE in 
adenomatous thyroid researchers try to determine the role of the deficiency or excess of each ChE in the TA etiology. In 
our opinion, abnormal levels of many ChE in TA could be and cause, and also effect of adenomatous transformation. 

From the results of such kind studies, it is not always possible to decide whether the measured decrease 

or increase in ChE level in pathologically altered tissue is the reason for alterations or vice versa.  
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4.4.1. Aluminum  

The trace element Al is not described as essential, because no biochemical function has been directly connected to it. At 
this stage of our knowledge, there is no doubt that Al overload impacts negatively on human health, including the thyroid 
function [89]. 

4.4.2. Boron 

Trace element B is known to influence the activity of many enzymes [90]. Numerous studies have demonstrated 
beneficial effects of B on human health, including anti-inflammatory stimulus - reduces levels of inflammatory 
biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); as well as raises 
levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase [91]. Why B 
content in adenomatous thyroid is higher than normal level and how an excess of B acts on thyroid are still to be cleared. 

4.4.3. Bromine 

This is one of the most abundant and ubiquitous of the recognized trace elements in the biosphere. Inorganic bromide 
is the ionic form of Br which exerts therapeutic as well as toxic effects. An enhanced intake of bromide could interfere 
with the metabolism of I at the whole-body level. In the thyroid gland the biological behavior of bromide is more similar 
to the biological behavior of iodide [92]. 

In our previous studies, we found a significant age-related increase of Br content in human thyroid [27,28,31-34]. 
Therefore, a goitrogenic and tumorogenic effect of excessive Br levels in the thyroid of old females was assumed. On the 
one hand, elevated levels of Br in TA, observed in the present study, supports this conclusion. But, on the other hand, 
bromide compounds, especially potassium bromide (KBr), sodium bromide (NaBr), and ammonium bromide (NH4Br), 
are frequently used as sedatives in Russia [93]. It may be the reason for elevated levels of Br in specimens of patients 
with TA.  

4.4.4. Chlorine 

Cl is a ubiquitous, extracellular electrolyte essential to more than one metabolic pathway. Cl exists in the ionic form 
(chloride) in the human body. In the body, it is mostly present as sodium chloride. Therefore, as usual, there is a 
correlation between Na and Cl contents in tissues and fluids of human body. It is well known that Cl mass fractions in 
samples depend mainly on the extracellular water volume, including the blood volumes, in tissues [94]. TA tissues are 
predominantly highly vascularized lesions [95]. Thus, it is possible to speculate that TA are characterized by an increase 
of the mean value of the Cl mass fraction because the level of adenoma vascularization is higher than that in normal 
thyroid tissue.  

4.4.5. Coper 

Cu is a ubiquitous element in the human body which plays many roles at different levels. Various Cu-enzymes (such as 
amine oxidase, ceruloplasmin, cytochrome-c oxidase, dopamine-monooxygenase, extracellular superoxide dismutase, 
lysyl oxidase, peptidylglycineamidating monoxygenase, Cu/Zn superoxide dismutase, and tyrosinase) mediate the 
effects of Cu deficiency or excess. Cu excess can have severe negative impacts. Cu generates oxygen radicals and many 
investigators have hypothesized that excess copper might cause cellular injury via an oxidative pathway, giving rise to 
enhanced lipid peroxidation, thiol oxidation, and, ultimately, DNA damage [96]. Thus, Cu accumulation in thyroid 
parenchyma with age may be involved in oxidative stress, dwindling gland function, and increasing risk of goiter, 
adenoma, or cancer [25,26,31,33,34]. The significantly elevated level of Cu in adenomatous thyroid, observed in the 
present study, supports this speculation. However, an overall comprehension of Cu homeostasis and physiology, which 
is not yet acquired, is mandatory to establish Cu exact role in the TA etiology and metabolism.  

4.4.6. Iodine 

Compared to other soft tissues, the human thyroid gland has higher levels of I, because this element plays an important 
role in its normal functions, through the production of thyroid hormones (thyroxin and triiodothyronine) which are 
essential for cellular oxidation, growth, reproduction, and the activity of the central and autonomic nervous system. 
Adenomatous transformation is accompanied by a partial loss of tissue-specific functional features, which leads to a 
significant reduction in I content associated with functional characteristics of the human thyroid tissue.  

https://en.wikipedia.org/wiki/Potassium_bromide
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4.4.7. Sodium 

Knowledge concerning ion regulation in many normal and abnormal cell processes has had a rapid development. It was 
found, among other regulations, that sodium-calcium exchange is associated with the cytoskeleton and the cell 
membrane. A hypothesis was eventually established that a wide variety of pathological phenomena ranging from acute 
cell death to chronic processes, such as neoplasia, all have a common series of cellular reactions [97]. Furthermore, 
iodide (I−), an essential constituent of the thyroid hormones, is actively transported into the thyroid via the 
Na+/I− symporter (NIS), a key plasma membrane glycoprotein [98]. In addition, Na is mainly an extracellular electrolyte 
and its elevated level in TA might link with a higher adenoma vascularization in comparison with the normal thyroid 
(see Chlorine). 

4.4.8. Zinc 

Zn is active in more than 300 proteins and over 100 DNA-binding proteins, including the tumor suppressor protein p53, 
a Zn-binding transcription factor acting as a key regulator of cell growth and survival upon various forms of cellular 
stress. p53 is mutated in half of human tumors and its activity is tightly regulated by metals and redox mechanisms. On 
the other hand, excessive intracellular Zn concentrations may be harmful to normal metabolism of cells [99]. By now 
much data has been obtained related both to the direct and indirect action of intracellular Zn on the DNA polymeric 
organization, replication and lesions, and to its vital role for cell division [100,101]. Other actions of Zn have been also 
described. They include its action as a potent anti-apoptotic agent [102-106]. All these facts allowed us to speculate that 
age-related overload Zn content in female thyroid, as was found in our previous study [25,29,31,33], is probably one of 
the factors in etiology of thyroid goiter, TA, and malignant tumors. Therefore, the elevated Zn level in TA in comparison 
with normal level, detected in this study, supports our hypothesis.  

Our findings show that mass fraction of Al, B, Br, Cl, Cu, I, Na, and Zn are significantly different in TA as compared to 
normal thyroid tissues (Tables 6). Thus, it is plausible to assume that levels of these ChE in thyroid tissue can be used 
as TA markers. However, this subjects needs in additional studies.  

Limitations 

This study has several limitations. Firstly, analytical techniques employed in this study measure only twenty ChE (Al, B, 
Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and Zn) mass fractions. Future studies should be directed toward 
using other analytical methods which will extend the list of ChE investigated in normal and adenomatous thyroid. 
Secondly, the sample size of TA group was relatively small. It was not allow us to carry out the investigations of ChE 
contents in TA group using differentials like gender, histological and functional types of adenoma, stage of disease, and 
dietary habits of healthy persons and patients with TA. Lastly, generalization of our results may be limited to Russian 
population. Despite these limitations, this study provides evidence on adenoma-specific tissue Al, B, Br, Cl, Cu, I, Na, and 
Zn level alteration and shows the necessity to continue ChE research of adenomatous thyroid.  

5. Conclusion 

In this work, ChE measurements were carried out in the tissue samples of normal thyroid and TA using the combination 
of non-destructive INAA-SLR and destructive ICP-AES methods. It was shown that the combination of these methods is 
an adequate analytical tool for the determination of Al, B, Ba, Br, Ca, Cl, Cu, Fe, I, K, Li, Mg, Mn, Na, P, S, Si, Sr, V, and Zn 
content in the tissue samples of human thyroid, including needle-biopsy cores. It was observed that in adenomatous 
tissues content of Al, B, Br, Cl, Cu, Na, and Zn significantly increased whereas the level of I decreased in a comparison 

with the normal thyroid tissues. In our opinion, the increase in levels of Al, B, Br, Cl, Cu, Na, and Zn, as well as the 
decrease in level of I in adenomatous tissue might demonstrate an involvement of these ChE in etiology and 
pathogenesis of TA. It was supposed that the changes in levels Al, B, Br, Cl, Cu, I, Na, and Zn in thyroid tissue can be used 
as TA markers.  
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