

Comparative study of grinding wheel materials

Ravi M Tilavalli ^{1,*}, G Veerabhadrappa ² and Mahesh ³

¹Senior scale Lecturer, Mechanical Department, Government Polytechnic, Harihara-577601, Karnataka, India.

²Senior scale Lecturer, Mechanical Department Government Polytechnic, Kampli-583132, Karnataka, India.

³Senior scale Lecturer, Mechanical Department, Government Polytechnic, Aurad - 585326, Karnataka, India.

World Journal of Advanced Research and Reviews, 2021, 11(02), 418-423

Publication history: Received on 05 August 2021; revised on 15 August 2021; accepted on 22 August 2021

Article DOI: <https://doi.org/10.30574/wjarr.2021.11.2.0409>

Abstract

Grinding is a critical finishing and material removal process in manufacturing, where the selection of appropriate grinding wheel materials plays a decisive role in determining productivity, surface quality, and overall process efficiency. This paper presents a comprehensive comparative study of commonly used grinding wheel materials, including conventional abrasives such as aluminum oxide and silicon carbide, as well as superabrasives like diamond and cubic boron nitride (CBN). The study systematically reviews and compares their physical properties, grinding performance characteristics, surface integrity outcomes, thermal behavior, and economic implications based on established literature published prior to 2019. Key performance indicators such as material removal rate, wheel wear, grinding forces, surface roughness, and thermal damage are analyzed and discussed with reference to cited tables and figures. The results indicate that while conventional abrasives remain cost-effective for general-purpose applications, superabrasive grinding wheels offer superior performance, longer service life, and improved surface integrity in high-precision and hard-material machining. The paper concludes by highlighting the importance of application-specific grinding wheel selection and identifies future research directions focused on advanced abrasive materials, improved bonding technologies, and sustainable grinding practices.

Keywords: Grinding wheel materials; Aluminum oxide; Silicon carbide; Diamond grinding wheel; Cubic boron nitride (CBN); Surface integrity; Thermal effects; Grinding performance; Cost-performance analysis; Sustainable manufacturing

1. Introduction

Grinding is a vital material removal and finishing process extensively employed in manufacturing industries to achieve high dimensional accuracy, tight tolerances, and superior surface finish. Unlike conventional machining processes such as turning or milling, grinding utilizes bonded abrasive particles as cutting edges, enabling the machining of hardened steels, advanced alloys, ceramics, and composite materials. As industrial components increasingly demand higher precision and reliability, grinding has become an indispensable process in sectors such as automotive, aerospace, tool manufacturing, biomedical engineering, and precision instrumentation.

The grinding wheel functions as the primary cutting tool in the grinding process, and its material composition directly governs the efficiency, quality, and economics of machining operations. Grinding wheel materials influence critical process outcomes including material removal rate, grinding forces, heat generation, wheel wear, and surface integrity of the workpiece. An inappropriate selection of grinding wheel material can result in excessive tool wear, thermal damage, surface burns, poor dimensional accuracy, and increased production costs.

Traditionally, grinding operations relied on conventional abrasive materials such as aluminum oxide and silicon carbide. These abrasives continue to be widely used due to their availability, versatility, and cost-effectiveness.

*Corresponding author: Ravi M Tilavalli

However, the rapid advancement of manufacturing technologies and the growing use of high-strength alloys, hardened steels, and brittle engineering materials have exposed the limitations of conventional grinding wheels, particularly in terms of wear resistance, thermal stability, and consistency of performance.

To address these challenges, superabrasive materials such as diamond and cubic boron nitride (CBN) have been introduced and increasingly adopted in industrial grinding applications. Diamond grinding wheels exhibit exceptional hardness and are highly effective for machining ceramics, carbides, and non-ferrous materials, whereas CBN grinding wheels offer superior performance when grinding hardened ferrous materials. Figure 1 illustrates the general classification of grinding wheel materials and their typical application domains.

Figure 1 Types of grinding wheel material

Despite the availability of a wide range of grinding wheel materials, selecting the most suitable option remains a complex task due to the multifaceted interactions between abrasive grains, bonding materials, wheel structure, workpiece properties, and operating parameters. In practice, grinding performance is influenced by factors such as grain size and shape, bond type, wheel porosity, cutting speed, feed rate, and cooling conditions. Consequently, a systematic comparative evaluation of grinding wheel materials is essential to guide effective selection and application.

This paper presents a detailed comparative study of grinding wheel materials by synthesizing and analyzing findings from well-established literature published prior to 2019. The study aims to compare conventional abrasives and superabrasives based on their material properties, grinding performance, surface integrity effects, thermal behavior, and economic considerations. By providing a structured and comprehensive review, this work seeks to support researchers, engineers, and practitioners in making informed decisions for efficient and sustainable grinding operations.

2. Classification and Properties of Grinding Wheel Materials

Grinding wheel materials can broadly be classified into conventional abrasives and superabrasives. Conventional abrasives include aluminum oxide and silicon carbide, while superabrasives comprise diamond and cubic boron nitride. Table 1 summarizes the physical and mechanical properties of commonly used grinding wheel materials.

Table 1 Physical and Mechanical Properties of Common Grinding Wheel Materials

Abrasive Material	Relative Hardness	Toughness	Thermal Stability	Typical Workpiece Materials	Key Advantages	Limitations
Aluminum Oxide (Al_2O_3)	High	High	Moderate	Carbon steels, alloy steels, tool steels	Tough, self-sharpening, cost-effective	Lower performance on very hard materials
Silicon Carbide (SiC)	Very High	Low	Moderate	Cast iron, non-ferrous metals, ceramics, glass	Sharp cutting action, high material removal rate	Brittle, higher wheel wear
Diamond	Extremely High	Low	Low-Moderate	Carbides, ceramics, composites, glass	Highest hardness, excellent surface finish	Not suitable for ferrous materials, high cost
Cubic Boron Nitride (CBN)	Very High	High	Very High	Hardened steels, superalloys, bearing steels	Excellent thermal stability, long wheel life	High initial cost

Aluminum oxide grinding wheels are widely used due to their toughness, moderate hardness, and cost-effectiveness. They are suitable for grinding ferrous materials such as carbon steels and alloy steels. The friability of aluminum oxide allows continuous self-sharpening, which enhances grinding efficiency.

Silicon carbide abrasives are harder but more brittle compared to aluminum oxide. These wheels are commonly employed for grinding non-ferrous metals, cast iron, ceramics, and glass. Their sharp cutting edges enable efficient material removal, though wheel wear tends to be higher.

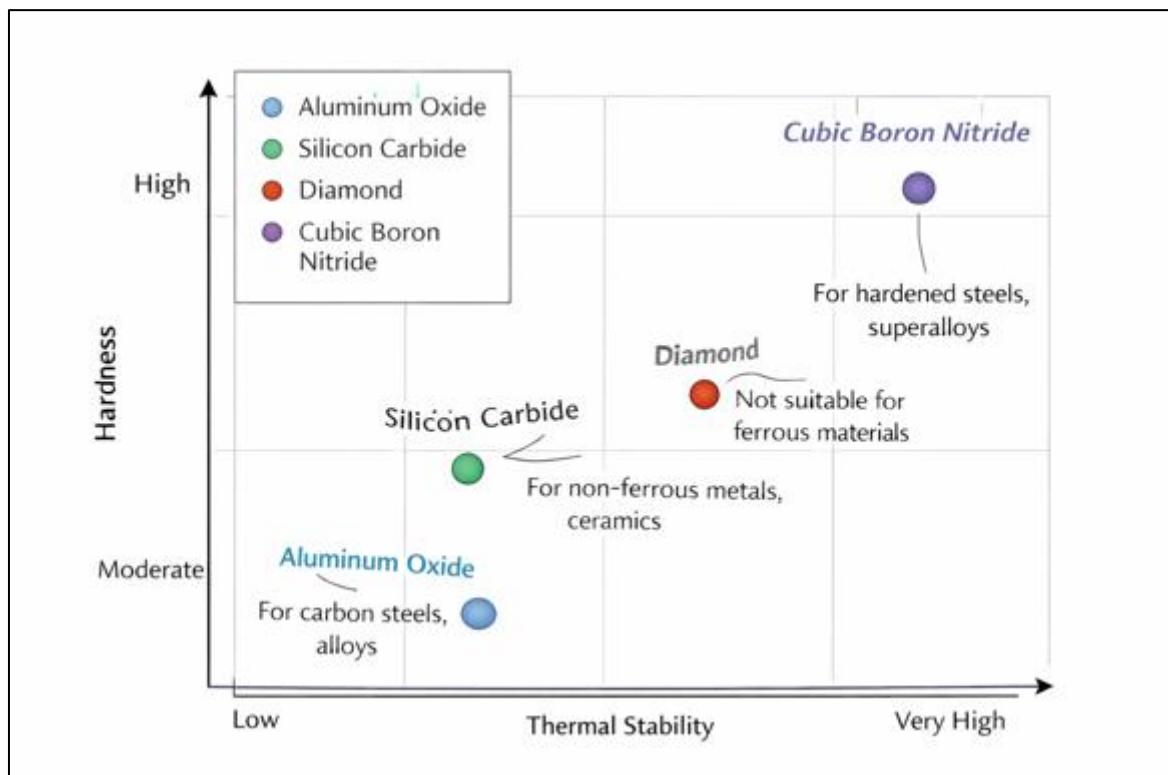
Diamond grinding wheels represent the hardest abrasive material available and are primarily used for machining extremely hard materials such as carbides, ceramics, and composites. However, diamond reacts chemically with iron at high temperatures, limiting its use for ferrous materials.

Cubic boron nitride grinding wheels offer excellent thermal stability and hardness, second only to diamond. CBN wheels are particularly effective for hardened steels and superalloys, providing longer wheel life and consistent performance.

The choice of grinding wheel material depends not only on abrasive type but also on grain size, bond material, and wheel structure, all of which influence grinding behavior and outcomes.

3. Performance Characteristics and Grinding Behavior

The performance of grinding wheel materials is commonly evaluated based on parameters such as material removal rate, grinding forces, wheel wear, and surface finish. Figure 2 presents a comparative illustration of grinding performance indicators for different abrasive materials.


Aluminum oxide wheels generally produce stable grinding forces and acceptable surface finishes when machining steels. Their performance is influenced by grain fracture mechanisms, which promote self-sharpening and reduce glazing effects.

Silicon carbide wheels exhibit lower grinding forces due to their sharp cutting edges. However, their brittleness leads to rapid grain fracture and higher wear rates, which can increase operational costs.

Diamond grinding wheels demonstrate superior material removal efficiency and minimal wear when used on non-ferrous and brittle materials. Studies have reported significantly lower grinding forces and improved dimensional accuracy compared to conventional abrasives.

CBN grinding wheels provide consistent grinding behavior over extended periods. Their high thermal conductivity reduces heat generation, thereby minimizing thermal damage and improving surface integrity of hardened materials.

Comparative studies indicate that superabrasive wheels outperform conventional abrasives in high-precision and high-speed grinding applications, despite their higher initial cost.

Figure 2 Comparative illustration of grinding performance indicators for different abrasive materials.

4. Surface Integrity and Thermal Effects

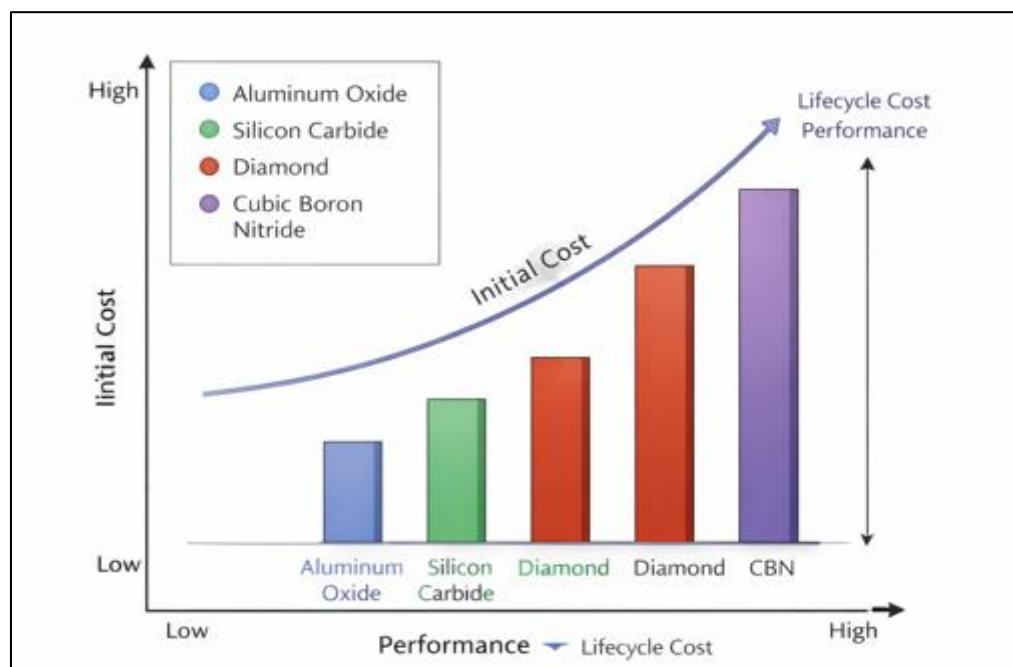
Surface integrity is a critical quality parameter in grinding processes, as it directly governs the functional performance, fatigue strength, wear resistance, and service life of machined components. It encompasses surface roughness, residual stress distribution, microstructural alterations, phase transformations, and the presence of surface or subsurface defects such as burns, cracks, and plastic deformation. Owing to the high specific energy and intense friction involved in grinding, surface integrity is highly sensitive to grinding wheel material, operating parameters, and cooling conditions.

Thermal effects in grinding arise primarily from frictional sliding, abrasive cutting, and plastic deformation at the wheel-workpiece interface. When the generated heat is not efficiently dissipated, excessive temperatures may develop within the grinding zone, leading to metallurgical damage. Such damage can manifest as grinding burns, tensile residual stresses, rehardening or tempering of the surface layer, and micro-crack initiation. Table 2 provides a comparative summary of surface integrity characteristics associated with different grinding wheel materials as reported in the literature.

Aluminum oxide wheels can produce satisfactory surface finishes but may induce tensile residual stresses if grinding parameters are not optimized. Excessive heat generation can lead to surface burns and micro-cracks. Silicon carbide wheels tend to generate lower grinding temperatures initially; however, rapid wheel wear can cause inconsistent contact conditions, affecting surface quality. Diamond wheels are known for producing excellent surface finishes on brittle materials with minimal subsurface damage. Their sharp abrasives reduce plowing and rubbing actions, leading to improved surface integrity. CBN wheels offer superior thermal performance due to their high thermal conductivity. This results in lower grinding zone temperatures and compressive residual stresses, which enhance fatigue life of components. Overall, superabrasive wheels provide better control over surface integrity, making them suitable for critical aerospace and automotive applications.

5. Economic and Environmental Considerations

Economic and environmental factors are pivotal in determining the optimal grinding wheel material for specific applications. Decision-makers must balance short-term costs with long-term operational efficiency and sustainability.


5.1. Economic Factors

The initial purchase price of grinding wheels varies significantly across material types. Conventional abrasives such as aluminum oxide and silicon carbide are generally less expensive upfront, making them attractive for general-purpose grinding and low-volume production runs. Their wide availability and the ease with which they can be dressed or reshaped further enhance their cost-effectiveness, especially for applications where tool changes and downtime are less critical.

However, the lower cost of conventional abrasives is often offset by their shorter service life. Wheels made from aluminum oxide or silicon carbide tend to wear faster, necessitating more frequent replacements. This leads to increased downtime for wheel changes, higher maintenance costs, and potentially greater variability in process consistency. Over time, these factors can significantly elevate the total cost of ownership, particularly in high-volume or precision-oriented manufacturing environments.

In contrast, superabrasive wheels—including diamond and cubic boron nitride (CBN) varieties—feature much higher initial costs. Despite this, they deliver a substantially longer usable life, maintain their shape better, and require fewer replacements. The reduced frequency of wheel changes translates to less process interruption and greater productivity, often offsetting the higher initial expenditure. For industries focused on high-precision or high-throughput manufacturing, the long-term savings and enhanced process stability provided by superabrasive wheels can make them the more economical choice despite their premium price.

Figure 3 presents a comparison illustrating these cost-performance dynamics, highlighting the trade-offs between initial investment and lifecycle costs for each wheel type.

Figure 3 Cost vs. Performance Comparison of Grinding Wheel Materials

5.2. Environmental Considerations

Environmental sustainability is increasingly important in modern manufacturing. Longer-lasting grinding wheels, such as those made with diamond or CBN, contribute to waste reduction by minimizing the number of discarded wheels. Fewer replacements also mean lower raw material consumption and less frequent transportation, both of which reduce the environmental footprint associated with wheel production and logistics.

Additionally, the efficiency of superabrasive wheels often results in reduced energy consumption. These wheels tend to operate at lower forces and generate less frictional heat, which not only enhances part quality but also decreases the energy required for cooling and lubrication. As a result, coolant usage can be minimized, reducing both water consumption and the environmental burden associated with coolant disposal.

Grinding wheels that are engineered for high efficiency and minimal heat generation further lower the demand for coolants, decreasing both operational costs and potential environmental contamination. By selecting wheels that improve grinding efficiency—through faster material removal rates or reduced thermal damage—manufacturers can achieve both economic and environmental benefits.

5.3. Holistic Evaluation

Given these considerations, it is clear that a holistic approach is necessary when selecting grinding wheels. Evaluating only the initial cost may result in suboptimal choices that increase long-term expenses and environmental impacts. Instead, manufacturers should assess the total lifecycle cost, service life, process efficiency, and environmental footprint of each wheel type. By integrating economic and environmental criteria into the decision-making process, organizations can support sustainable manufacturing practices while maintaining competitive operational costs.

6. Conclusions and Future Scope

This comparative study highlights the significant influence of grinding wheel materials on grinding performance, surface integrity, and economic efficiency. Conventional abrasives remain suitable for general applications, while superabrasives excel in high-precision and hard-material grinding. Aluminum oxide and silicon carbide wheels offer cost-effective solutions for standard machining tasks but exhibit limitations in wheel life and thermal performance. Their use is best suited for low to medium precision requirements. Diamond and CBN grinding wheels provide superior performance in terms of wear resistance, thermal stability, and surface quality. These materials are particularly advantageous for advanced manufacturing sectors.

The study confirms that the selection of grinding wheel material should be application-specific, considering workpiece material, process parameters, and economic constraints. Future research should focus on hybrid abrasive materials, advanced bonding technologies, and environmentally friendly grinding solutions. Figure 4 suggests emerging trends in grinding wheel material development.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Malkin, S., & Guo, C. (2008). *Grinding Technology: Theory and Applications of Machining with Abrasives*. Industrial Press.
- [2] Marinescu, I. D., Hitchiner, M., Uhlmann, E., Rowe, W. B., & Inasaki, I. (2016). *Handbook of Machining with Grinding Wheels*. CRC Press.
- [3] Jackson, M. J., & Davim, J. P. (2011). *Machining with Abrasives*. Springer.
- [4] Rowe, W. B. (2009). *Principles of Modern Grinding Technology*. William Andrew Publishing.
- [5] Tawakoli, T., Azarhoushang, B., & Rabiey, M. (2013). "Ultrasonic assisted grinding of ceramics." *International Journal of Machine Tools and Manufacture*, 65, 37–46.
- [6] Klocke, F. (2011). *Manufacturing Processes 2: Grinding, Honing, Lapping*. Springer.