

World Journal of Advanced Research and Reviews

eISSN: 2581-9615 CODEN (USA): WJARAI Cross Ref DOI: 10.30574/wjarr Journal homepage: https://wjarr.com/

(Review Article)

On class (n, mBQ) Operators

Wanjala Victor * and Beatrice Adhiambo Obiero

Department of Mathematics and computing, Rongo University, Kitere Hills Kenya.

World Journal of Advanced Research and Reviews, 2021, 11(02), 053-057

Publication history: Received on 26 June 2021; revised on 02 August 2021; accepted on 05 August 2021

Article DOI: https://doi.org/10.30574/wjarr.2021.11.2.0356

Abstract

In this paper, we introduce the class of (n, mBQ) operators acting on a complex Hilbert space H. An operator if $T \in B(H)$ is said to belong to class (n, mBQ) if $T^{*2m}T^{2n}$ commutes with $(T^{*m}T^n)^2$ equivalently $[T^{*2m}T^{2n}, (T^{*m}T^n)^2] = 0$, for a positive integers n and m. We investigate algebraic properties that this class enjoys. Have. We analyze the relation of this class to (n,m)-power class (Q) operators.

Keywords: (n,m)-power Class (Q); Normal; Binormal operators; N-power class (Q); (BQ) operators; (n,mBQ) operators

1. Introduction

H denotes Hilbert space over the complex field throughout this paper while B(H) the Banach algebra of all bounded linear algebra on an infinite dimensional separable Hilbert space H . A bounded linear operator T is said to be in class (Q) if T * 2 T 2 = (T * 3 T) 2 (2), (n,m)-power class (Q) if T * 2 mT 2 n = (T * 3 mT) 3 for positive integers n and m (1).

The class of (Q) operators was expanded to many classes such as the following classes, almost class (Q) (4), n-power class (Q) (2), (α , β)-class (Q) (3), K* Quasi-n- Class (Q) Operators (6) and quasi M class (Q). An operator T \in B (H) is said to belong to class (BQ) if T *2T 2 (T *T) 2 = (T *T) 2T *2T 2 (5), T \in B (H) is said to belong to class (n, mBQ) if T *2mT 2n (T *mTn) 2 = (T *mTn) 2T *2mT 2n. A conjugation on a Hilbert space H is an anti-linear operator C from Hilbert space H onto itself that satisfies. C ξ , C ξ i = h ζ , ξ i for every ξ , $\zeta \in$ H and C² = I. An operator T is said to be complex symmetric if T = CT *C.

2. Main results

2.1. Theorem 1

Let $T \in B$ (H) be such that $T \in (n, mBQ)$, then the following holds for (N, mBQ);

- (i). λT for any real λ
- (ii). Any $S \in B$ (H) that is unitarily equivalent to T.
- (iii). the restriction T /M to any closed subspace M of H.

Proof. (i). the proof is straight forward.

(ii). Let $S \in B$ (H) be unitarily equivalent to T, then there exists a unitary operator U

Department of Mathematics and computing, Rongo University, Kitere Hills Kenya.

^{*} Corresponding author: Wanjala Victor

```
\in B (H) with
S^n = U * T * U and S^{*m} = U * T * U for non-negative integers n and m. Since T \in (n, mBQ), we have;
T^{*2m}T^{2n} (T^{*m}T^n)^2 = (T^{*m}T^n)^2 T^{*2m}T^{2n}, hence
S^{*2m}S^{2n} (S^{*m} S^n)^2 = UT^{*2m}U^*UT^{2n}U^* (UT^{*m}U^*UT^nU^*)^2
= UT *^{2m}U *^{U} *^{T} 2^{n}U *^{U}T *^{m}U *^{U}T *^{m}U *^{U}T *^{D}U *^{D}U *^{U}T *^{D}U *^{U}T *^{D}U *^{U}T *^{D}U *^{U}T *^{D}U *^{
= UT *^{2m}T ^{2n} (T *^{m}T^{n}) ^{2} U *
= U (T * mT^n) ^2 T * ^2 mT ^2 nU *
And
(S^*mS^n)^2 S^{*2m} S^{2n} = (UT^*mU^*UT^nU^*)^2 UT^{*2m}U^*UT^{2n}U^*
= UT *^{m}U *^{U}T *^{n}U *^{U}T *^{m}U *^{U}T *^{n}U *^{U}T *^{2m}U *^{U}T *^{2n}U *
= UT *^mT *^nT *^mT *^nT *^{2m}T *^{2m}U *
=U (T * mT^n) 2 T * 2m T 2n U *
Thus S is unitarily equivalent to T.
(iii) . If T is in class (n, mBQ), then;
T *2m T 2n (T *mTn) 2 = (T *m Tn) 2 T *2m T 2n.
Hence;
(T/M) *^{2m} (T/M) *^{2n} {(T/M) *^{m} (T/M) *^{n}} {^{2}}
= (T/M)^{*2m} (T/M)^{2n} {(T/M)^{*m} (T/M)^{n}}^{2}
= (T *2m/M) (T 2n/M) {(T *m/M) (Tn/M)} {(T *m/M) (Tn/M)}
= \{(T * mT^n)^2/M\} \{T * 2mT^{2n}/M\}
= \{(T *m/M) (T^n/M)\}^2 (T/M) *2m (T/M)^{2n}
Thus T/M \in (n, mBQ).
2.2. Theorem 2
If T \in B (H) is in (n,m)-power Class (Q), then T \in (n,mBQ).
Proof. If T \in (Q), then
T^{*2m}T^{2n} = (T^{*m}T^n)^2
Post multiplying both sides by T *2m T 2n;
```

T *2mT 2n T *2m T 2n= (T *m Tn) 2 T *2m T 2n

T *2mT 2n T *mT nT *mT n = (T *mTn) 2 T *2m T 2n

T *2m T 2n (T *m Tn) 2 = (T *m Tn) 2 T *2m T 2n.

2.3. Theorem 3

```
Let S \in (n, mBQ) and T \in (n, mBQ). If both S and T are doubly commuting, then
```

ST is in (n, mBQ).

Proof.

$$(ST)^{*2m} (ST)^{2n} ((ST)^{*m} (ST)^{n})^{2} \\ = S^{*2m} T^{*2m} S^{2n} T^{2n} ((ST)^{*m} (ST)^{n}) ((ST)^{*m} (ST)^{n}) \\ = S^{*2m} T^{*2m} S^{2n} T^{2n} ((S^{*m} T^{*m}) (S^{n} T^{n})) ((S^{*m} T^{*m}) (S^{n} T^{n})) \\ = S^{*2m} T^{*2m} S^{2n} T^{2n} ((S^{*m} T^{*m}) (S^{n} T^{n})) ((S^{*m} T^{*m}) (S^{n} T^{n})) \\ = S^{*2m} T^{*2m} S^{2n} T^{2n} S^{*m} T^{*m} S^{n} T^{n} S^{*m} T^{*m} S^{n} T^{n} S^{*m} T^{m} S^{n} T^{n} \\ = S^{*2} T^{*2} S^{2} T^{2} S^{*m} S^{m} T^{*m} S^{n} S^{m} T^{m} T^{m} T^{m} T^{m} \\ = T^{*2m} T^{2n} S^{*2m} S^{2n} S^{2n} S^{m} S^{n} S^{m} S^{n} T^{m} T^{n} T^{m} T^{m} \\ = T^{*2m} T^{2n} S^{*2m} S^{2n} (S^{*m} S^{n})^{2} T^{*m} T^{n} T^{m} T^{m} T^{m} (Since S \in (n, mBQ)). \\ = (S^{*m} S^{n})^{2} T^{*2m} T^{2n} T^{m} T^{m} T^{n} T^{m} T^{n} S^{*2m} S^{2n} \\ = (S^{*m} S^{n})^{2} (T^{*m} T^{n})^{2} T^{*2m} T^{2n} S^{*2m} S^{2n} (Since T \in (n, mBQ)). \\ = ((S^{*m} S^{n}) (T^{*m} T^{n})^{2} T^{*2m} S^{*2m} T^{2n} S^{2m} T^{2n} S^{2m} \\ = ((S^{*m} S^{n}) (T^{*m} T^{n}))^{2} S^{*2m} T^{2n} S^{*2m} T^{2n} S^{2n} T^{2n}$$

Thus $ST \in (n. mBQ)$.

2.4. Theorem 4

Let $T \in B$ (H) be a class (n, mBQ) operator such that T = CT *C for positive integers n and m with C being a conjugation on H. If C is such that it commutes with $T *^2m T^2n$ and $(T *mTn)^2$, then T is an

(n,m)-power class (Q) operator.

= $((ST) *m (ST) n)^2 (ST) *^2m (ST)^{2n}$

Proof. Let $T \in (n, mBQ)$ and complex symmetric, then we have; $T *^2m T ^2n (T *mTn)^2 = (T *mTn)^2 T *^2m T^2n (T *mTn)^2 T *^2m T^2n$

And T = CT *C.

Hence;

$$T *^{2}m T {^{2}n} (T *mTn) {^{2}} = (T *mTn) {^{2}} T *^{2}m T {^{2}n}$$

$$T *^{2}m T {^{2}n} CT nCCT *m CCT nCCT *m C = (T *mTn) {^{2}} CT nCCT *m CCT nCCT *m C.$$

$$T *^{2}m T {^{2}n} CT nT *m T nT *m C = (T *mTn) {^{2}} CT nT *mT nT *m C$$

$$T *^{2}m T {^{2}n} CT {^{2}n} T *^{2}m C = (T *mTn) {^{2}} CT *mT nT *mT nC$$

```
T *^{2}mT {^{2}n} CT *^{2}m T {^{2}n} C = (T *^{m}Tn) {^{2}C} (T *^{m}Tn) {^{2}C}.
```

C commutes with T $*^2$ m T 2 n and (T *mTn) 2 hence we obtain;

$$T *^{2}mT *^{2}nT *^{2}mT *^{2}n = (T * mTn) *^{2} (T * mTn) *^{2}.$$

Which implies:

 $T *^{2}mT {}^{2}n = (T * mTn) {}^{2}$ and thus $T \in (n,m)$ -power class (Q).

2.5. Theorem 5

Let $T \in B(H)$ be (n-1, m)-class (Q) operator, if T is a complex symmetric

Operator such that C commutes with (T *mT) 2 for a positive ineteger m, then T is an (n, m)-power class (Q) operator.

Proof. With T being complex symmetric and (n-1, m)-class (Q), we have;

$$T = CT *C$$
 and $T *^2mT ^2n-^2 = (T *mT n-1)^2$.

We obtain:

```
T *^{2}mT {^{2}n-^{2}} T {^{2}} = (T * mT n-1)^{2} T {^{2}}.
```

Hence:

```
T *^{2}m T ^{2}n = (T * mT n - 1)^{2} T ^{2}.
```

$$T *^{2}m T ^{2}n = T *^{2}m T ^{2}n - ^{2}T ^{2} = T ^{2}n - ^{2}T *^{2}m T ^{2}$$

$$T *^{2}m T ^{2}n = T ^{2}n - ^{2}T *mT *mTT = T ^{2}n - ^{2}CTCCTCCT *mCCT *mC = T ^{2}n - ^{2}CTTT *mT *mC.$$

=T *
2
m T 2 n = T 2 n- 2 CT 2 T * 2 m C = T 2 n- 2 C (T * m T) 2 C

Since C commutes with $(T * mT)^2$ we obtain;

$$T *^{2}m T^{2}n = T^{2}n^{-2} (T * mT)^{2} CC = T^{2}n^{-2} T *^{2}m T^{2} CC = T^{2}n^{-2} T *^{2}m CC = T *^{2}m T^{2}n = (T * mT n)^{2}$$

Hence T is n-power class (Q).

3. Conclusion

The study of class (n,mBD) operators will help in the enhancement of study of properties of various classes such as class (Q) operators, normal operators and binormal operators.

Compliance with ethical standards

Acknowledgments

The researchers appreciated all the comments and inputs made by experts before publication.

Disclosure of conflict of interest

The authors declared no conflict of interest.

References

- [1] Eiman H. Abood and Mustafa A. Al-loz. On some generalizations of (n,m)-normal powers operators on Hilbert space, Journal of progressive research in mathematics. 2016; 7(3): 2395-0218.
- [2] Jibril AAS. On Operators for which T * 2 (T) 2 = (T * T) 2, international mathematical forum. 5(46): 2255-2262.
- [3] S Paramesh, D Hemalatha, VJ Nirmala. A study on n-power class (Q) operators, international research journal of engineering and technology. 2019; 6(1): 2395-0056.
- [4] wanjala Victor, AM Nyongesa. On (α, β) -class (Q) Operators, international ournal of mathematics and its applications. 2021; 9(2): 111-113.
- [5] Wanjala Victor, Beatrice Adhiambo Obiero., On almost class (Q) and class (M,n) operators, international journal of mathematics and its applications. 2021; 9(2): 115-118.
- [6] Wanjala Victor, Beatrice Adhiambo Obiero. on class (BQ) operators, Global Journal of advanced research. 2021; (4): 118-120.
- [7] Wanjala Victor and Peter Kiptoo Rutto., K* Quasi-n- Class (Q) Operators, international journal of mathematics and its applications. 2021; 9(2): 189-193.