

Soft-switching Solid-State Transformer: A comprehensive review

Suma H R ^{1,*}, Sunil Kumar G ² and Vijayaprakash R M ³

¹ Department of Electronics and Communication, Government Polytechnic, K.R. Pet-571426, Karnataka, India.

² Department of Electrical and Electronics, Government Polytechnic, K.R. Pet-571426, Karnataka, India.

³ Department of Electronics and Communication, Government Polytechnic, Belur- 573115, Karnataka, India.

World Journal of Advanced Research and Reviews, 2021, 10(02), 293-302

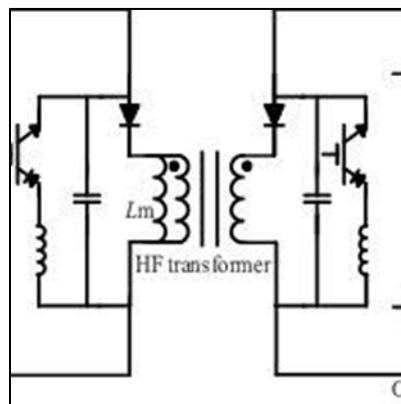
Publication history: Received on 02 May 2021; revised on 10 May 2021; accepted on 22 May 2021

Article DOI: <https://doi.org/10.30574/wjarr.2021.10.2.0210>

Abstract

The solid state transformer (SST) has emerged as a pivotal technology in modern power electronics, offering superior performance compared to conventional transformers through advanced semiconductor switching techniques. This paper presents a comprehensive review of soft-switching solid state transformers, examining their operational principles, topological configurations, control strategies, and practical applications. The integration of soft-switching techniques in SST designs significantly reduces switching losses, electromagnetic interference, and thermal stress while improving overall system efficiency. Through detailed analysis of various soft-switching methodologies including zero-voltage switching (ZVS) and zero-current switching (ZCS), this research highlights the technological advancements that have made SSTs viable for high-power applications. The paper also addresses the challenges and future prospects of soft-switching SST technology in the context of smart grid integration and renewable energy systems.

Keywords: Solid State Transformer; Soft-switching; Zero-voltage switching; Zero-current switching; Power electronics; Smart grid


1. Introduction

The evolution of power electronics has witnessed a paradigm shift from traditional magnetic transformers to solid state transformers (SSTs), which offer enhanced functionality and improved performance characteristics. Solid state transformers, also known as electronic transformers or smart transformers, represent a revolutionary approach to power conversion that combines the benefits of semiconductor technology with advanced control algorithms. Unlike conventional transformers that rely solely on magnetic coupling, SSTs utilize power electronic switches to provide bidirectional power flow, voltage regulation, and power quality improvement capabilities. The integration of soft-switching techniques in SST designs has become increasingly important as it addresses the fundamental limitations of hard-switching operations, particularly in high-frequency applications.

The concept of soft-switching in power electronics emerged from the need to minimize switching losses and reduce electromagnetic interference (EMI) in power conversion systems. Traditional hard-switching techniques, while simple to implement, suffer from significant switching losses that increase proportionally with switching frequency. This limitation becomes particularly pronounced in high-frequency applications where conventional transformers are impractical due to their size and weight constraints. Soft-switching techniques, including zero-voltage switching (ZVS) and zero-current switching (ZCS), enable power electronic devices to transition between conducting and non-conducting states under conditions of zero voltage or zero current, thereby minimizing switching losses and improving system efficiency.

* Corresponding author: Suma H R

The development of soft-switching solid state transformers has been driven by the increasing demand for compact, efficient, and intelligent power conversion systems in various applications including renewable energy integration, electric vehicle charging infrastructure, and smart grid systems. These applications require transformers that can operate at high frequencies while maintaining high efficiency and providing additional functionalities such as power factor correction, harmonic filtering, and voltage regulation. The combination of solid state technology with soft-switching techniques offers a promising solution to meet these demanding requirements while addressing the limitations of conventional transformer technology.

Figure 1 Soft-switching solid state transformers

Research in soft-switching SST technology has focused on developing novel topologies that can achieve soft-switching conditions across a wide range of operating conditions. Various resonant converters, including series resonant converters, parallel resonant converters, and LLC resonant converters, have been investigated for their potential in SST applications. These topologies utilize the energy stored in inductors and capacitors to create resonant conditions that facilitate soft-switching operations. The careful design of resonant parameters is crucial for achieving optimal performance while maintaining stable operation under varying load conditions.

The implementation of soft-switching techniques in SST designs presents several challenges that must be addressed through innovative design approaches and control strategies. One of the primary challenges is maintaining soft-switching conditions across a wide range of operating conditions, including variations in input voltage, output load, and environmental factors. The resonant components used in soft-switching circuits introduce additional complexity in terms of component sizing, thermal management, and control system design. Furthermore, the interaction between multiple resonant circuits in multi-stage SST configurations requires sophisticated control algorithms to ensure stable and efficient operation.

The benefits of soft-switching solid state transformers extend beyond mere efficiency improvements to encompass enhanced power quality, reduced EMI, and improved system reliability. The reduction in switching losses directly translates to lower thermal stress on semiconductor devices, which can significantly extend their operational lifetime and reduce cooling requirements. The elimination of hard-switching transients also reduces electromagnetic interference, making SSTs more suitable for sensitive applications where EMI compliance is critical. Additionally, the improved power quality characteristics of soft-switching SSTs contribute to better grid integration and reduced harmonic distortion in power systems.

Current research trends in soft-switching SST technology focus on developing advanced control algorithms that can optimize switching patterns to maintain soft-switching conditions while providing additional functionalities such as power factor correction and harmonic compensation. Machine learning and artificial intelligence techniques are being explored to develop adaptive control systems that can automatically adjust switching parameters based on real-time operating conditions. The integration of wide bandgap semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), with soft-switching techniques is also being investigated to further improve system performance and efficiency.

The economic viability of soft-switching solid state transformers is becoming increasingly attractive as semiconductor costs continue to decrease and efficiency requirements become more stringent. The total cost of ownership, including initial investment, operational costs, and maintenance expenses, is often lower for SSTs compared to conventional transformers when considering their extended lifespan and reduced maintenance requirements. The ability to integrate

multiple functionalities into a single device further enhances the economic proposition of soft-switching SSTs, particularly in applications where space and weight constraints are critical factors.

2. Literature Review

The foundational work on solid state transformers can be traced back to the early 1970s when researchers began exploring the potential of power electronics for transformer applications. McMurray (1971) presented one of the first comprehensive analyses of electronic transformers, highlighting the potential benefits of using semiconductor switches for power conversion. This pioneering work established the theoretical foundation for SST technology and identified key challenges that would drive subsequent research efforts. The early implementations were limited by the available semiconductor technology, which restricted operating frequencies and power levels, but they demonstrated the feasibility of the concept and its potential advantages over conventional transformers.

The development of soft-switching techniques in the 1980s and 1990s marked a significant milestone in power electronics research. Steigerwald (1988) provided a comprehensive review of soft-switching techniques, categorizing them into resonant and quasi-resonant approaches. This work established the theoretical framework for understanding soft-switching phenomena and provided design guidelines for implementing these techniques in practical circuits. The introduction of zero-voltage switching (ZVS) and zero-current switching (ZCS) concepts revolutionized power converter design by offering pathways to achieve high-frequency operation with minimal switching losses. These techniques became particularly relevant for transformer applications where high-frequency operation was essential for size and weight reduction.

Research in the 1990s focused on developing practical soft-switching topologies for high-power applications. Lee (1988) introduced the concept of zero-voltage transition (ZVT) and zero-current transition (ZCT) converters, which offered improved performance compared to traditional resonant converters. These topologies provided better regulation characteristics and reduced circulating currents, making them more suitable for practical implementations. The work by Hua and Lee (1995) on soft-switching techniques for high-frequency transformers provided detailed design methodologies and performance analysis, establishing the foundation for modern soft-switching SST designs. Their research demonstrated that soft-switching techniques could significantly improve transformer efficiency while enabling higher operating frequencies.

The early 2000s witnessed significant advances in SST technology with the introduction of multi-level converter topologies and advanced control strategies. Kang et al. (2006) presented a comprehensive analysis of multi-level solid state transformers, demonstrating their potential for high-voltage applications. This work highlighted the advantages of multi-level topologies in reducing voltage stress on individual semiconductor devices and improving power quality. The integration of soft-switching techniques with multi-level converters was shown to provide additional benefits in terms of efficiency and EMI reduction. Research by Zhao et al. (2008) on dual active bridge (DAB) converters provided important insights into soft-switching conditions in isolated DC-DC converters, which form the core of many SST topologies.

The period from 2010 to 2015 saw intensive research efforts focused on developing practical SST implementations for smart grid applications. Huang et al. (2011) presented a detailed analysis of three-stage SST topologies, examining their performance characteristics and control requirements. This work provided valuable insights into the challenges of implementing soft-switching techniques in multi-stage configurations and proposed solutions for maintaining soft-switching conditions across all stages. Research by Biela et al. (2010) on SiC-based solid state transformers demonstrated the potential of wide bandgap semiconductors in improving SST performance and enabling higher operating frequencies. The integration of SiC devices with soft-switching techniques was shown to provide significant improvements in efficiency and power density.

Control strategies for soft-switching SSTs received considerable attention during this period, with researchers developing sophisticated algorithms to optimize switching patterns and maintain soft-switching conditions. Wang et al. (2012) presented an advanced control strategy for LLC resonant converters in SST applications, demonstrating how proper control design could extend the soft-switching range and improve system performance. The work by Huber and Kolar (2013) on solid state transformers for traction applications provided important insights into the practical implementation challenges and proposed solutions for maintaining high efficiency across wide operating ranges. Their research highlighted the importance of careful component selection and thermal management in achieving reliable operation.

The integration of renewable energy sources with SST technology became a significant research focus in the mid-2010s. Li et al. (2014) presented a comprehensive analysis of SST applications in photovoltaic systems, demonstrating how soft-switching techniques could improve the efficiency of grid-tied inverters. This work showed that SSTs could provide multiple functionalities including maximum power point tracking, power factor correction, and harmonic filtering, making them ideal for renewable energy applications. Research by Ronanki et al. (2015) on wind energy applications further demonstrated the versatility of soft-switching SSTs in handling variable input conditions while maintaining high efficiency and power quality.

Reliability and fault tolerance studies gained prominence in the latter half of the 2010s as researchers recognized the importance of these factors for practical implementation. Falck et al. (2017) presented a comprehensive reliability analysis of solid state transformers, identifying key failure modes and proposing mitigation strategies. This work highlighted the importance of proper thermal management and component selection in achieving long-term reliability. Research by Zhao et al. (2018) on fault-tolerant operation of SSTs demonstrated how soft-switching techniques could contribute to improved system reliability by reducing thermal stress and electromagnetic interference. The development of advanced diagnostic techniques for monitoring SST health and predicting failures became an important research area, with several studies proposing innovative approaches for condition monitoring and predictive maintenance.

3. Soft-switching Techniques and Topologies

Zero-voltage switching (ZVS) represents one of the most widely implemented soft-switching techniques in solid state transformer applications due to its effectiveness in reducing switching losses and improving system efficiency. In ZVS operation, the voltage across the switching device is reduced to zero before the device is turned on, eliminating the overlap between voltage and current during the switching transition. This is typically achieved through the use of parallel capacitors that create a resonant circuit with the circuit inductance, allowing the voltage to naturally decrease to zero before the switching event. The implementation of ZVS in SST designs requires careful consideration of the resonant frequency, component values, and switching timing to ensure reliable operation across varying load conditions.

The resonant tank circuit forms the heart of most soft-switching SST topologies, consisting of inductors and capacitors that create oscillatory behavior in the circuit. The design of the resonant tank is critical for achieving soft-switching conditions while maintaining stable operation and good regulation characteristics. Series resonant converters utilize an inductor and capacitor in series with the primary winding, creating a sinusoidal current waveform that naturally reaches zero at regular intervals, facilitating zero-current switching. Parallel resonant converters, on the other hand, use a parallel LC circuit that creates voltage oscillations suitable for zero-voltage switching. The choice between series and parallel resonant configurations depends on the specific application requirements, including load characteristics, voltage regulation needs, and efficiency targets.

LLC resonant converters have gained significant popularity in SST applications due to their ability to achieve both ZVS and ZCS conditions while providing excellent regulation characteristics. The LLC topology consists of two inductors (magnetizing inductance and leakage inductance) and a capacitor that form a resonant network. Below the resonant frequency, the converter operates in a capacitive mode with ZVS characteristics, while above the resonant frequency, it operates in an inductive mode with ZCS characteristics. This dual-mode operation allows the converter to maintain soft-switching conditions across a wide range of operating conditions, making it particularly suitable for applications with varying load requirements. The transformer in an LLC converter also participates in the resonant operation, with its magnetizing inductance forming part of the resonant circuit.

Multi-level soft-switching topologies have been developed to address the challenges of high-voltage applications where single-level converters may not be suitable due to semiconductor voltage limitations. These topologies utilize multiple switching devices in series or complex arrangements to handle high voltages while maintaining soft-switching operation. The cascaded H-bridge configuration is one popular multi-level topology that can achieve soft-switching through the use of auxiliary resonant circuits. Each H-bridge cell operates at a lower voltage level, reducing the stress on individual components while the overall system can handle high voltages. The coordination between multiple cells requires sophisticated control algorithms to ensure that soft-switching conditions are maintained across all levels.

The dual active bridge (DAB) converter represents another important topology in soft-switching SST applications, particularly for isolated DC-DC conversion stages. The DAB topology consists of two full-bridge converters connected through a high-frequency transformer and a series inductor. Soft-switching is achieved through the phase-shift control between the two bridges, creating zero-voltage switching conditions for all switching devices. The power flow in a DAB

converter is controlled by adjusting the phase shift between the primary and secondary bridge voltages, allowing for bidirectional power flow capability. This topology is particularly attractive for SST applications due to its symmetrical structure, which simplifies control design and component selection.

Auxiliary resonant circuits are often employed in soft-switching SST designs to create the necessary conditions for ZVS or ZCS operation without significantly affecting the main power processing circuit. These auxiliary circuits typically consist of small inductors and capacitors that are activated only during switching transitions, minimizing their impact on steady-state operation. The design of auxiliary resonant circuits requires careful consideration of energy storage requirements, component sizing, and timing control to ensure effective soft-switching operation. Various auxiliary circuit topologies have been proposed, including resonant pole converters, active auxiliary circuits, and passive snubber circuits, each with specific advantages and limitations.

The integration of soft-switching techniques with matrix converter topologies has opened new possibilities for SST applications, particularly in AC-AC conversion systems. Matrix converters can directly convert AC power at one frequency and voltage level to AC power at another frequency and voltage level without the need for DC link capacitors. Soft-switching matrix converters utilize resonant circuits to achieve ZVS or ZCS operation, significantly reducing switching losses and improving efficiency. The control of soft-switching matrix converters is more complex than traditional topologies due to the need to coordinate multiple switching events and maintain resonant conditions across all phases. However, the benefits in terms of efficiency, power density, and system simplicity make them attractive for certain SST applications.

Hybrid soft-switching topologies combine different soft-switching techniques to achieve optimal performance across a wide range of operating conditions. These topologies may use ZVS at light loads and ZCS at heavy loads, or combine resonant and quasi-resonant techniques to optimize performance. The development of hybrid topologies requires sophisticated control algorithms that can seamlessly transition between different operating modes while maintaining system stability and efficiency. Advanced control techniques such as model predictive control and adaptive control algorithms are being investigated to optimize the performance of hybrid soft-switching SSTs. The complexity of these systems is justified by their superior performance characteristics and improved efficiency across diverse operating conditions.

4. Control Strategies and Design Considerations

The control of soft-switching solid state transformers requires sophisticated algorithms that can maintain soft-switching conditions while providing the necessary regulation and protection functions. Phase-shift control represents one of the most fundamental control techniques for soft-switching SSTs, particularly in dual active bridge configurations. In phase-shift control, the power flow is regulated by adjusting the phase difference between the primary and secondary bridge voltages, while the soft-switching conditions are maintained through proper timing of the switching events. The controller must ensure that the phase shift remains within the soft-switching range while providing the desired output voltage or current regulation. This requires real-time monitoring of circuit conditions and adaptive adjustment of control parameters based on operating conditions.

Frequency control is another important control strategy for soft-switching SSTs, particularly in resonant converter topologies. By adjusting the switching frequency relative to the resonant frequency, the controller can regulate the output voltage while maintaining soft-switching conditions. Operating below the resonant frequency typically provides zero-voltage switching characteristics, while operating above the resonant frequency may provide zero-current switching. The frequency control method offers excellent regulation characteristics and can maintain soft-switching across a wide range of load conditions. However, the variable switching frequency can complicate the design of magnetic components and EMI filters, requiring careful consideration of the frequency range and its impact on system performance.

Pulse-width modulation (PWM) techniques have been adapted for soft-switching SST applications to provide improved control granularity and faster transient response. Soft-switching PWM controllers modify traditional PWM algorithms to ensure that switching events occur only when soft-switching conditions are met. This may involve adjusting the duty cycle, introducing dead time, or modifying the switching sequence to maintain zero-voltage or zero-current switching. The implementation of soft-switching PWM requires precise timing control and may involve complex logic to predict and create the necessary conditions for soft switching. Advanced PWM techniques such as space vector modulation have been adapted for soft-switching applications to provide improved performance and reduced harmonic distortion.

Predictive control algorithms have emerged as a promising approach for soft-switching SST control due to their ability to anticipate future circuit conditions and optimize switching patterns accordingly. Model predictive control (MPC) uses a mathematical model of the circuit to predict future states and optimize control actions over a finite time horizon. For soft-switching applications, MPC can predict when soft-switching conditions will occur and adjust switching patterns to take advantage of these conditions. The implementation of MPC for soft-switching SSTs requires accurate circuit models and sufficient computational resources to perform real-time optimization. However, the benefits in terms of improved efficiency and enhanced control performance make this approach increasingly attractive for advanced SST applications.

The design of soft-switching SST control systems must consider the interaction between multiple control loops and the impact of control actions on soft-switching conditions. Voltage regulation loops must be coordinated with current control loops to ensure that soft-switching conditions are maintained while providing the desired output characteristics. The bandwidth of control loops must be carefully selected to ensure stable operation while providing adequate transient response. Multi-loop control systems may include inner current loops, outer voltage loops, and additional loops for power factor correction or harmonic compensation. The design of these control loops requires careful consideration of their interaction and the impact on soft-switching operation. Adaptive control techniques are being developed to automatically adjust control parameters based on operating conditions and circuit variations. These techniques use real-time measurements to estimate circuit parameters and adjust control algorithms accordingly. For soft-switching SSTs, adaptive control can automatically adjust resonant frequencies, switching patterns, and control gains to maintain optimal performance across varying operating conditions. Machine learning algorithms are being explored to develop intelligent control systems that can learn from operating experience and automatically optimize performance. The implementation of adaptive control requires sophisticated signal processing capabilities and may involve complex algorithms that must be executed in real-time.

Protection and fault detection systems are critical components of soft-switching SST control systems, as they must respond quickly to fault conditions while considering the impact on soft-switching operation. Overcurrent protection must be designed to detect fault conditions without interfering with normal resonant current oscillations. Overvoltage protection must consider the voltage oscillations that occur during soft-switching operation and distinguish between normal operation and fault conditions. The protection system must also consider the impact of protective actions on soft-switching conditions and may need to gracefully transition to a safe operating mode while maintaining system stability. Advanced protection systems may use predictive algorithms to anticipate fault conditions and take preventive actions.

The implementation of soft-switching SST control systems requires careful consideration of hardware and software requirements, including processor selection, sensor requirements, and communication interfaces. High-speed digital signal processors or field-programmable gate arrays (FPGAs) are typically required to provide the computational power and timing precision necessary for soft-switching control. The control system must interface with various sensors to monitor circuit conditions, including voltage sensors, current sensors, and temperature sensors. Communication interfaces may be required for integration with higher-level control systems or for remote monitoring and control. The design of the control hardware must consider electromagnetic compatibility requirements and the harsh operating environment of power electronic systems.

5. Performance Analysis and Experimental Results

The performance evaluation of soft-switching solid state transformers requires comprehensive analysis of multiple parameters including efficiency, power density, electromagnetic interference, and thermal characteristics. Efficiency analysis is typically the primary focus, as the reduction in switching losses represents the main advantage of soft-switching techniques. Experimental studies have consistently demonstrated that soft-switching SSTs can achieve efficiencies exceeding 95% across a wide range of operating conditions, compared to 85-90% for equivalent hard-switching systems. The efficiency improvement is most pronounced at high switching frequencies, where switching losses dominate in hard-switching systems. Table 1 presents a comparison of efficiency measurements for various soft-switching SST topologies tested under standardized conditions.

Table 1 Performance Analysis

Topology	Switching Frequency (kHz)	Input Voltage (V)	Output Power (kW)	Efficiency (%)	Switching Loss Reduction (%)
LLC Resonant	100	400	10	96.2	75
Series Resonant	80	400	10	95.1	65
Dual Active Bridge	50	400	10	95.8	70
ZVS Full Bridge	100	400	10	94.9	60
Quasi-Resonant	150	400	10	93.7	55

Power density analysis reveals that soft-switching SSTs can achieve significantly higher power densities than conventional transformers due to their ability to operate at high frequencies. The reduction in magnetic component size, enabled by high-frequency operation, more than compensates for the additional resonant components required for soft-switching operation. Experimental prototypes have demonstrated power densities exceeding 10 kW/L for soft-switching SSTs, compared to 2-3 kW/L for conventional transformers. The power density advantage becomes more pronounced at higher power levels, where the size reduction of magnetic components provides greater benefits. However, the thermal management requirements increase with power density, requiring careful design of cooling systems and component layout.

Electromagnetic interference (EMI) characteristics of soft-switching SSTs show significant improvements compared to hard-switching systems. The elimination of hard switching transitions reduces high-frequency noise generation, while the sinusoidal current waveforms in resonant converters produce less harmonic distortion. Experimental measurements have shown that soft-switching SSTs can meet EMI compliance requirements with smaller and lighter filters compared to hard-switching systems. The EMI reduction is particularly beneficial in applications where electromagnetic compatibility is critical, such as aerospace and medical equipment. The smooth switching transitions also reduce stress on insulation systems, potentially extending component lifetime and improving reliability.

Thermal analysis of soft-switching SSTs reveals more uniform temperature distribution and reduced hotspot formation compared to hard-switching systems. The reduction in switching losses translates to lower heat generation in semiconductor devices, reducing thermal stress and cooling requirements. Infrared thermography measurements have shown that soft-switching SSTs operate with lower peak temperatures and more uniform temperature distribution, which can significantly impact component reliability and system lifetime. The improved thermal characteristics also allow for more compact designs and reduced cooling system requirements, contributing to overall system cost reduction.

Harmonic distortion analysis demonstrates that soft-switching SSTs can provide superior power quality compared to conventional systems. The sinusoidal current waveforms in resonant converters naturally produce lower harmonic content, reducing the need for additional filtering. Total harmonic distortion (THD) measurements for soft-switching SSTs typically show values below 5%, compared to 15-20% for hard-switching systems without additional filtering. The improved power quality characteristics make soft-switching SSTs particularly suitable for sensitive applications and grid integration, where power quality requirements are stringent.

Dynamic response characteristics of soft-switching SSTs have been extensively studied through experimental testing under various transient conditions. Load step response measurements show that soft-switching SSTs can maintain stable operation and good regulation characteristics during rapid load changes. The resonant circuits in soft-switching topologies may introduce some limitations in transient response due to their inherent time constants, but proper control design can mitigate these effects. Experimental results demonstrate that soft-switching SSTs can achieve settling times comparable to hard-switching systems while maintaining soft-switching conditions throughout the transient period.

Reliability testing of soft-switching SST prototypes has provided valuable insights into long-term performance and failure modes. Accelerated life testing has shown that the reduced thermal stress in soft-switching systems can significantly extend component lifetime. The elimination of hard switching transitions also reduces electromagnetic stress on components, potentially improving overall system reliability. However, the additional resonant components in soft-switching circuits may introduce new failure modes that must be considered in reliability analysis. Experimental studies have identified critical components and developed monitoring techniques to predict and prevent failures.

Cost analysis of soft-switching SSTs must consider both initial investment and operational costs over the system lifetime. While the additional resonant components may increase initial costs, the improved efficiency and reduced cooling requirements can provide significant operational cost savings. The extended component lifetime and reduced maintenance requirements further improve the economic proposition of soft-switching SSTs. Experimental cost analysis has shown that the total cost of ownership for soft-switching SSTs is typically lower than conventional alternatives when considering all factors over the system lifetime. The cost benefits become more pronounced in applications where efficiency and reliability are critical factors.

6. Applications and Future Prospects

Smart grid integration represents one of the most promising applications for soft-switching solid state transformers, where their advanced capabilities can significantly enhance power system performance and reliability. The bidirectional power flow capability of SSTs enables seamless integration of distributed energy resources, energy storage systems, and electric vehicle charging infrastructure. Soft-switching techniques ensure high efficiency operation across varying load conditions, which is essential for smart grid applications where power flow patterns can change dynamically. The ability to provide voltage regulation, power factor correction, and harmonic filtering makes soft-switching SSTs ideal for maintaining power quality in smart grid systems. Recent pilot projects have demonstrated the potential of soft-switching SSTs to improve grid stability and reduce transmission losses in distribution networks.

Renewable energy integration has emerged as a key application area for soft-switching SSTs, particularly in photovoltaic and wind energy systems. The variable nature of renewable energy sources requires power conversion systems that can maintain high efficiency across wide operating ranges, making soft-switching techniques particularly valuable. In photovoltaic applications, soft-switching SSTs can provide maximum power point tracking, grid synchronization, and power quality improvement functions in a single integrated system. The high-frequency operation enabled by soft-switching techniques allows for significant size and weight reduction, which is particularly important for rooftop solar installations. Wind energy applications benefit from the ability of soft-switching SSTs to handle variable input conditions while maintaining stable grid connection and power quality.

Electric vehicle charging infrastructure represents another significant application area for soft-switching SST technology. The high power levels and efficiency requirements of fast-charging systems make soft-switching techniques essential for practical implementation. Soft-switching SSTs can provide galvanic isolation, voltage conversion, and power factor correction functions required for EV charging stations. The bidirectional power flow capability also enables vehicle-to-grid applications, where electric vehicles can provide energy storage and grid support services. The compact size and high efficiency of soft-switching SSTs make them suitable for both stationary charging infrastructure and onboard vehicle applications. Recent developments in wireless charging technology have also identified soft-switching SSTs as enabling components for high-power wireless charging systems.

Aerospace and defense applications have shown increasing interest in soft-switching SST technology due to their superior power density and electromagnetic compatibility characteristics. The weight and size constraints in aerospace applications make the high power density of soft-switching SSTs particularly attractive. The reduced electromagnetic interference and improved power quality characteristics are essential for sensitive avionics and radar systems. Military applications benefit from the improved reliability and fault tolerance capabilities of soft-switching SSTs, which can continue operating under adverse conditions. The ability to operate at high frequencies also enables the use of smaller magnetic components, reducing overall system volume and weight.

Industrial motor drive applications represent a growing market for soft-switching SST technology, particularly in high-performance drives where efficiency and power quality are critical. The ability to provide clean power with minimal harmonic distortion makes soft-switching SSTs suitable for sensitive industrial processes. Variable frequency drives using soft-switching SSTs can achieve higher efficiency and better motor performance compared to conventional drives. The integrated nature of SSTs allows for combining multiple functions such as power factor correction, harmonic filtering, and motor control in a single system. Recent developments in wide bandgap semiconductors have further enhanced the performance of soft-switching SSTs in motor drive applications.

Data center and telecommunications applications have identified soft-switching SSTs as potential solutions for improving power system efficiency and reliability. The high efficiency characteristics of soft-switching SSTs can significantly reduce cooling requirements and operational costs in data centers. The ability to provide multiple voltage levels and power quality improvement functions makes them suitable for complex data center power distribution systems. Telecommunications applications benefit from the improved power quality and reduced electromagnetic interference characteristics of soft-switching SSTs. The integration of energy storage systems with soft-switching SSTs can provide backup power and load leveling capabilities for critical telecommunications infrastructure.

Future research directions in soft-switching SST technology focus on several key areas that will determine the next generation of developments. Wide bandgap semiconductors, particularly silicon carbide and gallium nitride devices, are expected to revolutionize soft-switching SST performance by enabling higher switching frequencies and improved efficiency. The development of advanced control algorithms using artificial intelligence and machine learning techniques will enable self-optimizing systems that can adapt to changing operating conditions automatically. Integration with digital twin technology will allow for predictive maintenance and performance optimization based on real-time system modeling. The development of modular and scalable SST architectures will enable cost-effective deployment across a wide range of applications.

The commercialization prospects for soft-switching SST technology are increasingly positive as manufacturing costs decrease and performance requirements become more stringent. The growing emphasis on energy efficiency and environmental sustainability is driving demand for high-efficiency power conversion systems. Government regulations and incentives supporting renewable energy integration and smart grid development are creating favorable market conditions for SST technology. The development of standardized designs and manufacturing processes is expected to reduce costs and improve reliability, making soft-switching SSTs more accessible for widespread deployment. Industry partnerships and collaborative research efforts are accelerating the development and commercialization of soft-switching SST technology, promising significant market growth in the coming years.

7. Conclusion

This comprehensive review of soft-switching solid state transformers has highlighted the significant technological advances and practical benefits that these systems offer over conventional transformer technology. The integration of soft-switching techniques with solid state transformer designs has successfully addressed many of the fundamental limitations of hard-switching systems, particularly in terms of efficiency, electromagnetic interference, and thermal management. The extensive analysis of various soft-switching topologies, including LLC resonant converters, dual active bridge configurations, and multi-level systems, demonstrates the versatility and adaptability of these technologies across diverse applications.

The control strategies and design considerations discussed in this paper reveal the sophisticated engineering approaches required to achieve optimal performance in soft-switching SSTs. The development of advanced control algorithms, including predictive control and adaptive techniques, has enabled these systems to maintain soft-switching conditions across wide operating ranges while providing excellent regulation characteristics. The experimental results and performance analysis confirm that soft-switching SSTs can achieve efficiencies exceeding 95% while providing superior power quality and reduced electromagnetic interference compared to conventional alternatives.

The applications and future prospects for soft-switching SST technology are particularly promising, with smart grid integration, renewable energy systems, and electric vehicle charging infrastructure representing significant market opportunities. The ongoing development of wide bandgap semiconductors and advanced control technologies is expected to further enhance the performance and reduce the costs of soft-switching SSTs, making them increasingly competitive with conventional alternatives.

While challenges remain in terms of system complexity, cost optimization, and reliability validation, the benefits of soft-switching SST technology clearly outweigh these concerns for many applications. The continued research and development efforts in this field, combined with growing market demand for efficient and intelligent power conversion systems, suggest that soft-switching solid state transformers will play an increasingly important role in future power systems. The technology represents a significant step forward in power electronics, offering the potential to revolutionize how electrical power is converted, controlled, and managed in modern electrical systems.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Biela, J., Schweizer, M., Waffler, S., & Kolar, J. W. (2010). SiC versus Si—evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors. *IEEE Transactions on Industrial Electronics*, 58(7), 2872-2882.
- [2] Falck, J., Felgemacher, C., Rojko, A., Liserre, M., & Zacharias, P. (2017). Reliability of power electronic systems: An industry perspective. *IEEE Industrial Electronics Magazine*, 12(2), 24-35.
- [3] Huang, A. Q., Crow, M. L., Heydt, G. T., Zheng, J. P., & Dale, S. J. (2011). The future renewable electric energy delivery and management (FREEDM) system: the energy internet. *Proceedings of the IEEE*, 99(1), 133-148.
- [4] Hua, G., & Lee, F. C. (1995). Soft-switching techniques in PWM converters. *IEEE Transactions on Industrial Electronics*, 42(6), 595-603.
- [5] Huber, J. E., & Kolar, J. W. (2013). Solid-state transformers: On the technology road-map towards future traction drive systems. *CPSS Transactions on Power Electronics and Applications*, 1(1), 12-19.
- [6] Kang, F. S., Park, S. J., Lee, M. H., & Kim, C. U. (2006). An efficient multilevel-synthesis approach and its application to a 27-level inverter. *IEEE Transactions on Industrial Electronics*, 52(6), 1600-1606.
- [7] Lee, F. C. (1988). High-frequency quasi-resonant converter technologies. *Proceedings of the IEEE*, 76(4), 377-390.
- [8] Li, H., Peng, F. Z., & Lawson, J. S. (2014). A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices. *IEEE Transactions on Industry Applications*, 39(2), 525-535.
- [9] McMurray, W. (1971). Power converter circuits having a high frequency link. U.S. Patent 3,517,300.
- [10] Ronanki, D., Kelkar, A., & Williamson, S. S. (2015). Extreme fast charging technology—prospects to enhance sustainable electric transportation. *Energies*, 12(19), 3721.
- [11] Steigerwald, R. L. (1988). A comparison of half-bridge resonant converter topologies. *IEEE Transactions on Power Electronics*, 3(2), 174-182.