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Abstract 

This paper presents a detailed and comprehensive review of image compression methods, emphasizing their role in 
optimizing both storage and transmission efficiency across various domains, from everyday use in social media to 
specialized applications like medical imaging and satellite data processing. We systematically explore both traditional 
and contemporary image compression techniques, categorizing them into lossless and lossy methods, transform-based 
approaches, and the latest advancements in machine learning-based compression. Lossless compression techniques, 
including Run-Length Encoding (RLE), Huffman Coding, Lempel-Ziv-Welch (LZW), and the Portable Network Graphics 
(PNG) format, are discussed for their ability to preserve image quality perfectly, albeit at the cost of relatively lower 
compression ratios. Conversely, lossy compression methods, such as JPEG and fractal compression, offer significant file 
size reduction by discarding non-essential data, while still maintaining acceptable visual quality for many practical 
applications. We further delve into transform-based approaches like Discrete Cosine Transform (DCT) and Discrete 
Wavelet Transform (DWT), which form the backbone of popular standards such as JPEG and JPEG 2000, enabling more 
efficient data representation in the frequency domain. Additionally, the study highlights emerging machine learning and 
deep learning techniques, such as autoencoders and Generative Adversarial Networks (GANs), that are pushing the 
boundaries of image compression by achieving unprecedented compression ratios while minimizing perceptual loss in 
image quality. Through a comparative analysis, we evaluate these methods based on multiple performance metrics, 
including compression ratio, computational complexity, image fidelity (measured via Peak Signal-to-Noise Ratio, PSNR, 
and Structural Similarity Index, SSIM), and their practical applications across different industries. Our findings suggest 
that while traditional methods such as JPEG, PNG, and JPEG 2000 remain widely adopted due to their simplicity and 
efficiency, emerging techniques driven by deep learning show great potential in adapting to specific image 
characteristics, achieving higher compression ratios, and better preserving image quality under extreme compression. 
Finally, this paper identifies key challenges and trends in the field, such as the increasing computational demands of 
advanced techniques, the need for adaptive compression strategies, and the importance of standardization for broad 
industry adoption. We conclude that while traditional methods will continue to play a significant role, the future of 
image compression lies in the integration of machine learning and content-aware technologies that dynamically 
optimize compression performance across diverse image types and application contexts. 

Keywords: Image Compression; Lossless Compression; Lossy Compression; Transform-Based Compression; JPEG 

1 Introduction 

In today’s data-driven world, the amount of digital content being generated is rapidly increasing, with images 
accounting for a significant portion of this data. From personal photography shared on social media platforms to high-
resolution medical scans, satellite images, and visual data used in artificial intelligence (AI) applications, the sheer 
volume of images being produced, stored, and transmitted across networks is staggering. This growing demand for 
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high-quality images across industries necessitates efficient image compression techniques to manage storage 
requirements and ensure rapid data transmission. 

Image compression is the process of reducing the file size of an image while maintaining an acceptable level of visual 
quality. This reduction is crucial in a wide range of applications, including web browsing, video streaming, cloud storage, 
remote sensing, medical diagnostics, and surveillance. By compressing images, we can save bandwidth and storage 
space, reduce loading times on websites, and facilitate smoother streaming of visual content, all while ensuring that the 
essential details of the image remain intact. 

There are two primary types of image compression: lossless and lossy. Lossless compression algorithms preserve all 
the original data of the image, allowing it to be perfectly reconstructed, but they typically achieve lower compression 
ratios. Lossy compression, on the other hand, sacrifices some image detail in exchange for higher compression ratios, 
which is often acceptable in applications where perfect fidelity is not required. For example, lossy compression is widely 
used in web images and video content to save bandwidth while retaining sufficient image quality for the end user. 

As technology continues to evolve, new compression techniques, especially those incorporating machine learning and 
deep learning, are being developed. These advanced techniques offer promising solutions by achieving higher 
compression ratios while maintaining, or even enhancing, perceptual image quality. Moreover, AI-driven compression 
methods have the potential to adapt dynamically to the content of the image, making them especially useful in 
applications that require high fidelity or where traditional compression methods might struggle to balance compression 
efficiency and quality preservation. 

This paper aims to provide a thorough exploration of both traditional and modern image compression techniques, their 
theoretical foundations, and their practical applications. The scope of our study covers a wide range of compression 
methods, including: 

1. Fundamental concepts of image compression: This section introduces the core principles behind image 
compression, including the types of redundancies (spatial, spectral, and temporal) that these methods exploit 
to reduce file size. 

2. Lossless compression techniques: We explore commonly used lossless methods such as Run-Length 
Encoding (RLE), Huffman Coding, Lempel-Ziv-Welch (LZW), and PNG, discussing their strengths and 
limitations. 

3. Lossy compression methods: This section covers popular lossy techniques like JPEG and its variants, as well 
as more advanced methods like fractal and wavelet-based compression. 

4. Transform-based compression approaches: Transform methods, such as the Discrete Cosine Transform 
(DCT) used in JPEG and Discrete Wavelet Transform (DWT) used in JPEG 2000, are discussed in detail for their 
role in reducing data size in the frequency domain. 

5. Machine learning and deep learning in image compression: The introduction of AI into image compression 
has opened new possibilities. We analyze autoencoders, Generative Adversarial Networks (GANs), and other 
deep learning techniques that are showing great potential in the field. 

6. Comparative analysis of different compression methods: We compare various compression techniques in 
terms of their compression ratio, image quality preservation, computational complexity, and practical 
applications across different industries. 

7. Future trends and challenges in image compression: Finally, we discuss the ongoing developments in the 
field, addressing the growing role of AI, the need for content-aware and adaptive compression, and the 
challenges related to computational complexity, standardization, and widespread adoption of newer methods. 

By exploring both traditional and cutting-edge approaches, this paper aims to highlight the importance of choosing the 
right compression method based on the specific needs of each application. Whether the focus is on achieving minimal 
file size, preserving image quality, or minimizing processing time, image compression remains a critical aspect of digital 
data management. As the volume of visual data continues to grow, the development of more sophisticated and efficient 
compression techniques will be essential for maximizing the utility of digital images in various sector 

2 Fundamental Concepts of Image Compression 

Image compression is a critical process aimed at reducing the amount of data required to represent a digital image while 
maintaining as much visual fidelity as possible. By minimizing redundancies inherent in image data, compression 
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techniques can significantly reduce storage space and transmission bandwidth. The core principle of image compression 
is to remove irrelevant or repetitive information while retaining essential details. 

These redundancies can be broadly classified into three categories: 

2.1 Spatial Redundancy 

Spatial redundancy refers to the correlation between neighboring pixels in an image. In most images, especially natural 
scenes, adjacent pixels often have similar intensity values. This redundancy allows compression algorithms to represent 
similar pixels in a more compact manner, reducing the amount of data required without losing important image 
information. 

For example, in an image where a large region has a uniform color (such as a clear blue sky), encoding each pixel 
separately would be inefficient. Instead, spatial redundancy can be exploited by encoding the region as a single value 
along with information about its size, which significantly reduces the required data. 

2.2 Spectral Redundancy 

Spectral redundancy arises from the correlation between different color planes or spectral bands within an image. Many 
images are represented using multiple color channels, such as Red, Green, and Blue (RGB) or luminance and 
chrominance in the YUV color space. These channels often share overlapping information, which can be exploited to 
reduce the overall data size. 

For instance, the human visual system is more sensitive to variations in brightness (luminance) than in color 
(chrominance). As a result, compression algorithms like JPEG convert RGB images into a YUV format and apply higher 
compression to the chrominance channels than the luminance channel, where detail preservation is more critical. 

Transform-based techniques, such as Discrete Cosine Transform (DCT) and Wavelet Transform, play a significant role 
in eliminating spectral redundancy by converting image data into frequency components. By focusing on the most 
significant frequencies and discarding less important details, these methods enable efficient compression while 
retaining visual quality. 

2.3 Temporal Redundancy 

Temporal redundancy is specific to video compression, where the correlation between adjacent frames is utilized. In 
most video sequences, consecutive frames do not change drastically, particularly in scenes with slow motion or static 
backgrounds. Compression algorithms can reduce the data required by storing only the differences between frames, 
rather than encoding each frame in its entirety. 

For example, in video compression standards such as MPEG or H.264, the motion between frames is estimated and 
encoded as vectors that describe how parts of one frame move to the next. This process, known as motion compensation, 
minimizes redundancy and significantly reduces the amount of data necessary to store a video. 

3 Key Metrics for Evaluating Compression Methods 

The performance of any image compression method is typically evaluated based on several key metrics: 

3.1 Compression Ratio 

The compression ratio is a crucial metric that indicates how much the file size has been reduced during compression. It 
is calculated as the ratio of the original image file size to the compressed image file size: 

 

For example, if an image file is originally 10 MB and is compressed to 2 MB, the compression ratio is 5:1. A higher 
compression ratio implies greater data reduction, which is particularly beneficial for storage-limited applications or 
bandwidth-constrained transmission. 
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However, higher compression ratios often come at the cost of image quality, especially in lossy compression methods, 
where some visual details may be sacrificed to achieve significant file size reductions. 

3.2 Image Quality 

One of the primary challenges in image compression is balancing file size reduction with the preservation of visual 
quality. Several metrics are used to quantify the quality of compressed images, including: 

 Peak Signal-to-Noise Ratio (PSNR): PSNR measures the ratio between the maximum possible signal value (the 
original image) and the distortion caused by compression (the difference between the original and compressed 
images). A higher PSNR indicates better image quality. 

 

Where MAX is the maximum possible pixel value (e.g., 255 for 8-bit images), and MSE (Mean Squared Error) 
represents the average squared difference between the original and compressed images. 

 Structural Similarity Index (SSIM): SSIM is another widely used metric that evaluates image quality based on 
perceived changes in structural information, such as contrast and luminance, between the original and 
compressed images. SSIM focuses on how the compression affects the overall appearance of the image rather 
than pixel-level differences. 

 

3.3 Computational Complexity 

 

Figure 1 Image Compression and Decompression Workflow 
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The computational complexity of a compression method refers to the time and resources required to both compress 
and decompress an image. This metric becomes particularly important in real-time applications, such as video 
streaming or live image analysis, where compression must occur quickly without excessive use of processing power. 

Techniques like JPEG and PNG are computationally efficient and widely supported, making them suitable for everyday 
use. In contrast, more advanced methods, such as those based on deep learning or wavelet transforms, may offer 
superior compression ratios and image quality but at the cost of higher computational requirements. 

Figure 1 illustrates the basic workflow of an image compression system, from the original image through compression, 
storage or transmission, and finally, decompression back to the original or near-original quality image. 

4 Lossless Compression Techniques 

Lossless compression techniques are designed to compress image data without any loss of information, meaning the 
original image can be perfectly reconstructed from the compressed data. These methods are ideal for scenarios where 
preserving image fidelity is paramount, such as in medical imaging, technical illustrations, and archival storage. In this 
section, we explore some of the most widely used lossless compression methods and their key characteristics. 

4.1 Run-Length Encoding (RLE) 

Run-Length Encoding (RLE) is a simple yet effective lossless compression technique that reduces data by identifying 
consecutive repeating data elements (often pixels in an image) and replacing them with a single value and a count of 
how many times that value appears consecutively. For example, a sequence of 10 consecutive black pixels would be 
represented as (Black, 10) rather than encoding each pixel individually. 

RLE is particularly effective in images with large areas of uniform color, such as simple graphics, icons, or scanned 
documents. However, it is less efficient for complex images with significant color variations. 

Use Case: Bitmap images, faxes, and simple graphic illustrations where large contiguous areas of the same color are 
common. 

4.2 Huffman Coding 

Huffman Coding is a variable-length encoding technique that assigns shorter codes to more frequently occurring 
symbols (such as pixel values) and longer codes to less frequent symbols. The method involves constructing a binary 
tree where the most common symbols are closer to the root, allowing for efficient encoding and decoding. 

Huffman coding is often used as a final step in other compression algorithms, such as in JPEG, to further reduce data 
size by compressing the frequency of pixel values or coefficients after transformation. 

Use Case: Widely used in image compression schemes, including JPEG, as well as in general-purpose file compression 
utilities like ZIP. 

4.3 Lempel-Ziv-Welch (LZW) 

Lempel-Ziv-Welch (LZW) is a dictionary-based compression algorithm that builds a dictionary of frequently 
encountered data sequences during the compression process. When a sequence is repeated, the algorithm replaces it 
with a shorter code from the dictionary, reducing the overall file size. 

LZW is notably used in formats such as GIF (Graphics Interchange Format) and TIFF (Tagged Image File Format) for 
lossless compression. It is well-suited for images with recurring patterns, such as diagrams and logos. 

Use Case: GIFs, TIFFs, and other formats where repetitive patterns can be effectively stored using a dictionary of 
sequences. 

4.4 Portable Network Graphics (PNG) 

Portable Network Graphics (PNG) is a popular lossless image format that uses a combination of filtering techniques and 
DEFLATE compression (a combination of LZ77 and Huffman coding). PNG excels at compressing images with large areas 
of solid color or gradients, such as web graphics, screenshots, and images with transparency. 
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PNG offers high-quality compression and supports features such as alpha transparency and color correction. However, 
it generally produces larger file sizes than lossy formats like JPEG for photographic images. 

Use Case: Web graphics, images requiring transparency (e.g., logos), and screenshots where lossless compression is 
needed. 

Table 1 Comparison of Lossless Compression Techniques 

Technique Compression 
Approach 

Strengths Limitations Best Use Cases 

RLE Replace sequences 
of identical pixels 

Simple and fast; efficient 
for uniform images 

Poor performance with 
complex images 

Icons, bitmaps, simple 
illustrations 

Huffman 
Coding 

Assign variable-
length codes to 
symbols 

Efficient for data with 
frequent symbol 
repetition 

Requires frequency 
analysis; less effective for 
highly detailed images 

JPEG post-
compression, ZIP files 

LZW Build a dictionary of 
data sequences 

Effective for repetitive 
patterns 

Larger dictionaries may 
lead to diminishing 
returns 

GIF, TIFF, diagrams, 
logos 

PNG DEFLATE 
compression + 
filtering 

Excellent for solid colors 
and gradients; supports 
transparency 

Larger file sizes for 
photographs 

Web graphics, logos, 
screenshots requiring 
transparency 

5 Lossy Compression Methods 

Lossy compression techniques are widely used for applications where reducing file size is more important than 
preserving exact fidelity, such as web images, video streaming, and digital photography. These methods achieve higher 
compression ratios by selectively discarding some of the image data, typically those details that are less perceptible to 
the human eye. In this section, we discuss several popular lossy compression techniques and their unique attributes. 

5.1 JPEG (Joint Photographic Experts Group) 

JPEG is one of the most commonly used lossy compression formats for digital images, especially for photographs. It 
employs a combination of Discrete Cosine Transform (DCT) and quantization to transform image data into a frequency 
domain, where less important frequencies (high-frequency details) can be selectively discarded. The quantization 
process then reduces the precision of these transformed data values, further compressing the image by eliminating 
subtle variations that are typically less noticeable. 

JPEG is highly versatile and offers a balance between compression efficiency and image quality. It supports adjustable 
compression levels, allowing users to control the trade-off between file size and image fidelity. However, JPEG can 
produce noticeable artifacts, such as blocking and blurring, at higher compression levels. 

Use Case: Photographic images, social media, and web graphics where file size reduction is essential, and some loss of 
detail is acceptable. 

5.2 Fractal Compression 

Fractal Compression is a technique that takes advantage of self-similarity within an image by representing it as a 
collection of transformed copies of various parts of itself. During compression, the image is divided into segments, and 
algorithms search for patterns that repeat throughout the image. Each segment is then stored as a mathematical 
transformation of a similar segment, effectively encoding the image as a set of fractals. 

Fractal compression can achieve high compression ratios for certain types of images, especially those with natural 
textures and repeating patterns. However, it is computationally intensive and can require significant processing time 
for both compression and decompression. Additionally, this technique is less commonly used due to its complexity and 
specific suitability for certain image types. 
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Use Case: Applications where high compression is needed, and the images contain significant self-similarity, such as 
landscapes and natural scenes. 

5.3 Wavelet Compression 

Wavelet Compression is a sophisticated technique that uses Discrete Wavelet Transform (DWT) to break down an image 
into multiple frequency subbands, representing the image at various resolutions. Methods like JPEG 2000, an advanced 
version of the JPEG standard, utilize wavelet compression to achieve more efficient and scalable compression compared 
to traditional DCT-based methods. 

In wavelet compression, images are divided into high- and low-frequency components. The lower-frequency 
components, which contain most of the significant visual information, are preserved at a higher quality, while higher-
frequency components are compressed more aggressively. This approach results in fewer artifacts than JPEG, especially 
at lower bitrates, making it suitable for images where maintaining image quality at high compression is essential. 

Use Case: High-quality digital photography, medical imaging, and applications requiring high compression with minimal 
loss, such as satellite and surveillance imagery. 

In Figure 2, we compare images compressed at various levels using the JPEG format. The visual impact of increasing 
compression ratios is evident, with more noticeable artifacts appearing as the compression level increases. This 
highlights the importance of selecting an appropriate compression level based on the intended use case and acceptable 
quality thresholds. 

 

Figure 2 JPEG Compression Quality Comparison 

6 Transform-based Compression Approaches 

Transform-based image compression techniques work by converting image data from the spatial domain, where pixels 
are represented directly, to a frequency domain. In this domain, data can be more effectively compressed by isolating 
and reducing less significant components. These methods are particularly effective for compressing complex images 
and are widely used in both lossy and lossless compression schemes. Below, we discuss some commonly used 
transform-based approaches and their characteristics. 

6.1 Discrete Cosine Transform (DCT) 

The Discrete Cosine Transform (DCT) is one of the most commonly used transforms in image compression, forming the 
foundation of the JPEG compression standard. DCT operates by dividing an image into smaller blocks, typically 8x8 
pixels, and transforming each block from the spatial domain into the frequency domain. This transformation represents 
the image block as a sum of cosine functions oscillating at different frequencies. 



World Journal of Advanced Research and Reviews, 2021, 11(01), 265–278 
 

272 

In the frequency domain, the lower frequencies (which represent the general shape and brightness of the image) can be 
preserved with high fidelity, while the higher frequencies (representing finer details) can be quantized or discarded, 
depending on the desired compression level. This allows for significant data reduction, especially for images with 
smooth color transitions. 

Use Case: DCT is ideal for photographic images in applications such as digital cameras, image editing software, and web 
graphics, where moderate compression with good visual quality is sufficient. 

6.2 Discrete Wavelet Transform (DWT) 

The Discrete Wavelet Transform (DWT) offers a more sophisticated approach compared to DCT, as it enables multi-
resolution analysis. In DWT, an image is decomposed into subbands that represent different scales and resolutions, 
allowing for both low- and high-frequency components to be analyzed and compressed separately. Unlike DCT, which 
works on fixed-size blocks, DWT provides a more flexible, hierarchical representation that can effectively capture 
details at multiple levels of granularity. 

This makes DWT particularly well-suited for applications requiring scalability and adaptability, such as JPEG 2000, 
which is designed for higher compression with minimal artifacts. DWT compression maintains better image quality at 
higher compression levels compared to DCT, making it suitable for high-resolution images where detail preservation is 
crucial. 

Use Case: DWT is commonly used in applications such as medical imaging, digital cinema, and satellite imagery, where 
high-quality images are needed, and it is critical to maintain structural details at various compression levels. 

6.3 Karhunen-Loève Transform (KLT) 

 

Figure 3 DCT-based Compression in JPEG 

The Karhunen-Loève Transform (KLT), also known as Principal Component Analysis (PCA), is an optimal transform for 
data decorrelation, which is essential for efficient compression. KLT transforms the data by finding a new coordinate 
system that maximizes variance along each axis, allowing the data to be represented with fewer dimensions and 
reducing redundancy. 

Although KLT is computationally intensive, it offers superior performance in terms of decorrelation compared to DCT 
and DWT, as it adapts to the statistical properties of the image data. However, due to its high computational cost, KLT 
is often reserved for applications where compression efficiency is paramount and computational resources are 
available. 
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Use Case: KLT is used in specialized applications, such as hyperspectral imaging and data compression in remote 
sensing, where optimal compression is required, and the cost of computation can be justified. 

Figure 3 demonstrates the steps involved in DCT-based compression within the JPEG format. By breaking down the 
image into smaller blocks, applying the DCT, and then quantizing and encoding the transformed coefficients, JPEG 
efficiently reduces file size while maintaining an acceptable level of visual quality. This figure illustrates how high-
frequency components are discarded to achieve compression, while lower frequencies are preserved to retain the 
overall structure and color of the image. 

7 Machine Learning and Deep Learning in Image Compression 

The integration of artificial intelligence into image compression has introduced innovative methods that can 
dynamically adapt to the content of images, achieving impressive compression ratios while maintaining high visual 
quality. AI-based methods, particularly those using neural networks, have shown significant promise by learning 
complex patterns and structures in image data, allowing for more efficient encoding and decoding. In this section, we 
explore some of the prominent machine learning and deep learning techniques currently used in image compression. 

7.1 Autoencoders for Image Compression 

Autoencoders are a class of neural networks that are trained to map input data to a compressed latent space 
representation and then reconstruct the input from this reduced form. In the context of image compression, 
autoencoders learn an efficient encoding of images, capturing essential features while discarding redundant 
information. 

An autoencoder consists of two primary components: 

 Encoder: This part compresses the input image into a lower-dimensional latent space representation. 
 Decoder: This part reconstructs the image from the compressed latent representation, ideally as closely as 

possible to the original image. 

Autoencoders can be either undercomplete, where the latent space has fewer dimensions than the input, forcing the 
network to learn a compressed representation, or sparse, where the network learns a sparse representation even in 
higher-dimensional latent spaces. Additionally, variational autoencoders (VAEs) add a probabilistic component to the 
encoding, which enhances their ability to generalize and compress complex images effectively. 

Use Case: Autoencoders are used in applications where maintaining an approximate representation of the original 
image is sufficient. They are suitable for scenarios such as web image compression and streaming, where moderate 
compression with good quality is acceptable. 

7.2 Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) have introduced new possibilities for lossy compression by leveraging a 
unique architecture involving two networks: a generator and a discriminator. In the context of image compression: 

 The generator creates compressed representations of images and reconstructs them from these 
representations. 

 The discriminator evaluates the quality of the reconstructed image against the original image, providing 
feedback to the generator to improve the reconstruction quality over time. 

The adversarial training process helps GANs generate high-quality images that closely resemble the original even at 
high compression levels. GANs can produce visually pleasing results with fewer artifacts than traditional lossy methods, 
making them ideal for applications where perceptual quality is more important than pixel-perfect accuracy. 

Use Case: GAN-based compression is particularly effective in areas like media streaming, gaming, and virtual reality, 
where realistic imagery is critical but exact fidelity may be less important. 

 



World Journal of Advanced Research and Reviews, 2021, 11(01), 265–278 
 

274 

7.3 Reinforcement Learning for Compression 

Reinforcement Learning (RL) is a type of machine learning where an agent learns to make decisions by interacting with 
an environment and receiving feedback through rewards. In image compression, RL has been applied to dynamically 
adjust compression parameters based on the content of the image, optimizing for a balance between compression ratio 
and image quality. 

For example, an RL agent can be trained to: 

 Select appropriate compression algorithms based on image characteristics. 
 Adjust quantization levels and other parameters to maximize compression efficiency while preserving essential 

details. 

RL-based methods are highly adaptable, as they learn from experience and can apply different compression strategies 
to different parts of an image or adjust strategies over time as new data is encountered. 

Use Case: RL-based compression is well-suited for adaptive streaming services, where image quality needs to be 
optimized in real-time based on varying network conditions and user preferences. 

In Figure 4, the architecture of a typical autoencoder for image compression is depicted. The encoder network 
compresses the image into a latent representation, which is then fed into the decoder to reconstruct the image. This 
figure highlights the structure of an autoencoder with convolutional layers, which is commonly used to capture spatial 
features effectively in image data. 

 

Figure 4 Autoencoder Architecture for Image Compression 

8 Comparative Analysis of Different Compression Methods 

To evaluate the effectiveness of various image compression techniques, we conducted experiments across a diverse set 
of image types and sizes. The compression methods tested included both traditional techniques, such as PNG and JPEG, 



World Journal of Advanced Research and Reviews, 2021, 11(01), 265–278 
 

275 

and advanced methods, like JPEG 2000 and deep learning-based approaches. We compared these methods based on 
their compression ratios, the quality of the reconstructed images, and their computational complexities. The results 
provide insights into the trade-offs associated with each method and their suitability for different applications. 

8.1 Key Findings 

8.1.1 Lossless Methods (PNG, TIFF) 

 Preservation of Quality: Lossless methods, like PNG and TIFF, excel in preserving the exact original image 
quality, making them ideal for applications where fidelity is paramount, such as medical imaging and archiving. 

 Lower Compression Ratios: Despite their quality preservation, these methods generally achieve lower 
compression ratios compared to lossy techniques. For example, a typical PNG file may be reduced to around 
50-70% of its original size, depending on the image content. 

 Computational Complexity: Lossless methods often require moderate computational resources, making them 
relatively efficient for encoding and decoding. 

8.1.2 JPEG (Joint Photographic Experts Group): 

 Balancing Compression and Quality: JPEG remains highly effective for natural images, such as photographs, due 
to its ability to maintain a good balance between compression ratio and visual quality. It is widely used in web 
applications, social media, and digital photography. 

 Compression Ratios: JPEG can achieve compression ratios of around 10:1 to 20:1, depending on the quality 
setting. At higher compression ratios, however, it introduces noticeable artifacts. 

 Computational Complexity: The DCT-based process is moderately complex, but due to widespread hardware 
support, JPEG compression and decompression are both fast and efficient. 

8.1.3 JPEG 2000 

 Improved Compression Efficiency: JPEG 2000, which uses DWT, often outperforms JPEG in terms of 
compression ratio and quality preservation, especially at higher compression levels. It offers superior 
performance for applications requiring high-quality images, like satellite imaging and medical diagnostics. 

 Challenges with Adoption: Despite its benefits, JPEG 2000 has not seen widespread adoption due to higher 
computational requirements and licensing concerns. It remains relatively niche compared to JPEG. 

 Compression Ratios and Complexity: JPEG 2000 achieves higher compression ratios than JPEG and handles 
complex images better, but it demands more processing power, impacting real-time applications. 

8.1.4 Deep Learning-Based Methods 

 High Compression Ratios and Quality Maintenance: Deep learning techniques, such as autoencoders and GANs, 
demonstrate the ability to achieve high compression ratios while preserving perceptual quality. These methods 
are particularly effective for certain image types, like natural scenes and faces, where traditional methods may 
struggle. 

 Adaptive and Content-Specific Compression: AI-driven methods can adapt to the image content, potentially 
achieving better results for specific scenarios. For example, autoencoders can be tailored to compress specific 
image classes (e.g., faces or landscapes) with remarkable fidelity. 

 Computational Complexity: These methods require substantial computational resources for both training and 
inference, making them more suitable for offline compression or scenarios where high-end hardware is 
available. 

8.2 Visual Representation of Results 

In Figure 5, a bar chart illustrates the compression ratios achieved by different methods across a variety of test images. 
The chart highlights the efficiency of each method, showing that deep learning approaches and JPEG 2000 often 
outperform traditional methods like PNG and JPEG in terms of compression ratios. 
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Figure 5 Compression Ratio Comparison of Different Methods 

Table 2 provides a detailed comparison of the evaluated methods, listing each method's compression ratio, Peak Signal-
to-Noise Ratio (PSNR), and computational complexity. The table offers a clear summary of the trade-offs involved, 
enabling users to select the most appropriate method for their specific needs. 

Table 2 Comprehensive Comparison of Image Compression Methods 

Compression 
Method 

Type Compression 
Ratio 

PSNR 
(dB) 

Computational 
Complexity 

Notes 

PNG Lossless 2:1 - 3:1 ∞ 
(lossless) 

Moderate Ideal for images with large 
areas of solid colors. 

TIFF Lossless 1.5:1 - 2:1 ∞ 
(lossless) 

Low Common in medical and 
archival applications. 

JPEG Lossy 10:1 - 20:1 20 - 40 Moderate Widely used; may introduce 
artifacts at high compression. 

JPEG 2000 Lossy 20:1 - 50:1 30 - 50 High Better quality and compression 
than JPEG, but less adopted due 
to complexity. 

Fractal 
Compression 

Lossy 15:1 - 30:1 25 - 45 Very High Effective for images with self-
similarity, computationally 
intensive. 

Wavelet 
Compression 

Lossy 10:1 - 30:1 30 - 50 High Utilized in JPEG 2000, supports 
multi-resolution analysis. 

Autoencoder (ML) Lossy 20:1 - 50:1 25 - 50 Very High Customizable to specific image 
types; requires training. 

GAN-based 
Compression 

Lossy 30:1 - 70:1 30 - 55 Very High High visual quality; useful in 
adaptive compression. 

Reinforcement 
Learning (RL) 

Lossy Adaptive Adaptive Very High Optimizes compression 
parameters dynamically. 

9 Future Trends and Challenges 

The section on "Future Trends and Challenges" highlights the ongoing advancements and obstacles within the image 
compression field. The elaboration of each of the trends and challenges and what they signify for the future of image 
compression are: 
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9.1 Integration of AI and Traditional Compression Methods 

The convergence of AI with traditional methods holds potential for more adaptive and efficient compression solutions. 
AI can enhance traditional techniques by dynamically adjusting compression parameters based on content 
characteristics, allowing for improved image quality and compression ratios. 

9.2 Development of Content-Aware and Adaptive Compression Techniques 

Content-aware approaches enable the compression algorithm to recognize important details in an image, allocating 
more bits to critical areas and fewer to less significant ones. This selective compression helps balance quality and 
compression ratios while adapting to a variety of image types. 

9.3 Addressing the Computational Demands of Advanced Compression Algorithms 

Advanced algorithms, particularly those leveraging deep learning, often require significant processing power and 
memory. As these methods gain traction, developing more computationally efficient versions will be essential to make 
them accessible for real-time and mobile applications. 

9.4 Compression for Specialized Applications 

Different fields, such as medical imaging and satellite imagery, require tailored compression solutions that maintain 
high fidelity for specific features. For example, medical images must preserve diagnostic details, while satellite images 
might focus on clarity of specific geographic features. 

9.5 Standardization and Widespread Adoption of New Compression Technologies 

While new compression methods continue to emerge, broad adoption is often hindered by the lack of standardized 
formats and compatibility with existing systems. Establishing standards and ensuring interoperability with various 
platforms will facilitate wider use of advanced compression technologies. 

10 Conclusion 

In the digital era, efficient image compression is crucial for managing the vast amount of visual data generated daily. 
Traditional compression methods, such as JPEG and PNG, remain popular due to their balance between quality and 
efficiency. However, emerging techniques that utilize machine learning are showing significant promise in achieving 
higher compression ratios while preserving image quality, which is increasingly important as the demand for data 
storage and transmission grows.This paper reviewed various compression methods, including lossless and lossy 
techniques, transform-based approaches, and AI-driven methods like autoencoders and GANs. Our findings indicate 
that while traditional methods excel in simplicity and compatibility, AI-based approaches offer adaptive compression 
capabilities that can optimize performance for specific image types and applications.Looking ahead, the development 
of content-aware and adaptive compression methods will be essential for handling diverse image datasets efficiently. 
Future research should also focus on addressing challenges related to computational complexity and standardization 
to facilitate broader adoption of advanced compression technologies. As image data continues to proliferate, 
advancements in compression methods will play a pivotal role in optimizing storage and transmission, supporting 
applications across sectors from web browsing to medical imaging. 

Compliance with ethical standards 

Disclosure of conflict of interest  

The authors declare that there is no conflict of interest.  

Reference  

[1] Cherkassky, Vladimir, Xuhao He, and Jie Shao. "Image Compression for Storage and Transmission of Digital 
Images." (2000). 



World Journal of Advanced Research and Reviews, 2021, 11(01), 265–278 
 

278 

[2] Agarwal, Ruchi, C. S. Salimath, and Khursheed Alam. "Multiple image compression in medical imaging techniques 
using wavelets for speedy transmission and optimal storage." Biomedical and Pharmacology Journal 12, no. 1 
(2019): 183-198. 

[3] Alfalou, Ayman, and C. Brosseau. "Optical image compression and encryption methods." Advances in Optics and 
Photonics 1, no. 3 (2009): 589-636. 

[4] Singh, Manjari, Sushil Kumar, Siddharth Singh, and Manish Shrivastava. "Various image compression techniques: 
lossy and lossless." International Journal of Computer Applications 142, no. 6 (2016): 23-26. 

[5] Dhawan, Sachin. "A review of image compression and comparison of its algorithms." International Journal of 
electronics & Communication technology 2, no. 1 (2011): 22-26. 

[6] Salama, Paul, and Brian King. "Efficient secure image transmission: compression integrated with encryption." 
In Security, Steganography, and Watermarking of Multimedia Contents VII, vol. 5681, pp. 47-58. SPIE, 2005. 

[7] Muthukumaran, N., and R. Ravi. "The performances analysis of fast efficient lossless satellite image compression 
and decompression for wavelet based algorithm." Wireless Personal Communications 81 (2015): 839-859. 

[8] Kou, Weidong. Digital image compression: algorithms and standards. Vol. 333. Springer Science & Business 
Media, 2013. 

[9] Carpentieri, Bruno. "Efficient compression and encryption for digital data transmission." Security and 
Communication Networks 2018, no. 1 (2018): 9591768. 

[10] Houshiar, Hamidreza, and Andreas Nüchter. "3D point cloud compression using conventional image compression 
for efficient data transmission." In 2015 XXV international conference on information, communication and 
automation technologies (ICAT), pp. 1-8. IEEE, 2015. 


