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Abstract 

This study investigates the pertinence of machine learning techniques on various datasets and how we can leverage it 
in prediction of health risks. I investigated how well two algorithms—Logistic Regression and Multi-Layered Perceptron 
(MLP)—predict health outcomes and risk. To be more precise, I evaluated the model's capacity to recognize stroke risk 
using a dataset of stroke predictions. By means of comparison analysis, this study seeks to clarify the advantages and 
disadvantages of each algorithm when used with these disparate data kinds, providing information about how well-
suited they are for different prediction tasks. Additionally, I provided a framework for data analysis that outlines crucial 
procedures for data preparation, cleaning, and exploration. This framework may be used to improve the efficacy of 
machine learning models on a variety of datasets. 

Keywords: Machine Learning Heterogeneous Data; Comparative Analysis; Prediction Modeling; Data Analysis 
Techniques; Stroke Prediction; Logistic Regression; Multi-Layered Perceptron; Data Preprocessing 

1. Introduction

1.1. Motivation: The Power and Nuance of Machine Learning Data 

In many fields, machine learning (ML) is becoming a key component of advancement. Its capacity to glean insightful 
information from large, intricate datasets has propelled advances in the social sciences, healthcare, and finance. 
Nevertheless, there is no one-size-fits-all approach to ML model efficacy. Selecting the best machine learning algorithms 
requires an awareness of the subtle differences among the various types of data. Data can be numerical or categorical, 
structured (tables) or unstructured (text, pictures), and feature connections can be either linear or non-linear. These 
considerations play a major role in selecting the best algorithm. This study explores the performance of two different 
algorithms on disparate datasets in order to delve into this important area of machine learning application. 

1.2. Research Focus: Delving into Stroke Prediction 

The utilization of machine learning techniques for stroke prediction is the main emphasis of this work. Stroke is a major 
global cause of mortality and disability that has a substantial impact on public health. In order to enable early 
intervention and preventive measures, stroke prediction models seek to identify those who are at a high risk of having 
a stroke. Usually, these models look at things like smoking history, blood pressure, cholesterol, and age. 
This study attempts to provide a more comprehensive knowledge of how machine learning algorithms function on 
various data types with differing underlying structures and complexities by examining these discrete datasets.  

1.3.  Methodology: Unveiling the Algorithms - Logistic Regression and Multi-Layered Perceptron 

This section explores the two main approaches used in this study: Multi-Layered Perceptron (MLP) and Logistic 
Regression. Both approaches are categorized under the general heading of supervised learning, in which a model learns 
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from labeled data to predict outcomes for examples that are not visible. Here, I explained each technique's fundamental 
ideas and features. 

A fundamental algorithm for classification tasks is logistic regression. It creates a mathematical model that associates a 
probability of a particular outcome (like the occurrence of a stroke) with input features (like age and blood pressure). 
In essence, the model separates observations with high and low probabilities of the desired outcome by learning a 
decision boundary. Because of this methodology, logistic regression is ideally suited for evaluating datasets such as the 
stroke prediction dataset, which aims to classify people according to their risk level. 

However, the Multi-Layered Perceptron (MLP), a kind of artificial neural network, is a more intricate design. It mimics 
the structure of the human brain by being made up of interconnected layers of artificial neurons. Activation functions 
are used by each layer to transform the received data, which eventually results in an output prediction. The power of 
MLP resides in its capacity to discover intricate, non-linear relationships in data. This makes it an effective tool for 
solving complex prediction problems, possibly surpassing logistic regression in situations where a linear model finds it 
difficult to capture the underlying relationships. 

1.4. Research Objectives: Evaluating Algorithms, Unveiling Strengths and Weaknesses 

This study compares the effectiveness of MLP and logistic regression on stroke prediction tasks in order to accomplish 
the following main goals:  

Assess the Algorithms' Applicability to Various Data Types: This entails evaluating how well each algorithm 
captures the fundamental connections found in the datasets used to predict strokes. In order to provide insights into 
the algorithms' suitability for various data types, I will ascertain which algorithm performs better on each dataset. 

Learn About Algorithmic Strengths and Weaknesses: By comparing the performance, I hope to show the situations 
in which each algorithm performs well and pinpoint areas in which one might perform better than the other. 
Researchers and practitioners will be able to choose the best algorithm for their particular prediction tasks with the 
help of this helpful guidance.  

Showcase the Best Data Analysis Techniques for Machine Learning Applications: To create strong machine 
learning models, data analysis must be done well. In order to improve model performance on a variety of datasets, this 
study will highlight crucial procedures for data preparation, cleaning, and exploration. To enhance the model's capacity 
to learn from the data, these procedures could involve handling missing values, locating outliers, and feature 
engineering—the process of developing new features from preexisting data. 

1.5. Expected Contribution: Advancing the Application of ML on Heterogeneous Data 

The goal of this investigation is to add significant knowledge to the field of machine learning, specifically the use of ML 
on diverse datasets. The results can help practitioners and researchers choose the best algorithms for their particular 
data types and prediction tasks. Additionally, by illuminating optimal methodologies for data analysis, this study can 
aid in the advancement of more resilient and dependable machine learning models in a variety of application areas. 
Advances in fields such as healthcare (better stroke prediction for preventive measures) may result from this. The 
ultimate goal of the research is to support the ethical and efficient application of ML to address challenging issues in a 
variety of domains. 

2. Exploratory Data Analysis 

2.1. Datasets attributes description 

Understanding the data that will be used for training is the first and most important step in creating any machine 
learning algorithm. This understanding is attained by a thorough examination of the features of the datasets. 
Accordingly, the subsequent subsections will explore the particular characteristics of the dataset used in this research: 
stroke prediction. 

A detailed description of each stroke prediction attribute is provided in Table 1. 
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Table 1 Stroke Prediction Attributes 

List of all attributes in the Stroke Prediction dataset  

Attribute name Type Details Possible Values 

mean blood_sugar_level numeric 

The average value of blood glucose 
throughout the duration of observation of 
the subject   

cardiovascular issues categorical 
Whether or not the subject has a medical 
history of cardiovascular 0,1 

job category categorical The field in which the person walks 

child, entrepreneuurial, 
N_work_history, 
private_sector, public_sector 

body mass indicator numeric 

Cbody mass index, which indicates if the 
person is underweigth, within normal 
limits, overweight or obese   

Sex categorical the gender of the person F, M 

tobacoo_usage categorical current or past smoker indicator 
ex-smoker, smoker, non-
smoker 

high_blood_pressure categorical 

Binary attribute indicating whether the 
person suffer from high blood pressure or 
not 0,1 

married categorical 
Binary attribute indicating whether the 
person is married or not Y,N 

living_area categorical 
The type of area where he lived most of his 
lives city, countryside 

years_old numeric The age of the person   

chaotic_sleep categorical 
Binary attribute for sleep program 
irregularity 0,1 

analysis_results numeric 

The results of medical analysis of the 
person which may include various 
measurements and indicators relevant to 
her health   

biological_age_index numeric 

An index that estimates the biological age 
of a person based on different factors such 
as lifestyle, health status, measured in an 
unknown unit   

cerebrovascular_accident categorical 
Binary attribute indicating whether the 
person had an earlier stroke or not 0,1 

 

2.2. Exploration of Attribute Types and Value Ranges 

Finding the kinds of attributes (features) that are present and the ranges of values that correspond to them is an 
essential step before applying a machine learning model to a dataset. For the purpose of choosing suitable algorithms 
and guaranteeing ideal model performance, this analysis is crucial. Three main attribute types will be discussed in the 
paragraphs that follow. 
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– Continuous Numeric Attributes: These characteristics have numerical values that, in theory, can be any value 
within a given range. Age, weight, temperature, and so forth are a few examples. 

– Discrete Nominal Attributes: Categorical data with discrete, non-ordered values is represented by these 
attributes. The days of the week (Monday, Tuesday, etc.) and disease types (cancer, diabetes, etc.) are two 
examples. 

– Ordinal Attributes: These characteristics show categorical data with values that are inherently ordered. On the 
other hand, it might not be possible to interpret the difference between successive values in terms of a 
consistent unit. Movie ratings (G, PG, PG-13, etc.) and customer satisfaction ratings (one, two, etc.) are two 
examples. The relative order that a numerical value represents in ordinal attributes may be more significant 
than the value itself. 

I can determine the datasets' Continuous Numerical Attributes and Discrete Nominal Attributes by using the analysis 
attributes.py script. Statistics that can be displayed in Tables 2 for numerical attributes and Table 3 for discrete 
attributes will be produced by the script.  

Furthermore, there are 5110 items in the Stroke Prediction dataset overall. 

Table 2 Continuous Numeric Attributes in Stroke Prediction Dataset 

 

An initial inspection of the data reveals that there are missing attributes in Stroke Prediction datasets. In the Stroke 
Prediction dataset two attributes are missing: ’body mass indicator’ and ’analysis results’. 

To better understand the distribution of the continuous numeric attributes within the datasets, boxplots have been 
generated for each attribute. These visualizations are located in the ’plots’ folder at the root of the project directory. The 
name of each boxplot starts with ’box plot ’. 

Boxplots are a standardized method for visually representing the distribution of data. They provide insights into several 
key characteristics of the data, including the median, quartiles, and outliers. 

In Figure 1, I can see a boxplot for the body mass indicator attribute in the Stroke Prediction dataset. As described above, 
the boxplot provides a visual representation of the data’s distribution, highlighting key statistical measures such as the 
median, quartiles, and potential outliers. This information is also presented in Table 3. One of the main insights that can 
be derived from the boxplot is the presence of outliers, which are data points that lie significantly outside the range of 
the rest of the data. Outliers can have a significant impact on the performance of machine learning models, and 
identifying and handling them appropriately is an essential step in the data preprocessing process 

s l  l sis s l s 

 
List of all Continuous Numeric Attributes in the Stroke Prediction dataset 

mean blood  body mass  biological age  
sugar level indicator index 

count       5110.000000         4909.000000         5110.000000         4599.000000         5110.000000 
mean         106.147677             28.893237              46.568665             323.523446            134.784256 
std            45.283560               7.854067               26.593912             101.577442             50.399352 
min           55.120000              10.300000               0.080000              104.829714            -15.109456 
25%           77.245000              23.500000              26.000000             254.646209             96.710581 
50%           91.885000              28.100000              47.000000             301.031628            136.374631 
75%          114.090000             33.100000              63.750000             362.822769            172.507322 
max          271.740000             97.600000             134.000000            756.807975            266.986321 



World Journal of Advanced Research and Reviews, 2020, 07(03), 313–327 

 

317 

 

Figure 1 Boxplot for the body mass indicator attribute in the Stroke Prediction dataset 

From the Discreet Nominal Attributes Table 3, I can see that each dataset contains only one attribute with missing 
values. In the Stroke Prediction dataset, the married attribute is missing. Also, the number of unique values for each 
attribute describes the diversity of the data.  

Table 3 Discrete Nominal Attributes in Stroke Prediction Dataset 

 

In the histograms for the discrete nominal attributes, I can see the distribution of the unique values for each attribute. 
These visualizations can provide insights into the frequency of each category within the dataset, which can be useful for 
understanding the data’s composition and identifying potential imbalances or biases. The histograms for the discrete 
nominal attributes are located in the ’plots’ folder at the root of the project directory. The name of each histogram starts 
with ’histogram ’. 

In Figure 2, we can see a histogram of the tobacco usage attribute in the Stroke Prediction dataset,. The histogram shows 
that the majority of individuals are non-smokers, with a significant portion having undefined tobacco usage status. This 
imbalance and the presence of missing data need to be addressed appropriately. 

 

List of all Discrete Nominal Attributes in the Stroke Prediction dataset 

Non-missing count 
Unique values 

 

cardiovascular issues                             5110                                  2 
job category                                     5110                                  5 

sex                                              5110                                  2 
tobacco usage                                   5110                                  4 

high blood pressure                              5110                                  2 
married                                         4599                                  2 

living area                                       5110                                  2 
chaotic sleep                                    5110                                  2 

cerebrovascular accident 5110 2  
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Figure 2 Histogram for the tobacco usage attribute in the Stroke Prediction dataset 

2.3. Investigation of Class Distribution 

In machine learning, it is common practice to split a dataset into two distinct subsets: a training set and a test set. This 
division is crucial for ensuring robust-ness and generalizability of the models developed using the data. 

– Training Set: The primary purpose of the training set is to train the machine learning model. The model learns 
from patterns and relationships within the data to develop a predictive capability. 

– Test Set: The test set, unseen by the model during training, serves to evaluate the model’s generalizability. By 
applying the trained model to the test set, we can assess its performance on new, unseen data. This helps 
prevent overfitting, where the model performs well on the training data but fails to generalize to real-world 
scenarios. 

Looking at how data is distributed is key. Imbalanced data, where some classes have far more examples than others, 
throws off classification tasks: high accuracy can hide poor performance on rare classes; models struggle to learn 
patterns from underrepresented classes; inaccurate predictions, especially for the minority class. 

By checking the distribution, we can address imbalance: 

– Balance the data: Oversample rare examples or under sample common ones.  
– Cost-sensitive learning: Penalize the model more for mistakes on rare classes.  
– Better metrics: Use precision, recall, and F1-score to get a clearer picture. 

In Figure 3, we can see the distribution of each class in the datasets. The class distributions provide insights into the 
balance of the data and can help guide the selection of appropriate strategies for handling imbalanced classes. For 
example, in the Stroke Prediction dataset, the cerebrovascular accident class is highly imbalanced, with a significantly 
higher number of negative instances compared to positive instances. This imbalance can impact the model’s ability to 
learn patterns from the minority class and may require resampling techniques or cost-sensitive learning to address. 
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Figure 3 Distribution of the cerebrovascular accident class in the Stroke Prediction dataset 

2.4. Analysis of Feature Correlations 

Feature correlation analysis is a critical step in understanding the relationships between different attributes in a dataset. 
By examining how attributes are related to each other, we can identify patterns, dependencies, and redundancies that 
can inform feature selection, model building, and interpretation. 

Correlation analysis typically involves calculating correlation coefficients be-tween pairs of attributes. The correlation 
coefficient quantifies the strength and direction of the linear relationship between two variables. A correlation 
coefficient close to 1 indicates a strong positive relationship, while a value close to -1 indicates a strong negative 
relationship. A correlation coefficient near 0 suggests no linear relationship between the variables. 

In the ’correlation analysis.py’ script, we calculate the correlation coefficients between all pairs of continuous numeric 
attributes in the datasets, generating a correlation matrix for each dataset. Moreover, we calculate the Cram´er’s V 
coefficient for all pairs of discrete nominal attributes in the datasets, generating a Cram´er’s V matrix for each dataset 
to measure the association between categorical variables. In Figures 4, we can see the correlation matrix for the Stroke 
Prediction datasets, respectively, for the continuous numeric attributes. In Figure 5, we can see the Cram´er’s V matrix 
for the discrete nominal attributes. 

The correlation matrix and Cram´er’s V matrix provide valuable insights into the relationships between attributes in the 
datasets. By examining these matrices, In Figure 4, we can see that the mean blood sugar level attribute is highly 
correlated with the analysis results attribute, while the body mass indicator at-tribute is negatively correlated with the 
analysis results attribute. 
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Figure 4 Correlation matrix for the Stroke Prediction dataset 

The Cram´er’s V matrix in Figure 5 provides insights into the association between discrete nominal attributes. In the 
Stroke Prediction dataset, the cardiovascular issues attribute is strongly associated with the chaotic sleep attribute. 

 

Figure 5 Cram´er’s V matrix for the Stroke Prediction dataset 

3. Data Preprocessing 

As highlighted in the previous section, high-quality data is the cornerstone of effective machine learning models. 
However, real-world datasets often exhibit various imperfections that can impede model performance. Our exploration 
of the datasets revealed the presence of several such issues, including: 

– Missing values for specific attributes. 
– Extreme values (outliers) within certain attributes. – Redundant attributes with high correlation. 
– Inconsistent value ranges for numeric attributes. 

These imperfections necessitate data preprocessing, a crucial step aimed at transforming the raw data into a clean and 
consistent format. This section delves into the specific data preprocessing techniques employed in this study. By ad-
dressing these issues, we aim to optimize the data for subsequent machine learning algorithms, ultimately enhancing 
their effectiveness in extracting valuable insights. 
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As a note, all the scripts for data preprocessing are located in the ’preprocessing’ folder at the root of the project 
directory. 

3.1. Handling Missing Values 

Missing data, a common issue in real-world datasets, necessitates the application of imputation procedures to address 
these missing values. Imputation techniques can be categorized as either univariate or multivariate: 

– Univariate Imputation: This approach focuses solely on the attribute with missing values. Common univariate 
techniques include replacing missing val-ues with the mean, median, or most frequent value within the attribute. These 
methods are simple to implement but may not effectively capture the underlying relationships between attributes. 

– Multivariate Imputation: This more sophisticated approach leverages the values of other attributes within a sample 
to estimate the missing value. Techniques like regression analysis are often employed to establish relation-ships 
between the missing attribute and the remaining attributes. Based on these relationships, a predicted value can be 
imputed for the missing data point. Multivariate imputation offers a more nuanced approach but requires careful 
consideration of the relationships between attributes and potential biases in the imputation process. 

In the ’impute values.py’ script, in the ’missing values’ function, we used the IterativeImputer class from the 
sklearn.impute module to apply multivariate imputation to address missing values in the datasets for continuous 
numeric attributes. The script uses the most frequent value strategy for categorical at-tributes. The imputed datasets 
are saved in the same folder as the original datasets, with the prefix ’preprocessed missing’. 

3.2. Outlier Detection and Treatment 

Outliers, data points that deviate significantly from the rest of the dataset, can adversely affect the performance of 
machine learning models. Outliers can skew statistical measures, distort relationships between attributes, and lead to 
poor generalization of the model. Detecting and treating outliers is essential for ensuring the robustness and reliability 
of the model. 

We purpose to impute the outliers using the IsolationForest algorithm from the sklearn.ensemble module. The script 
’outlier detection.py’ detects outliers in the continuous numeric attributes of the datasets and replaces them with the 
imputed values. The preprocessed datasets with imputed outliers are saved in the same folder as the original datasets, 
with the prefix ’preprocessed outliers’. 

3.3. Analysis of Attribute Correlations 

As previously discussed, attribute correlations can provide valuable insights into the relationships between different 
attributes in the dataset. By identifying highly correlated attributes, we can eliminate redundant information and re-
duce the dimensionality of the data, leading to more efficient model training and improved interpretability. 

We choose to remove highly correlated attributes found in the section of Exploratory Data Analysis. These attributes 
are: 

– analysis results: it is correlated with body mass indicator in the Stroke Pre-diction dataset. 

– chaotic sleep: it is correlated with cardiovascular issues in the Stroke Pre-diction dataset. 

The script ’remove correlated attributes.py’ removes those attributes from the train dataset and saves the preprocessed 
dataset in the same folder as the original datasets, with the prefix ’preprocessed correlated’. 

3.4. Normalization and Standardization 

The numerical attributes in the dataset can vary significantly in their value scales. For example, some attributes may 
have values in the thousands, while others have values in the single digits. This disparity in scales can significantly affect 
algorithms like Logistic Regression. 

In algorithms like Logistic Regression, which rely on a linear combination of attribute values, attributes with larger 
numerical values can disproportionately influence the model. This dominance can lead to biased results and reduce the 
model’s effectiveness. 
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To mitigate this issue, it is essential to standardize the values of the numeric attributes. Standardization adjusts the 
scales of the attributes, ensuring that each one contributes equally to the model’s predictions. This process improves 
the performance and accuracy of the model by creating a more balanced and fair representation of the data. 

4. Algorithms Designs 

Algorithm design is a critical aspect of computer science and machine learning, focusing on creating efficient and 
effective methods to solve complex problems. The process involves the careful selection of algorithms based on the 
specific characteristics of the data and the desired outcomes. This document explores the application of two prominent 
machine learning algorithms, Logistic Regression and Multi-Layered Perceptron (MLP), on diverse datasets. The goal is 
to compare their performance and suitability for different types of prediction tasks, particularly in the contexts of stroke 
prediction. 

4.1. Logistic Regression 

Logistic regression is a fundamental statistical method employed for classification tasks in machine learning. It 
establishes a mathematical model that maps a set of input features (independent variables) to a probability of a specific 
out-come (dependent variable). The core functionality lies in estimating the odds of a particular class membership (e.g., 
presence of stroke) based on the input features. The resulting model essentially learns a decision boundary, separating 
observations with high and low probabilities of belonging to the target class. This characteristic makes logistic 
regression particularly well-suited for analyzing datasets where the outcome variable is binary (e.g., stroke occurrence 
vs. no stroke occurrence). 

In the logistic regression folder at the root of the project directory, we implemented the Logistic Regression algorithm 
in two different ways: 

– Logistic Regression with Scikit-Learn: We used the Scikit-Learn library to implement Logistic Regression on 
the preprocessed datasets. 

– Logistic Regression from Scratch: We implemented Logistic Regression from scratch using the Negative Log-
Likelihood method and the Gradient Descent optimization algorithm. 

Before starting the implementation of the Logistic Regression algorithm, we need to encode the categorical attributes 
in the datasets. Categorical attributes are non-numeric attributes that represent discrete categories or groups. These 
attributes need to be encoded into a numerical format before they can be used in machine learning algorithms. 

For encoding the categorical attributes except the target attribute, I used the OneHotEncoder class from the 
sklearn.preprocessing module. This class encodes categorical attributes as one-hot vectors, creating a binary 
representation of each category. This encoding is essential for feeding categorical attributes into machine learning 
models, as most algorithms require numerical input data. For the target attribute, I used the LabelEncoder class from 
the sklearn.preprocessing module to encode the target attribute as integer values. 

In the Logistic Regression with Scikit-Learn implementation, we used the LogisticRegression class from the 
sklearn.linear model module to train the model on the preprocessed datasets, without setting any hyperparameters, 
using the default values. For the Logistic Regression from Scratch implementation, I implemented the Negative Log-
Likelihood loss function and the Gradient Descent optimization algorithm. We trained the model on the preprocessed 
datasets, setting the learning rate to 0.01 and the number of epochs to 10000. For the regularization, we used the Ridge 
Regression technique. 

The results of both implementations for each dataset are saved in the Logis-ticRegression folder at the specific dataset’s 
root. 

4.2. Multi-Layered Perceptron (MLP) 

A Multilayer Perceptron (MLP) is a class of feedforward artificial neural network that consists of at least three layers of 
nodes: an input layer, one or more hidden layers, and an output layer. Each node, except for the input nodes, is a neuron 
that uses a nonlinear activation function. MLPs are capable of modeling com-plex relationships in data, making them 
suitable for tasks such as classification, regression, and pattern recognition. The network learns by adjusting the weights 
through a process called backpropagation, which minimizes the error between the predicted outputs and the actual 
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targets. This adaptability and learning capability make MLPs powerful tools in machine learning and artificial 
intelligence applications. 

In the mlp folder at the root of the project directory, we implemented the Multi-Layered Perceptron algorithm in two 
different ways: 

– MLP with Scikit-Learn: We used the Scikit-Learn library to implement the MLP algorithm on the preprocessed 
datasets. 

– MLP from Scratch: We implemented the MLP algorithm from scratch us-ing the Negative Log-Likelihood method, the 
Gradient Descent optimization algorithm, and the Sigmoid activation function. 

Before starting the implementation of the MLP algorithm, we need to standardize the numeric attributes in the datasets 
as in the Logistic Regression algorithm. 

For the MLP with Scikit-Learn implementation, we used the MLPClassifier class from the sklearn.neural network module 
to train the model on the prepro-cessed datasets, without setting any hyperparameters, using the default values. For 
the MLP from Scratch implementation, we implemented the Negative Log-Likelihood loss function, the Gradient Descent 
optimization algorithm, and the Sigmoid activation function. We trained the model on the preprocessed datasets, setting 
the learning rate to 0.01, the number of epochs to 10000, and the number of hidden units to 100. For the regularization, 
we used the Ridge Regression technique. 

The results of both implementations for each dataset are saved in the MLP folder at the specific dataset’s root. 

5. Evaluation 

The evaluation of machine learning models is a critical step in assessing their performance and effectiveness. By 
comparing the model’s predictions to the actual ground truth, we can determine the model’s accuracy, precision, recall, 
and other metrics that quantify its performance. This section delves into the evaluation of the Logistic Regression and 
Multi-Layered Perceptron (MLP) models on the Stroke Prediction datasets. 

5.1. Hyperparameter Tuning 

Hyperparameters are parameters that are set before the learning process begins. They control the learning process and 
the behavior of the model. Hyperparame-ter tuning is the process of selecting the optimal hyperparameters for a 
machine learning model to achieve the best performance. This process involves search-ing through different 
hyperparameter configurations and evaluating the model’s performance on a validation set to find the optimal settings. 

In the context of the Logistic Regression (manual implementation), the hy-perparameters that were used are: 

– learning rate: The rate at which the model updates the weights - 0.01 – num iterations The number of iterations the 
model trains for - 10000 – regularization The regularization parameter to prevent overfitting - 0.1 

In the context of the Logistic Regression (Scikit-Learn implementation), the majority of hyperparameters that were used 
are the default values provided by the Scikit-Learn library. The only hyperparameters that were set are: 

– solver: The optimization algorithm used in the model - ’sag’ for AVC 
– max iter: The maximum number of iterations for the optimization algorithm - 500 for AVC 
– C: The regularization parameter to prevent overfitting - 2.56050926 for AVC 

In the context of the Multi-Layered Perceptron (manual implementation), the hyperparameters that were used are: 

– hidden sizes: The sizes of the hidden layers are defined as a list - [256, 128, 64] 
– num epochs: The number of epochs the model trains for - 100 
– learning rate: The rate at which the model updates the weights - 0.01 
– Loss Function : The loss function used to optimize the model - Negative Log-Likelihood 
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In the context of the Multi-Layered Perceptron (Scikit-Learn implementation), the hyperparameters that were used are 
the default values provided by the Scikit-Learn library. 

5.2. Confusion Matrix 

A confusion matrix is a table that summarizes the performance of a classification model on a set of test data for which 
the true values are known. It provides insights into the model’s predictions, including true positive, true negative, false 
positive, and false negative instances. These metrics are essential for evaluating the model’s performance and 
identifying potential areas for improvement. 

In the context of the Logistic Regression and Multi-Layered Perceptron mod-els, we generated confusion matrices to 
analyze the model’s predictions on the test data. The confusion matrices provide a detailed breakdown of the model’s 
performance, highlighting the number of correct and incorrect predictions for each class. 

In Figures 6 and 7 we can see the confusion matrices for the Logistic Re-gression model on the Stroke Prediction dataset, 
implemented manually and with Scikit-Learn, respectively. In Figures 8 and 9 we can see the confusion matrices for the 
Multi-Layered Perceptron model on the Stroke Prediction dataset, implemented manually and with Scikit-Learn, 
respectively. 

Because of the high-class imbalance in the Stroke Prediction dataset, the models can’t predict the positive class 
effectively (the positive class is less than 5% of the dataset). On the other hand, the models can predict the negative 
class effectively. 

 

Figure 6 Confusion Matrix for the Logistic Regression model on the Stroke Prediction dataset  (Manual 
Implementation) 
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Figure 7 Confusion Matrix for the Logistic Regression model on the Stroke Prediction dataset (Scikit-Learn 
Implementation) 

 

Figure 8 Confusion Matrix for the Multi-Layered Perceptron model on the Stroke Pre-diction dataset (Manual 
Implementation) 
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Figure 9 Confusion Matrix for the Multi-Layered Perceptron model on the Stroke Pre-diction dataset  (Scikit-Learn 
Implementation) 

5.3. Evaluation Metrics 

To evaluate the performance of the machine learning models, we employ a range of evaluation metrics that provide 
insights into different aspects of the model’s performance. These metrics include: 

– Accuracy: The proportion of correctly classified instances out of the total instances. It provides a general 
measure of the model’s correctness. 

– Precision: The proportion of true positive predictions out of all positive predictions. It measures the model’s 
ability to avoid false positives. 

– Recall: The proportion of true positive predictions out of all actual positive instances. It measures the model’s 
ability to capture all positive instances. 

– F1-Score: The harmonic means of precision and recall. It provides a balanced measure of the model’s 
performance. 

These evaluation metrics help us understand the strengths and weaknesses of the machine learning models and guide 
us in improving their performance. By analyzing these metrics, we can identify areas for optimization and fine-tuning 
to enhance the model’s predictive capabilities. 

In the following table, Table 4, we present the evaluation metrics for the Logistic Regression and Multi-Layered 
Perceptron models on Stroke Prediction. 

6. Conclusions 

We investigated the use of machine learning algorithms for stroke prediction in this document. We performed a 
thorough examination of the datasets, encompassing preprocessing, feature correlation analysis, and data exploration. 
To forecast the results of the prediction, we used two well-known machine learning algorithms: Multi-Layered 
Perceptron (MLP) and Logistic Regression. We assessed the models' performance using a number of evaluation metrics, 
such as F1-Score, recall, accuracy, and precision. 

The models performed differently on the prediction tasks, according to the evaluation metrics results. On the Stroke 
Prediction dataset, the Multi-Layered Perceptron and Logistic Regression models produced low F1-Score and recall 
values for the positive class. 

Overall, it is evident that across both datasets, the Multi-Layered Perceptron (Scikit-Learn implementation) 
outperforms Logistic Regression. Specifically: 
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– Stroke Prediction: The MLP model outperforms Logistic Regression in terms of precision and recall, even though class 
imbalance presents a challenge. Logistic Regression is unable to predict the positive class at all, yielding an F1-score of 
0. 

Thus, based on these metrics, the Multi-Layered Perceptron (Scikit-Learn implementation) is the superior algorithm for 
the Stroke Prediction tasks based on these metrics. 
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