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Abstract 

Chagas disease, a parasitic infection caused by the intracellular protozoan Trypanosoma cruzi, affects millions of people 
worldwide, and South American countries are among the most affected. This disease has a clinical course that varies 
from the acute asymptomatic phase to the chronic phase with the presence of important alterations that compromise 
the cardiac and digestive systems. Studies have shown that the life cycle of the parasite impacts on the modulation of 
apoptosis, revealing a complex pathogen-host interaction that can substantially influence the development of cardiac 
alterations. This intriguing strategy used by Trypanosoma cruzi has been increasingly explored and thus it is expected 
to be able to better clarify the events that precede the development of chagasic cardiomyopathy.  
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1. Introduction

Chagas disease is an infection caused by the intracellular parasite Trypanosoma cruzi (Protozoa, Sarcomastigophora, 
Kinetoplastida, Tripanosomatidae) that affects about 13 million people in the world and is highly endemic in the 
southern cone countries. Due to globalization, this disease has spread across European countries like Austria, Belgium, 
France, Germany, Italy, Netherlands, Portugal, Spain, Sweden, Switzerland, and the United Kingdom [1]. Data from the 
World Health Organization show 28,000 new cases per year and 8,000 newborns infected during pregnancy. Currently, 
Chagas disease affects about 8 million people, 65 million of whom are in areas at risk of acquiring the disease [2]. 

There are several means of transmission of the disease, the vector being the main one, although the increase in oral 
transmission has brought the attention of researchers in recent years [3; 4]. In addition to these, infection through organ 
transplantation, blood and congenital transfusion are also responsible for a significant portion of cases of Chagas' 
disease [5; 6]. 

Vector transmission occurs with the participation of triatomic insects (Triatominae, Hemiptera, Reduviidae); that carry 
the parasites in their rectal ampulla [7]. At the site of the bite, the vector releases infectious forms of the parasite that 
are present in its feces and urine, which penetrate the injured skin, quickly reaching the blood and lymphatic system 
[8]. At these sites, the metacyclic trypomastigotes (infecting forms) interact immediately with cells of the phagocytic 
mononuclear system, initiating a complex process of cell invasion [4]. 

Once inside the cells, there is a rapid and massive differentiation of the metacyclic trypomastigotes forms into replicant 
forms (amastigotes). After some cycles of binary division of the amastigote forms, the transformation occurs again into 
trypomastigotes that will escape from the cell having access to several other organs through hematological 
dissemination [4; 9]  
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Chagas' disease has two clinically distinct phases, the acute phase and the chronic phase. In the acute phase, the majority 
of the patients, around 90%, will present asymptomatic or non-specific symptoms that can be confused with other 
pathologies. Thus, the presence of fever, edema, hepatosplenomegaly and lymphadenopathy alone are not suggestive of 
Chagas' disease. When there is a condition of heart failure and the patient is a resident of a risk area, it becomes easier 
for the doctor to suspect Chagas disease [10; 11].  

Once the acute phase is over, the patient will enter a long period classified as a chronic asymptomatic phase. Such period 
is considered the indeterminate form of the disease, being benign and unapparent. Many individuals who have gone 
through the acute asymptomatic phase, enter the indeterminate chronic phase without even knowing they are infected 
[10]. Regarding laboratory findings, the indeterminate form is marked by the presence of positive serology and positive 
parasitological tests, with no specific clinical picture of Chagas' disease. On the other hand, cardiac evaluations, such as 
echocardiography, Holter and ergometric test, may present discrete alterations that may be originated from the acute 
phase or signs of progression of the chronic phase [12]. However, it is important to note that a good portion of this 
population will spend the rest of their lives without developing any clinical complications [13]  

However, about 30% of patients will reach the chronic symptomatic phase, with severe cardiac complications. This 
phase is characterized by a wide spectrum of manifestations, ranging from subclinical abnormalities to the most severe 
forms with the presence of refractory heart failure, myocarditis, fibrosis, myocardial hypertrophy, thromboembolism, 
complex arrhythmias and sudden death [14]). These alterations describe the condition of chronic chagasic 
cardiomyopathy (CCC) which is the main complication found in the chronic symptomatic phase of Chagas' disease 
[15,16]. 

Thus, according to these observations, CCC can be considered a progressive, fibrotic disease in which myocardial 
inflammation plays a fundamental role [14; 16; 17; 18]. 

2. Cellular death: overview  

As long known, in a pathological context, cell death is the result of a persistent injury to the cell, with varying degrees of 
severity [19]. The non-observance of the removal of the stimulus that gave rise to the lesion is a key factor in 
understanding the irreversible lesion that can culminate in the death of the cell as previously mentioned. 

From then on, death by necrosis will occur, where the injury is usually of high magnitude with rupture of the cellular 
plasma membrane and presence of inflammatory response, an event that affects several cells at the same time [20,21] 
or results in programmed cell death by apoptosis in which, the slow and progressive stimulus allows the cell to trigger 
controlled mechanisms of self-destruction individually [22].  

Apoptosis is crucial for maintaining tissue homeostasis and for modulating the immune response in metazoan [23]. It 
was discovered in 1972 when Kerr, Willey and Currie described a death pattern that was distinct from necrosis, both 
biochemical and morphologically. From a physiological point of view, apoptosis was demonstrated as an event contrary 
to mitosis in order to regulate the cell population [24]. 

Several pathological states can trigger apoptosis, such as DNA lesions by cytotoxic drugs and radiation, when the repair 
mechanisms are insufficient, in the infectious processes caused by various pathogens, including protozoa and tumor 
development [25; 23].  

During apoptosis, characteristic morphological changes in cells are observed, as well as biochemical changes crucial for 
the establishment of energy-dependent cell disassembly [21]. In the early stages of death, cytoplasm shrinkage is 
observed, with condensation of the nucleus and fragmentation of the chromatin. In addition, organelles such as 
mitochondria, endoplasmic reticulum and Golgi complex may also undergo structural changes, with release of apoptosis 
mediators [26;27]. 

Unlike necrosis, in apoptosis there is no extravasation of cell content, because the integrity of the membrane is 
maintained. In addition, the formation of apoptotic bodies allows macrophages to phagocyte rapidly, thus avoiding the 
classic inflammatory response found in necrosis [24; 28] 

2.1. Two pathways - same endings 

Apoptosis is activated by two means, extrinsic and intrinsic, using extremely complex mechanisms. In given 
circumstances these pathways may not only converge, but also their molecules may interfere with each other's pathway 
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[29] (Figure 1). The extrinsic pathway begins with the activation of the so-called death binders, such as FasL and TNF-
α to their respective receptors located on the surface of target cells, which triggers the activation of caspase 8 and 
subsequently the activation of caspase 3 effector [30] Death receptors are members of the tumor necrosis factor (TNFR) 
receptor family that contain a protein-protein domain, called the "death domain", essential for the transfer of apoptotic 
signals [30; 31; 32];  

The intrinsic pathway is related to most apoptosis events and occurs in the absence of growth factors, in the presence 
of DNA damage and accumulation of free radicals, via p53 activation [33; 21]. Once activated, the intrinsic pathway is 
characterized by increased permeability of mitochondrial membranes that release apoptogenic proteins, such as 
cytochrome c, which will interact with other cytoplasmic apoptotic proteins. From then on, the activation of effector 
caspases such as caspases 3, 6 and 7 has begun [34].  

Regardless of the route initially activated, the end is always the same and is determined by the activation of the effector 
caspases that will initiate the disassembly of the cell. 

 

Figure 1 Summary diagram of the intrinsic and extrinsic pathways of apoptosis. Through specific death stimuli 
triggered by a significant increase in p53 expression a sequence of events begins. This dramatic increase is associated 
with the activation of pro-apoptotic proteins like Bax, Bim and PUMA, for example. Bax / Bak found in the target cell 
cytoplasm translocate to the mitochondrial membrane where they promote a change in permeability and consequent 
opening of channels with release of cytochrome c. In the cytoplasm, cytochrome c hydrolyzes scaffold proteins with the 
formation of the apoptosome that recruits the initiating caspase 9. The extrinsic pathway, in turn, is characterized by 
the active participation of death receptors from the TNF family in which, finally, caspases 3 and 7 are activated, which 
complete the cell destruction process, as shown in the figure. 

2.1.1. Caspases - key proteases in the cell demolition process 

Caspases are cysteine proteases that play a crucial role in the process of cell death, ensuring cell fragmentation into 
small units called apoptotic bodies, which are quickly eliminated by phagocytic cells avoiding and/or minimizing the 
local inflammatory response [35; 36; 37; 38]. 

These proteins are extremely specialized, being synthesized as inactive zymogen, containing one pro-domain and two 
sub-units, one major (p20) and one minor (p10) (Figure 2). In general, the proteolytic cleavage separates the two 
subunits and removes the pro-domain [39]. After that, a heterotetrametric structure is formed, active and ready to start 
the cellular demolition cascade. 
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The cysteine proteases can be classified according to their functions and thus are considered as pro-apoptotic and pro-
inflammatory. Caspases 2, 3, 6, 7, 8, 9 and 10 are known for their intimate and complex relationship with the signaling 
of cell death, while caspases 1, 4, 5, 11, 12, induce the expression of cytokines in inflammatory processes [40; 41]. 

The process of cell death induction is complex and requires the participation of family member death receptors of tumor 
necrosis factor, TNFR1 (DR1, CD120a, p55 and p60), Fas (DR2, APO-1 and CD95), DR3 (APO-3, LARD, TRAMP and WSL1) 
among others [42]. 

 

Figure 2 Scheme of caspase organization and their death domains. As shown, initiator caspases possess longer death 
pro-domains, called caspase recruitment domain (CARD) (caspases 1, 2, 4, 5 and 9) or death effector domain (DED), 
here represented by caspases 8 and 10. They are capable of auto activating themselves when in complex with proper 
factors thus starting apoptotic response. Effector caspases have short prodomains and that means they are not capable 
of self-activation (caspases 3, 6, 7 and 14), in general, activated by initiator caspases. Within the figure, regions p20 and 
p10 represent larger and smaller subunits, respectively. 

3. Regulation of Apoptosis  

The regulation of apoptosis is an extremely complex event involving the participation of pro- or anti-apoptotic 
molecules, members of the Bcl-2 family. In addition to these, proteins such as IAP (endogenous inhibitor of apoptosis) 
and SMAC/DIABLO (inhibitor of IAP) also act on the balance of the expression of molecules will allow or inhibit cell 
death [43,44]. 

Some anti-apoptotic limbs such as Bcl-2 and Bcl-xL act preserving the integrity of the mitochondrial membrane 
potential, which prevents cytochrome c from leaving the cytosol. In contrast, Bax, Bak and Bim translocate from cytosol 
to mitochondria, promoting the opening of pores in the membrane with consequent release of cytochrome c [45; 46; 
47]. In cytosol, cytochrome c binds and activates a framework protein called APAF-1 (factor 1 apoptotic protease 
activator), with energy expenditure. (Schimmer, 2004) The activation of APAF-1 exposes its CARD domain and a seven-
arm structure is then formed, similar to a weathervane, called apoptosome [21]. In the apoptosome, the activated 
caspase 9, cleaves to caspase 3, initiating the process of cell death [49,23]. This cascade can be amplified in at least two 
ways: either by activating other effector caspases or, when active caspases cleave Bid which binds much more efficiently 
to the mitochondria, thus releasing more apoptogenic products [50;51]. 

4. Modulation of apoptotic pathways by Trypanosoma cruzi in the host  

In multicellular organisms, the maintenance of homeostasis is achieved by the balance between proliferation and cell 
death. [52]. In this sense, apoptosis can be an interesting mechanism of elimination of damaged cells, also acting in 
infectious diseases [53,54]. Caspases have an important role in pathological processes, since their absence can lead to 
the development of cancer, autoimmune pathologies, degenerative disorders and also immunodeficiency [40]. 

During parasitic infections, programmed cell death may be triggered by pathogen antigens or as a result of an intense 
inflammatory process [55,56]. 

It is known that modulation of apoptotic pathways is a common strategy among intracellular pathogens such as 
Cryptosporidium parvum, Leishmania spp and Trypanosoma cruzi to ensure their survival in the host [52].  

T. cruzi, invades and resides in different types of cells, avoiding their direct destruction by the action of mechanisms of 
immune response evasion and also by manipulation of apoptosis pathways in the host cell. The mechanisms involved 
in this complex task still remain obscure, and therefore more studies are needed to illustrate the participation of specific 
molecules. 



World Journal of Advanced Research and Reviews, 2020, 12(02), 146–154 

150 
 

Vasconcelos et al. (2012) [57] demonstrated that experimental infection with the T. cruzi Y strain triggers an immune 
response that is deficient and delayed, occurring about 20 days after the peak of parasitemia. Thus, it was observed that 
during infection, these animals had little proliferative CD8+ T lymphocytes with a large proapoptotic phenotype, 
evidenced by increased CD95 and annexin V on their surface. Such response profile was extremely harmful, leading to 
the death of almost 100% of the animals.   

In contrast, other studies point to the participation of parasite molecules that act by preventing apoptosis in mice 
cardiomyocytes, favoring the survival of the protozoan in parasitic cells [58;59]. 

It is possible that this modulation of cell death in host cardiomyocytes occurs as a result of a molecule present in the 
parasite, called cruzipain. Also known as GP57/51 antigen, cruzipain is the most abundant protease of T. cruzi [59], 
besides its protease activity, it is also considered an important virulence factor that plays a central role in differentiation, 
nutrition and parasite invasion in host cells [60,61]. This molecule presents similar activity to of caspases in mammals 
and has been related to the survival of infected cardiomyocytes, thus avoiding cell apoptosis by increasing Bcl-2 
expression [62].  

Cruzipain is expressed in all stages of development of T. cruzi in organelles similar to lysosomes. High concentration of 
Cz is found in organelles of epimastigotes. In amastigotes most of Cz is in the plasma membrane, while in 
trypomastigotes it is in the middle [63;64]. Despite some advances in the area, it is still not known what the real 
participation of this molecule in the progression of chagasic cardiomyopathy. 

5. Implication of apoptosis in the development of cardiac complication in Chagas disease 

According to Lopes et al. (1995) [65], the induction of apoptosis would be related to one of the possible mechanisms 
involved in the suppression of the immune response by T. cruzi. Thus, according to the study, the death of splenic cells 
of phenotype T CD4+ and T CD8+ could contribute to the evolution of parasitic infection.  

Other evidence also supports that T. cruzi infection potentiates the induction of cell death by Fas route activation, 
causing apoptosis of CD4+ T lymphocytes in infected animals [66].  The same group also observed that the Fas/FasL 
expression was increased in previously infected mice CD4+ T cells and that treatment with in vitro anti-FasL was able 
to decrease apoptosis, consequently increasing the proliferative response of this group of cells.  

In addition to CD4+ T lymphocytes, CD8+ T lymphocytes are also of paramount importance in promoting an effective 
parasite elimination response, which occurs primarily through the secretion of cytokines such as IL-2, IFN-γ and IL-10, 
among others [67]. The cytokine IFN- γ has been described as one of the main activators of the effector functions of 
macrophages, but also as a promoter of differentiation and activation of CD8+ T lymphocytes [68]. Still according to 
Brener & Gazzinelli (1997) [69] CD8+ T lymphocytes have an important role in controlling parasite replication.  

A study conducted on specimens of patients with heart failure showed that they had a significantly lower proliferative 
response after in vitro stimulation with T. cruzi antigens, when compared to asymptomatic patients. This response 
pattern was associated with activation of apoptosis in cardiomyocytes. In addition, the presence of apoptosis in 
peripheral blood mononuclear cells (PBMCs), and the low proliferative response were associated with Fas/Fas-L 
expression and high production of TNF-α, widely known to induce programmed cell death. Thus, the authors of the 
study suggest that apoptosis of PBMCs, probably triggered by the expression of Fas/Fas-L and production of TNF-α, was 
implicated as an immunoregulatory mechanism during the chronic phase of Chagas' disease [70].  

Tostes et al. (2005) [71] evaluated the relationship between the presence of apoptotic heart cells in patients during the 
chronic phase of Chagas' disease. The data found by the group showed that in chronic heart patients there was a 
significant increase in the extent of fibrosis, in the number of inflammatory cells and apoptotic cells in the heart tissue 
when compared to left ventricle specimens obtained from patients without heart failure. Thus, the authors suggest that 
the loss of myocardial cells by apoptosis and fibrosis contributes to the development of heart failure in the chronic phase 
of Chagas' disease [71].  

Also, according to Savill & Fadok (2000) and Tostes et al., (2005) [28;71], the intensity, persistence and nature of pro-
inflammatory mediators, observed in the heart wall, may contribute in some way to the induction of programmed 
myocardial cell death. In contrast, phagocytosis of apoptotic bodies, a classic event of this type of cellular death, may 
induce the secretion of TGF-β, which allows the parasite to escape [28;71]. 
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Corroborating data published by other research groups, our group found that mice infected with the T. cruzi Y strain 
had a totally impaired immune response, which was reflected in the expression of poorly proliferated CD8+ T 
lymphocytes with a pro-apoptotic phenotype evidenced by the increased expression of CD95 and annexin V on their 
surface. Thus, the immune response of infected animals was not only delayed (about 20 days after the peak of 
parasitemia), but also not very effective, which led to 100% of the animals to death [57]. 

6. Conclusion 

The reasons why some patients infected with T. cruzi will never develop any clinical symptoms of the disease while 
others will suffer harsh cardiac complications are still unknown. The apoptosis seems to be an essential factor in this 
scenario therefore it is of paramount importance that we continue investigating and debating this subject deeply and 
broadly.  
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