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Abstract 

The implementation of REDD+ and AFR100 mechanisms require the availability of reliable allometric models, which 
are mathematical functions for estimating forest biomass from independent variables such as diameter at breast height 
(dbh), crown diameter, wood density and tree height. Although many equations have been developed to estimate tree 
biomass in undegraded forests, very few models have been developed for secondary forest species. The aim of this study 
was to establish single-species allometric models for estimating biomass of pioneer species in semi-deciduous forests 
in the central region of Cameroon and to evaluate their accuracy. Data of above-ground biomass were obtained from 
destructive sampling of 103 pioneer trees belonging to three species: Distemonanthus benthamianus, Musanga 
cecropioides and Trema orientalis. Model comparison were based on Akaike Information Criterion (AIC), average 
deviation and the coefficient R2adj. The different tests with combinations of dendrometric variables shows that 
whatever the species considered, the diameter at breast height appears as a good single predictor of biomass (Adjuted 
R²adj ˃ 0.97 in all three species). The use of the crown diameter in the model in Musanga cecropioides has considerably 
improved the quality of the fit. However, the consideration of these three variables in the model gave even better results 
(Adj.R² = 0.978-0.988). The comparison of these present models with the equations previously developed shows that 
the models in this article provide a better estimate of biomass. However, several important data from semi-deciduous 
forest remain essential for the adjustment of multi-specie models.  

Keywords:  Allometric equations; Pioneer species; Biomass; REDD+; AFR100; Secondary forest. 

1. Introduction

Forest destruction and degradation represents a rate ranging from 10 to 12 % of global anthropogenic CO2 emissions 
(Le Quéré et al, 2015). In Cameroon, these forests cover nearly 190,000 km2 (FAO, 2011) and their loss is a major threat 
to the planet (OFAC, 2012), they play a major role in the absorption and accumulation of greenhouse gases on a world 
scale of approximately 2 billion tons of carbon dioxide equivalent per year (FAO, 2018). The result of these degradations 
are a strong expansion of secondary forests where pioneer species are very abundant.  With the increasing area of these 
degraded forests, the extension of the geographic scope of the REDD+ mechanism (reducing emissions from 
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deforestation and forest degradation) to secondary forests remains essential to mitigating the effects of climate change 
(storms and hurricanes, floods, drought, tropical cyclones, desertification, earthquakes). In parallel to this REDD+ 
mechanism, since 2015 during the 21st yearly session of the Conference of the Parties (COP), AFR100 is committed to 
accelerate the restoration of 100 million hectares of degraded and deforested landscapes in Africa by 2030 to improve 
food security, increase resilience and mitigate climate change and poverty. However, the implementation of these 
mechanisms depends crucially on reliable protocols for monitoring, reporting and verification (MRV) of carbon storage 
in the field.  

Among the four components of PREREDD+ (Capacity Building Project in REDD+), the second attempt to build technical 
capacity to measure and monitor carbon stocks in the forests of the Congo Basin. To respond to the objective of sub-
component 2b, which aims at establishing allometric equations for the main forest types, only the allometric equations 
for estimating the above-ground biomass of pioneer species have been developed. 

 The objectives of this study were (1) to develop single-species allometric models for Distemonanthus benthamianus, 
Musanga cecropioides and Trema orientalis species in order to effectively contribute to the implementation of the REDD 
+, (2) to evaluate the accuracy of these models and (3) to select the best ones.  

2. Material and methods 

2.1. Study sites 

This study was carried out in Mbankomo district located in the Mefou Akono Division of the Center Region of Cameroon. 
This district is located about 25 km from the political capital of Cameroon (Yaounde). Phytogeographically, this area 
belongs to the domain of semi-deciduous forests with savannas included (Letouzey et al., 1985). However, with the 
intensity of anthropogenic activities in this area, producing a global appearance of semi-deciduous secondary forests, 
this study area is located between 3°46′59 ″ North latitude and 11°22′59″ East longitude. The relief in this area is 
relatively low and varies from 400 to 800 m above sea level. Mbamkomo is topographically located on the upper basins 
of the Nyong and Sanaga rivers. From the pedological point of view soils are essentially ferralitic. The prevailing climate 
is typically sub-equatorial with two unequally distinct seasons of distribution during the year: a rainy season (April-
October) and a dry season (November-March). However, it should be noted that these seasons are interspersed with 
seasons that are not clearly distinct and comparable to small dry seasons and small rainy seasons. The average annual 
temperature is 25 ° C; an average of one hundred and fifty-three days (PNDP, 2011). 

2.2. Data Collection 

In this study, data were collected exclusively on three species Distemananthus benthamianus, Musanga cecropioides and 
Trema orientalis. Data collection for the establishment of allometric equations of these pioneer species was carried out 
on a total of 103 trees (Table 1): 35 trees of Distemananthus benthamianus (diameter ranging from 5 to 82 cm), 38 trees 
of Musanga cecropioides (diameter ranging from 5.8 to 97.5 cm) and 30 trees of Trema orientalis (diameter ranging from 
6-35 cm). Biomass data collection was obtained by destructive method, so each selected tree was fell, cut and weighed 
separately by compartments: stump, trunk, branches and leaves. The weighing of the compartments required a scale 
with a capacity of 300 kg. Disc-shaped samples were collected at different levels of the strain, trunk and branches. 
Samples of the leaves were also collected. These samples were weighed using a precision electronic scale and then sent 
to the Botany and Systematic Laboratory of the University of Yaounde I where they were oven-dried at 105° C for wood 
samples and 70°C for leaf samples until the constant weight was obtained (Ngoukwa, 2016). The resulting dry mass was 
used to estimate the total dry mass of each compartment of the tree. The total dry mass of each tree corresponds to the 
sum of the dry mass of the stump, trunk, branches and leaves. 

Dry biomass of the sample = 
fresh mass x dry mass of sample weight

fresh mass of sample
  (Brown and Pearson, 2005).  

Total biomass = trunk biomass + stump biomass + leaves biomass + branch biomass 

 

 

 



World Journal of Advanced Research and Reviews, 2020, 07(02), 336–348 
 

338 
 

Table 1 Sample of trees whose biomass was destructively measured at Mbankomo, near Yaounde, Cameroon. n is the 
number of sampled trees, wood specific gravity calculated in this study and range of diameter at breast height (dbh 
range). 

Species Family N Wood density (g.cm3) dbh range (cm) 

Distemonanthus benthamianus Fabaceae 35 0.72 ± 0.007 5 – 82 cm 

Musanga cecropioides Urticaceae 38 0.22 ± 0.017 5,8 – 97.5 cm 

Trema orientalis Canabaceae 30 0.34 ± 0.022 6 – 35 cm 

  

In addition to the biomass data collected on each tree sampled, dendrometric parameters were also measured (dbh, 
total height and crown diameter); the dbh was measured at 1m 30 cm above the ground. For species such as Musanga 
cecropioides, due to the presence of stilt roots beyond 1.30 m, their diameter was measured at 30 cm above these stilt 
roots. The height was measured directly on the felled tree using a penta dekameter.  Crown diameter of the trees was 
obtained by the calculation of the average of four diameters measured along the north-south, east-west, north-
east/south-west and north-west/south-east orientations. 

2.3. Wood density 

The calculation of the wood density requires knowledge of the dry weight of the sample and its volume (Zane et al., 
2009). In the field, the fresh weight was obtained using an electronic suspension balance (before being dried in the oven 
until it reaches constant weight) and the volume of the fresh weight of the sample was obtained according to the 
Archimedes principle. According to this principle, a immersed solid is subjected to a force equal to the weight of the 
water, directed upwards. In a graduated cylinder containing water, we immersed the sample of fresh wood; the weight 
of the displaced water was read on the precision balance; the dry mass being known, its ratio to volume made it possible 
to formulate and calculate the density of the wood according to the formula: 

WDi = 
𝑀𝑖

𝑉𝑖
 (Fearnside et al., 1997) 

Where Mi is the dry mass (g), Vi is the volume of the sample in the fresh state in cm3 and WDi is the wood density (g.cm-

3) of the wood sample i. For each tree, the density at the base, middle of the trunk and top parts were calculated. The 
average density of the tree corresponds to the average of the wood densities of the three levels. 

2.4. Data analysis 

For the adjustment of the models, the independent variables were the diameter of the tree, the total height and the 
crown diameter. The response variable was total dry mass. Graphical explorations of the pairs of variables allowed us 
to have an idea of the mathematical expression of the model used for the adjustment. Thus, among the three functions: 
arsinus, square root and logarithm, the logarithmic function was used in this study for linearization, thus avoiding 
heteroscedasticity problems (Xiao et al., 2015). In addition, it is the most recommended function in the establishment 
of allometric equations for the estimation of tree biomass (Picard et al., 2012; N. Fonton et al., 2017). 

The exercise consisted first of testing models that only take the diameter of the tree as an independent variable. Then, 
models that take 2 independent variables (dbh - height and dbh - crown diameter) and, thirdly; models that take these 
three variables (diameter, height and crown diameter). Combinations of variables such as D²×H, D²×C, D²×H×C were 
also tested in this study. Since logarithmic transformations introduce biases into the models, these biases have been 
corrected for each model using the correcting factor (CF), which is expressed by the following relationship: 

CF = 
𝑅𝑆𝐸2

2
 (Djomo et al., 2016); RSE being the residual standard error.  

Several additional tests that are indicators of the quality of fit of the equations tested were also included in this study. 
Those considered in this study given that they are most commonly used in the context of allometric equations are: 
Akaike Information Criterion (AIC), RSE, adjusted R2 (Akaike et al, 1974; Alvarez et al., 2012; Chave et al., 2005; Djomo 
et al., 2017). Parameters such as mean error and RRMSE (Relative Root Means Square Error) were also calculated for 
each model. These errors are given by the following formulas respectively: 
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Average error or Deviation (%) = 100 x 
1

𝑛
∑ (

𝑀𝑝𝑖−𝑀𝑖

𝑀𝑖
)𝑛

𝑖=1 , 

 RRMSE = √
1

𝑛
 (

𝑀𝑝𝑖−𝑀𝑖

𝑀𝑖
)2 

Mpi represents the dry weight of the tree predicted by the regression equation, Mi the observed weight and n the total 
number of trees. 

AIC = 2k - 2 ln L 

k - Number of parameters in the regression model,  

L- Probability of the adjusted regression model (Nelson et al., 1999; Basuki et al. 2009) 

The functions commonly used in the literature are as follows the Power function (Y = aXb), the Exponential function (Y 
= a exp(bX)) which is a rewrite of the power model and the Polynomial function (Y = a + bX + cX2 + dX3). 

Several models were tested in this study to select the best ones based on the comparison criteria, these models were 
the most common for allometric equation (Chave et al.,  2014; Djomo et al., 2010, 2016; Ploton et al., 2015). 

(1) lnB = a + b x lnD + Ɛ , 

(2) lnB = a + b x ln(D x C) + Ɛ, 

(3) lnB = a + b x ln(D x H) + Ɛ, 

(4) lnB a + b x ln(D2 x H) + Ɛ, 

(5) lnB = a + b ×ln(D²×C) +  Ɛ, 

(6) LnB = a + b ×ln(D) + c×ln(C) +  Ɛ, 

(7) lnB = a + b x lnD + c x lnD2 +  Ɛ, 

(8)  lnB = a +b × ln(D) + c×ln(H) + Ɛ , 

(9) lnB = a + b× ln(D²×C) + c× ln(H) + Ɛ , 

(10) lnB= lnBtot = a + b ×ln(D²×C) +  Ɛ, 

(11) lnB = a + b× ln(D) + c× ln(C) + d× ln(H) + Ɛ , 

(12) lnB = a+b×ln(D) + c × (ln(D))2+ d× (ln(D))3+ Ɛ. 

3. Results  

3.1. Adjustment of allometric equations 

The allometric equations were developed using data composed of 103 trees with diameter between 5 and 97.5cm. 
Graphical exploration is essential for the choice of the potential model for this regression, it shows the nature of the 
relationship between these 2 variables in the absence or otherwise of logarithmic transformations for the 3 pioneer 
species considered in this article.  
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Figure 3 Correlation between diameter and above-ground biomass (left) and between crown diameter and above-
ground biomass (right) of (a) Distemonanthus. benthamianus species, (b) Musanga cecropioides and (c) Trema  orientalis. 

 
Single-species allometric models were developed from a data set of 35, 38 and 30 trees respectively for Distemonanthus. 
benthamianus, Musanga cecropioides and Trema orientalis using destructive method, with dbh ranging from 5 to 97.5 
cm. Twelve models were tested for each species (36 models in total), based on the AIC comparison criterion and residual 
error, we selected five models per species (15 models in total) that were considered effective in describing the biomass 
data.  

M1.  Ln(Btot)= a +b×.ln(D) + Ɛ   

M2. Ln(Btot)= a +b × ln(D) + c×ln(H) + Ɛ  
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M3. Ln(Btot) = a + b ×ln(D) + c × ln(C) +  Ɛ 

M4. Ln(Btot) = a + b× ln(D) + c × ln(C) + d× ln(H) + Ɛ  

M5. Ln(Btot) = a+b×ln(D) + c × (ln(D))2+ d× (ln(D))3+ Ɛ 

Of all these models, dbh was the main variable, it appears to be a good predictor of above-ground biomass with (adjusted 
R 2= 0.973, AIC = 11.02, RRMSE = 0.295). The results of Table2 show that the introduction of total height in the model 
(dbh and Height) did not significantly improve the quality of fit (Adj.R²=0.972, AIC = 12.35, RRMSE = 0.288, Average 
deviation = 7.72%). On the other hand, the addition of the crown diameter improved the quality of the model (Adj.R² = 
0.978, AIC = 4.78, RRMSE = 0.257, Average deviation = 6.39%); AIC thus increased from 11.02 to 4.78. When the three 
independent variables (diameter, total height, and crown diameter) were introduced together in the model, they 
improved the quality of the prediction (Adj.R² = 0.978, AIC = 4.66, Average deviation = 6.20%). We also tested the 
following model with a single input: ln(Btot) = 8,30 + -8.13×ln(D) + 3.51 × (ln(D))2+ -0.380 × (ln(D))3; compared to the 
previous case, the fit quality is even better with this single input model (Aj.R² = 0.981, RSE = 0.222, AIC = -0.42,  RRMSE 
= 0.217, Average deviation = 04.67% ) 

3.2. Models of Musanga cecropioides species 

A sample of 38 individuals of Musanga cecropioides, with diameters ranging from 5.8 - 97.5 cm, allowed us to study the 
different relationships between total biomass and the different independent variables. Among the models tested, five 
were considered effective in estimating the aboveground biomass of Musanga cecropioides.  

We first studied the relationship between biomass and dbh; this independent variable alone appears to be a good 
predictor of above-ground biomass with Adjusted R² of 0.976; RSE =0.323, AIC = 26.00, RRMSE = 0.415. Adding the 
diameter of the crown (ln(Btot) = a + b ×ln (D²×C) + Ɛ) to the variable dbh, improves the model; AIC increases from 
26.00 to 11.91.  However, with the model integrating dbh and height, (lnBtot=a+b×ln(D)+c×ln(H)+Ɛ), the quality of fit 
is less interesting; AIC increases from 11.91 to 27.65 with a slight variation in the Adjusted R². However, when the 03 
variables are simultaneously integrated into the model ln(Btot)=a+b×ln (D) +c×ln(C) +d×ln (H) +Ɛ, the quality of the fit 
is significantly improved (R² adjusted: 0.983, RSE: 0.272, AIC: 13.72). The single input model ( ln(Btot) = a+b×ln(D) + c 
× (ln(D))2+ d×(ln(D))3 + Ɛ) positively improves the three-variable model (Adj.R2 0.981, RSE :0.292, AIC : 19.93). Among 
the 05 models selected as biomass potential predictors, the single input model : ln(Btot) = 5.83 + -6.52×ln(D) + 2.8 × 
(ln(D))2+ -0.28× (ln(D))3 ), based on its low AIC and the high value of the Adjusted R² (0.981) appears as the best of the 
05 models; the relationship between biomass and dbh is better. 

3.3. Models of Trema orientalis  

Before adjusting, we first explored several relationships between the biomass variable and the other variables (Figure 
3c). We used a data of 30 trees to adjust the selected models. The diameters varied from 6 to 35 cm, all diameter classes 
represented. Among the models tested, 05 were selected with adjusted R² coefficients greater than 0.97 and a low 
residual value.  Models M11, M15 and M13 {ln(Btot)= a +b×.ln(D) + Ɛ, lnBtot=a+b×ln(D) + c × (ln(D))2+ d× (ln(D))3+ Ɛ 
and lnBtot= a +b × ln(D) + c×ln(C) + Ɛ} first integrating the dbh, therafter the dbh and crown diameter simultaneously 
establishes a strong link with adjusted R² greater than 97%.  However, when the dbh is associated with the height and 
crown diameter (M14: lnBtot=a + b× ln (D) + c× ln (C) + d× ln (H) + Ɛ), the fit is significantly better; the adjusted R2 is 
significantly improved (R2 adjusted > 98%), RRMSE = 0.096, the residues are even lower. 
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Table 2 Allometric equations for biomass estimation. Btot: Total biomass; D: diameter at chest height; H: height of tree; C: crown diameter; N: sample size; a, b, c and 
d are adjusted model parameters; RRMSE: Relative Root mean square error; RSE: residual standard error; Adj R2: determination coefficient; AIC: Akaike Information 
Criterion and CF: correcting factor. 

        Parameters Models N D range a b c d RRMSE RSE Adj.R2 AIC CF 

Distemonanthus benthamianus 

M1.  lnBtot= a +b×.ln(D) + Ɛ  34 5-82cm -1.217*** 2.196***   0.295 0.268 0.973 11.02 0.036 

M2. lnBtot= a +b × ln(D) + c×ln(H) + Ɛ  34 5-82cm -1.402*** 2.063*** 0.209ns  0.288 0.269 0.972 12.35 0.036 

M3. lnBtot = a + b ×ln(D) + c×ln(C) +  Ɛ 34 5-82cm -1.052*** 1.906*** 0.348**  0.257 0.242 0.978 4.78 0.029 

M4. lnBtot=a + b× ln(D) + c× ln(C) + d× ln(H) + 
Ɛ  

34 5-82cm -1.332*** 1.674*** 0.374** 0.330 ns 0.246 0.238 0.978 4.66 0.028 

M5. lnBtot=a+b×ln(D) + c × (ln(D))2+ d× 
(ln(D))3+ Ɛ 

34 5-82cm 8.300** -8.132** 3.513*** -
0.380*** 

0.217 0.222 0.981 -0.42 0.025 

Musanga cecropioides 

M6. lnBtot= a +b×.ln(D) + Ɛ  38 5.8-97.5 cm -3.264*** 2.423***   0.415 0.323 0.976 26.00 0.052 

M7. lnBtot = a + b ×ln(D²×C) +  Ɛ 38 5.8-97.5 cm -1.950*** 0.778***   0.305 0.269 0.984 11.91 0.043 

M8. lnBtot= a +b × ln(D) + c×ln(H) + Ɛ  38 5.8-97.5 cm -3.138 *** 2.498 *** -0.137ns  0.487 0.327 0.976 27.65 0.053 

M9. lnBtot=a + b× ln(D²×C) + c× ln(H) + Ɛ  38 5.8-97.5 cm -1.843*** 0.792*** -0.087ns  0.291 0.272 0.983 13.72 0.037 

M10. lnBtot=a+b×ln(D) + c × (ln(D))2+ d× 
(ln(D))3+ Ɛ 

38 5.8-97.5 cm 5.835ns -6.521* 2.800** -0.281* 0.340 0.292 0.981 19.93 0.043 

Trema orientalis 

M11. lnBtot= a +b×.ln(D) + Ɛ  30 6-35 cm -0.715*** 1.784***   0.145 0.146 0.973 -26.60 0.011 

M12. lnBtot= a +b × ln(D) + c×ln(H) + Ɛ  30 6-35 cm -0.677 *** 0.933 *** 1.007***  0.099 0.104 0.986 -45.76 0.005 

M13. lnBtot= a +b × ln(D) + c×ln(C) + Ɛ  30 6-35 cm -1.197 *** 2.206 *** -0.373*  0.134 0.136 0.976 -29.67 0.009 

M14. lnBtot=a + b× ln(D) + c× ln(C) + d× ln(H) + 
Ɛ  

30 6-35 cm -1.057*** 1.313*** -0.292* 0,952 *** 0.096 0.095 0.988 -50.10 0.005 

M15. lnBtot=a+b×ln(D) + c × (ln(D))2+ d× 
(ln(D))3+ Ɛ 

30 6-35 cm 2.911ns -2.204ns 1.430ns -0,168ns 0.137 0.149 0.972 -23.53 0.011 

Note: The results are significant at a 95% confidence interval. ** p < 0.01; * p < 0.05; and ns(non-significant) p > 0.05. P-value of all models: 2.2e_16.  *** p < 0.001. 
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4. Discussions 

For each of the three species, we compared 05 single-species allometric models to test the predictive value of three 
descriptive parameters: diameter (dbh), height (H) and crown diameter for AGB biomass. Models incorporating a single 
independant variable for the three species were adjusted with R² greater than 0.97 following the application of a 
correcting factor; as in several existing models (Chave et al., 2014; Djomo and Chimi., 2017; Fayolle et al, 2018), dbh 
alone appears to be a very good biomass predictor; the high value of R² (> 0.97) reflects a strong link between biomass 
and dbh; biologically, diameter growth of the tree explains that of biomass whose biosynthesis is stimulated by light 
acting on photosystems. However, the addition of height of the tree or the crown diameter as a second predictor 
provides a slight improvement in adjustment (adjusted R2: 0.97 - 0.98). This is explained by the fact that the canopy of 
secondary forests is well open, the trees capture light without competing; therefore, the height of the tree must be an 
essential characteristic of this species. The climatic stage of this ecosystem better promotes the calibration of crown 
height and diameter during inventories by minimizing error (Djomo et al., 2017). When the three variables are 
simultaneously considered (Table 2), adjusted R² coefficient varies slightly around 0.98 with a remarkable drop in AIC 
while the biases range from 04.67% to 07.96% in Distemonanthus benthamianus, 07.01% to 10.87% in Musanga 
cecropioides and from 0.25% to 01.95% in Trema orientalis. However, the model: Btot = a+b×ln(D) + c × (ln(D))2+ d× 
(ln(D))3+ Ɛ also remains efficient in the case of the three species. The prediction with the model Ln( Btot) = a+b×ln(D) 
+ c × (ln(D))2+ d× (ln(D))3+ Ɛ compared to the model ln(Btot)= a +b×ln(D) + Ɛ makes a difference but it remains small. 

Overall, the order of magnitude of the biases in our estimates remains below 10% compared to 26 to 32% in Ebuy et al., 
(2011). These results are similar to those of many authors such as Basuki et al., (2009) who worked in a Dipterocarpus 
forest on a sample of 122 individuals with diameters ranging from 6 to 200 cm. These models were adjusted with R² 
coefficient ranging from 0.963 to 0.989 and a deviation of 19.6% and 0.956% respectively in Ngomanda et al. 
Distemonanthus benthamianus, Musanga cecropioides, Trema orientalis for a first reason do not appear in the list of 
inventory data of  Fayolle et al., (2013, 2018); Ngomanda et al., (2014); moreover these species are pioneers of 
secondary forests. Therefore, their models cannot reliably estimate the biomass of these three species which are that of 
semi-deciduous forests. In addition, Traoré et al., (2018) adjusted two models to estimate the biomass of Acacia 
mangium respective correlation coefficients R²: 0.97 and 0.98 [AGB = exp(-1.073+ 2.081×ln (D)), AGB = exp(-3.455 + 
2.081×ln (C)]. Bias values remained below 5%. In addition, Vahedi et al., (2014) developed mixed models for the species 
F. orientalis and C. betulus of the hyrcanian forest, the R2 adj coefficients were 0.95 and 0.96 and the deviations were 
between 10% and 20%. Specific and mixed (commercial) models were adjusted for some species (Dipterocarpus, Hopea, 
Palaquium sp, Shorea sp, Shorea sp) from forest to Dipterocarpus by Basuki et al., (2009); adjusted R2 coefficients had 
varied between 0.97 and 0.99; deviations between 10% and 20%. The authors showed that mixed equations explain 
less the tree biomass compared to mono specific models. This point of view is shared because comparisons of our 
models to existing equations (mostly mixed) confirm Basuki et al’s., (2009) point of view. 

These results corroborate observations made by Pltoton (2016) and Goodman (2014), who mention the influence of 
crown diameter on fit quality. Due to the presence of clouds in the tropics, despite the high spatial resolution of the 
sensors, the accuracy of remote sensing estimates is reduced; crown diameter has been cited by several authors as the 
best predictor of biomass by the remote sensing method. 

At present, according to the information collected in the PREREDD platform, five models have already been adjusted to 
estimate the volume of Distemonanthus. benthamianus, however no single-species allometric models have yet been 
developed for this species in the biomass calculation. In addition, some mixed models that have integrated some pioneer 
secondary forest species into the dataset gives an estimate of the equally relative biomass. The overestimation of the 
biomass of the D. benthamianus species with the Chave et al., (2014) model is 43.08%, 102.08% with Fayolle et al. 
(2018). These exactions are normal, especially since allometric equations are site- or ecosystem-specific; this 
publication evaluates allometric equations of pioneer species in semi-deciduous forests (Letouzey, 1985). Like model 5 
which overestimates biomass by only 04.67%, the other 04 models of D. benthamianus adjusted in this article are also 
recommended. 
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Table 3 Comparison of our models with previously published equations. 

Author Models Average error (%) RRMSE 

                                                      Distemonanthus benthamianus 

Chave et al. (2014)  AGBest = 0,0673 x ( D2H)0,976 42.74 0.64 

Fayolle et al. (2018) AGB = 0,125 x 1,079 x D2,21 x H0,506 48.30 0.67 

Model  5 AGB = exp(8,324-8,132x ln(D)+3,51x (ln(D))^2-
0,38x(ln(D))^3 

04.04 0.21 

                                                          Musanga cecropioides 

Model 7  lnBtot = -1,950 +0,778 ×ln(D²×C)  09.22 0.30 

Chave et al. (2014)  AGBest = 0,0673 x ( D2H)0,976 34,34 1.80 

Fayolle et al. (2018) AGB = 0,125 x 1,079 x D2,21 x H0,506 -98.7 0.98 

                                                             Trema orientalis 

Model 14 lnBtot = -1,057+ 1,313× ln(D) + 0,29 × ln(C) - 0,95× ln(H)  0.10 0.096 

Chave et al. (2014)  AGBest = 0,0673 x ( D2H)0,976 -7.45 0.43 

Fayolle et al., (2018) AGB = 0,125 x 1,079 x D2,21 x H0,506 3.84 1.24 

Huy et al., 2012 log biomass=(-2.88418)+0.735931 x log((DBH)^2 x (H))+ 
0.18307    

                      x log((DBH)^2 *(CA))  

24.24 5.71 

Huy et al., 2012 Log(Biomass) = (-2.87966)+2.13303 x log((DBH))+ 
0.595399 x log((H)) 

44.58 7.34 

Huy et al., 2012 log biomass=(-3.60457)+0.964949*log((DBH)^2*(H)) -3.41 4.34 

 

With reference to the information collected in the PREREDD platform, Musanga cecropioides species so far does not 
have its own models in the sub-region for biomass estimation; Model 7 adjusted in this publication overestimates this 
biomass at a rate of 9.22% against 60.61% with Chave et al., (2014), 13.76% with Ngomanda et al., (2014); Fayolle et 
al., (2018) overestimates it at -98.67%. Depending on the inventory data available (dbh, crown diameter, tree height 
and wood density), we recommend models M6, M7, M9 and M10 with residue proportions less than 10% and adjusted 
R2 greater than 0.97. However, the model 7 (lnBtot = a + b ×ln(D²×C) +Ɛ) remains more efficient and recommended due 
to its wide canopy. This justifies the predictive nature of the crown diameter. 

For Distemonanthus benthamianus species, Ngomanda et al., (2014) model overestimates the biomass by 19.89%; it can 
be used if there is no other choice; but with our five models (M1, M2, M3, M4, M5) fitted and considered effective (Table 
2), we recommend them. If the best of the five models has to be selected, it is N°5: (AGB= Exp(8.324-8.132 x ln(D)+3.51x 
(ln(D))^2-0.38x(ln(D))^3) it is overestimated by 04.04% and therefore even more efficient and recommended. The 
residual error is very high with the authors: Chave et al (2014) and Fayolle et al (2018); this is normal especially since 
their equations are mostly mixed and are not those of semi-deciduous forests. The same observations are given in Figure 
5, where Model 5 of D. benthamianus is almost confused with the black curve (observed biomass), which justifies the 
low bias (04.04%, Table 3) obtained in the prediction of D. benthamianus biomass by Model 5. However, 
Ngomanda(2014), Chave(2014) and Fayolle (2018) overestimate the biomass of Distemonanthus benthamianus in 
increasing order, hence the order of magnitude of their high bias. 
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Figure 5: Comparison of our models with previously published equations for Distemonanthus benthamianus species 

For Musanga cecropioides, Model 7 (red curve in Figure 6) is almost confused to the black curve (observed biomass), 
hence the low value of the bias with Model 7 (09.22%, Table 3). Compared to the observed value, Ngomanda (2014) 
underestimates while Chave(2014) overestimates the biomass. 

 

Figure 6: Comparison of our models with previously published equations for Musanga cecropioides species 

The model 14 represented by the red curve in Figure 6 is almost confused with the black curve (observed biomass), 
hence the low value of the difference between observed value and the biomass value predicted by this model 14.  
Huy(2012) and Chave(2014) predict with a large overestimate while Ngomanda(2014) underestimate with a very large 
deviation; their models are not appropriate for predicting the biomass of T. orientalis. Model 14 is recommended. 
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Figure 7: Comparison of our models with previously published equations for T. orientalis species 

Several equations have already been adjusted in Vietnam by Huy et al., (2012) for the estimation of T. orientalis biomass. 
It can be seen from Table (3) that the model: log biomass = (-3.60457)+0.964949*log((DBH)^2*(H)) adjusted in 
Vietnam among many others is applicable with the residual error of -3.41%. The Chave et al., (2014) model (AGBest = 
0.0673 x ( D2H)0.976) can also be applied to our data by underestimating the biomass by -7.45%. The final choice is 
our fourteenth model ( M14: lnBtot = -1.057+ 1.313× ln(D) + 0.29 × ln(C) - 0.95× ln(H)) which explains the biomass with 
a residual error of 0.098%, this model is efficient and recommended. 

5. Conclusion 

In this study, which is a key element for the implementation of the REDD+ mechanism, the calculation of the adjusted 
R² coefficients, average error and the analysis of the residues associated with the AIC for model comparison allowed us 
to define reliable models for the prediction,  to avoid underestimated prediction, the application of the correction factor 
made it possible to considerably reduce the biases resulting from the logarithmic transformation, so that fifteen models 
were selected as predictive with correlation coefficients all greater than 97% and relatively low residual errors. 
However, the challenge would be to increase the size of data on these pioneer species in order to adjust models that 
could explain the biomass of several species in this ecosystem. 

Although the fifteen models selected for biomass estimation of D. benthamianus, Musanga cecropioides and Trema 
orientalis species all remain efficient (R2 > 97%), we recommend single input models for these three species: 

Musanga cecropioides: lnBtot = 8,30 + -8.13×ln(D) + 3.51 × (ln(D))2+ -0.380 × (ln(D))3 

Musanga cecropioides: lnBtot = 5.83 + -6.52×ln(D) + 2.8 × (ln(D))2 - 0.281× (ln(D))3 

Trema orientalis: lnBtot = 2.911 - 2.204×ln(D) + 1.430 × (ln(D))2 – 0.168× (ln(D))3, they're more efficient.  
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