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Abstract 

Burn injuries (BI) above 40% of total body surface area (TBSA) are considered extensive and associated to systemic 
responses. The intensive insulin therapy (IIT) has been chosen as treatment because of its anabolic and anti-
inflammatory properties, and by glycemic control. Several experimental models of extensive BI with IIT has just been 
studied, however they have many variables and challenges. Thus, this review aims to investigate the animal models of 
extensive BI with IIT, in order to better understanding benefits and limitations of this therapy. The review of papers 
published on the literature and indexed on the PubMed database was conducted by searching the keywords 
predetermined. Insulin administration after BI is able to revert hyperglycemia state, accelerate wound healing, decrease 
the mRNA expression of some pro-inflammatory cytokines, attenuate acute lung injuries, decrease inflammation in 
intestinal epithelium and attenuate the muscle loss. We can conclude, although there are limitations related to burn 
standard or insulin administration, the systemic benefits of ITT overcome limitations.  
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1. Introduction

Burns injuries (BI) are highly debilitating traumas, causing about 265,000 deaths per year in the world [1]. In Brazil 
occurred an average 25,000 hospitalizations for burns and corrosion between 2010 until 2015, which generated high 
government spending [2]. Extensive BI have great relevance especially in children, being scalding case the most 
common, principally in domestic environments [3]. 

Burns covering more than 30% total body surface area (TBSA) are associated to intense stress, inflammation and 
hypermetabolism, with consequent insulin resistance (IR) and hyperglycemia. These symptoms can affect the healing 
of the wound and causes development delay and other complications for about to 2 years. Furthermore, predisposes to 
complication various, as severe and fatal infections [4,5]. 

The main severe response of BI is the hypermetabolic state and protein losses, which resulted of increased protein 
degradation more than synthesis, and the second major response is hyperglycemia state [6]. Thus, several treatments 
have been used for glycemic control, such as insulin because of its anabolic and anti-inflammatory properties [7].  

Despite its beneficial effects, the intensive insulin therapy (IIT) has been a point related to much controversy, because 
it leads to a risk of hypoglycemia [8] which can be more dangerous than hyperglycemia due to BI [8,9]. Therefore, this 
review aims to investigate the animal models of extensive BI with IIT, in order to better understand the benefits and 
limitations of this therapy.  
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2. Methods 

A computerized literature search was done in PubMed-Medline database. The keywords that we used were Burn, either 
Thermal Injury or Scald. Together another group of keywords related to IIT: Intensive Insulin Treatment or Therapy, 
Detemir, Glargine, Lantus, NPH, protamine, Iletin and Insulin. After that, we selected to read the complete paper in 
Portuguese, English and Spanish.  Other languages were not considered. As an excluding criteria, the papers with 
euthanasia of animals for a minimum for 24 hours post injury, i.e. experimental models that received IIT at least 1 day 
or more. Thus, 14 papers were presented in Table 1, considering the percentage of TBSA scalding injury.  

3. Results  

3.1. Systemic responses after extensive burn injury 

BI over 40% of body extension are considered extensive and result in the local and systemic responses [10]. The 
extensive BI are followed by long periods of stress, inflammation and hypermetabolism, characterized by increase of 
the hypermetabolic state such as glycolysis, proteolysis, lipolysis, glycogenolysis, and gluconeogenesis [6,11]. In 
addition, there is a significant increase in the energetic expenditure, which is not supplied by catabolic state during 
hypermetabolism [12,13], resulting in an imbalance of the use and the availability of the energy [10]. The 
hypermetabolic state elevates energy expenditure to maximum at 10 days after BI [14], remaining altered for two years 
post-burn in children [5].  

Besides, several authors mention that immune dysfunction [15], acute IR, hyperglycemia [16], protein catabolism, 
muscle atrophy [12,13,17], hepatocyte degeneration [18] and decreased bone mineral content [5] are characteristics of 
BI systemic response. 

Severe BI also are associated to increased expression of pro-inflammatory cytokines such as tumor necrosis factor alpha 
(TNF-α), interleukin (IL1-6) and cyclooxygenase [5,14,19]. These inflammatory mediators induce systemic 
inflammatory response syndrome (SIRS) that leads to hypermetabolism, hemodynamic alterations, and increased 
energetic expenditure. These alterations can result in infection and sepsis with high risk of multiple-organ failure and 
death [10].  

Oxidation energy substrates in mitochondrial respiration produce excessive formation of reactive oxygen species 
resulting oxidative stress, which together with the increased level of inflammatory mediators, promote IR [20] or 
pseudodiabetes [21].  

After 3 or 4 days of the BI, the dependent tissues of the insulin, such as skeletal muscle and fat, develop an IR [22] that 
persist for several weeks [21,23]. In addition, the cellular stresses caused by extensive BI also active neuroendocrine 
response that increase the release of hormones as catecholamine, glucagon and cortisol [6]. 

In normal condition, insulin signaling on skeletal muscles and fat occurs via insulin receptor/insulin receptor 
substrates/phosphatidylinositol 3-kinase/protein kinase B (IR/IRS/PI3K/Akt) and translocation of glucose transporter 
– 4 (GLUT-4) to membrane, allowing the entry of glucose for facilitated diffusion [24]. After extensive BI, there are 
changes in the receptor insulin signaling, more specifically in phosphorylation of IRS-1 resulting to decrease glucose 
uptake [21,25]. 

The absence of glucose uptake adequate in the cell lead to increased plasmatic glucose and, consequently elevated rate 
of body glucose production. Thus, a hyperglycemia is a risk factor to burn patients, because it helps to keep the 
hypermetabolism [6]. These alterations leads to predisposition to complications, such as development of infections that 
complicate the rehabilitation and increase the mortality [16,26]. The Figure 1 schematizes the extensive BI responses, 
which involves from local consequences until systemic, creating cycle where the more injury extension, more extended 
responses.  
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Figure 1 Extensive burn injury and systemic alterations cycle.  

3.2. Intensive insulin therapy after extensive burn injury  

For patients with extensive BI, glycemic control can be maintained by IIT [4,27–29]. This therapy has been used to 
control IR and hyperglycemia and reduce the inflammatory response [27], improve protein balance [30] and wound 
healing [31].  

However, the glycemic control in patients that need intensive care can lead to hypoglycemic episodes [8,11,32]. 
Important to highlight that normal glycemic level in humans is considered to be between 80-110 mg/dl [33]. Patients 
with hypoglycemia (blood glucose <60 mg/dl) have many negative effects similar to hyperglycemia (blood glucose >110 
mg/dl), for example, increased inflammatory and metabolic responses, frequent infections, tendency to multiple organ 
failure and rise in mortality [9]. 

Jeschke and collaborators [34] found that IIT for severely burned children maintained stable glucose levels and 
significantly improved insulin sensitivity. Effective glucose control attenuated a hypermetabolic response compared to 
patients with ineffective glucose control. However, sometimes glycemic control with insulin therapy resulted in these 
patients experiencing several episodes of hypoglycemia.  

Fram et al. [35] demonstrated that children with burned total body surface area ≥ 40% who received IIT maintained 
daily blood glucose levels between 80 – 110 mg/dl, but those children who received conventional insulin therapy 
maintained blood glucose levels ≥215 mg/dl. The authors observed in burned children with control glucose levels ≤120 
mg/dl improved insulin sensitivity, and decreased oxidative mitochondria and energy expenditure. Tuvdendorj et al. 
[31], in a study with patients <18 years with burned ≥30% total body surface area (TBSA) that received IIT and skin 
grafting, described there was an increase in the fractional synthesis rate of site wound protein compared to children 
that did not received any insulin treatment. 

It is possible to observe some beneficial effects of intensive insulin therapy and effective glycemic control. However, the 

challenge related to preventing hypoglycemia episodes persists and needs more research [29]. Due to different glucose 
levels registered in studies and in numerous protocols related to appropriate insulin dosage, experimental models has 
been studied as a model of treatment in extensive burns. 

Only few studies have proposed systemic therapies for extensive BI. Part of these were experimental studies that used 
food replacement therapies but hormone treatment are little explored. For this reason, the understanding of hormonal 
effects as a therapeutic option is an eminent challenge for advances in this field. Therefore, the main criteria for the 
present paper was to review the literature concerning IIT following scalding injury (SI) in animal models.  
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Table 1 Studies that utilized insulin treatment in burn animal models for a minimum of 24 hours (1 day). 

Author 
TBSA 
(%) 

Insulin/acti
on 

Via Dosage Period of IIT until euthanasia 
Results about glycemic 
control* 

Other results of IIT about SI 

Emanuele 
et al., 2007 
[53] 

13-
15% 

Insulin 
Glargine - 
Long-acting 

Subcutaneous 
Once a day, 
5UI/kg 

Groups with IIT for 1, 2 and 7 days 

C < SI > SI+I 

Had difference between the 
groups after IIT 

IIT decreased liver fatty 
infiltration and alanine 
aminotransferase blood levels 

Solomon et 
al., 2000 
[44] 

15-
20% 

Intermediate
-acting 
insulin 

Subcutaneous 

Twice a day (11-
12h intervals), 
dose was 
gradually 
increased 

0.25U (day 1 and 2), 0.5U (day 3), 
1.0U (day 4)/100g. Groups with 
IIT for 1 and 4 days 

IIT did not induce long-term 
hypoglycemia, in 3h glycemia 
returned to normal values. 

IIT suppressed of ubiquitin 
conjugation to endogenous 
proteins and cathepsin activities 

Solomon et 
al., 2002 
[45] 

15-
20% 

Intermediate
-acting 
insulin 

Subcutaneous 

Twice a day (11-
12h intervals), 
dose was 
gradually 
increased 

0.25U (day 1 and 2), 0.5U (day 3), 
1.0U (day 4)/100g. Groups with 
IIT for 4 days 

IIT did not induce long-term 
hypoglycemia, in 3h glycemia 
returned to normal values. 

IIT restored body weight by 
reducing protein degradation 
and regaining the intracellular 
protein content in skeletal 
muscle 

Madibally 
et al., 2003 
[15] 

15-
20% 

Intermediate
-acting 
insulin 

Subcutaneous 

Twice a day (11-
12h intervals), 
dose was 
gradually 
increased 

0.25U (day 1 and 2), 0.5U (day 3), 
1.0U (day 4)/100g. Groups with 
IIT for 4 and 15 days 

IIT did not induce long-term 
hypoglycemia, in 3h glycemia 
returned to normal values. 

IIT decreased inflammatory cells 
and increased vasodilation, 
reepithelialization, collagen 
deposition in wounds burn skin 

Madihally 
et al., 2006 
[46] 

15-
20% 

Intermediate
-acting 
insulin 

Oral 

Twice a day (11-
12h intervals), 
dose was 
gradually 
increased 

Insulin particles were loaded into 
gelatin capsules for oral 
administration. 0.25U (day 1), 
0.5U (day 2), 1.0U (day 3)/100g. 
Groups with IIT for 15 days 

IIT did not induce long-term 
hypoglycemia, in 3h glycemia 
returned to normal values. 

IIT improved the body weight 
gain of burned rats and 
accelerated the wound healing 

Jeschke et 
al., 2002 
[38] 

30% 
Protamin 
insulin - 
Long-acting 

Subcutaneous 
Once a day, 
5UI/kg 

Groups with IIT for 1, 2, 5 and 7 
days 

C < SI > SI+I 

Had significant difference 
between the groups after IIT 

IIT attenuated the inflammatory 
response by decreasing the 
proinflammatory and increasing 
the anti-inflammatory cascade in 
serum blood 

Klein et al., 
2004 [39] 

30% 
Protamin 
insulin - 
Long-acting 

Subcutaneous 
Once a day, 
5UI/kg 

Groups with IIT for 1, 2, 5 and 7 
days 

SI > SI+I 

Had significant difference 
between the groups after IIT 

IIT decreased the expression of 
pro-inflammatory cytokines 
mRNA and apoptosis in the liver 
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Zhang et 
al., 2011 
[48] 

30% - Subcutaneous 
Once a day, 3 to 
5UI/kg 

Groups with IIT for 24 hours 

C ≅ SI+I < SI 

IIT did not induce 
hypoglycemia. Had significant 
difference between SI+I and SI 
groups, for 3, 6, 12 and 24h 
after IIT 

IIT decreased pulmonary edema, 
hemorrhage, inflammatory cell 
infiltration and apoptosis 

Wang et 
al., 2012 
[41] 

30% 
Insulin 
Glargine - 
Long-acting 

Intraperitoneal
ly 

Once a day, 
glucose-insulin 
(70UI⁻¹) and 
insulin 30UI⁻¹ 

Groups with IIT for 1, 3 and 5 days 

SI+I < SI ≅ SI+GI** 

Had significant difference 
between the groups after IIT 

IIT attenuated the inflammation 
and necrosis on the intestinal 
epithelium 

Han et al., 
2014 [49] 

30% - Subcutaneous 
Once a day, 3 to 
5UI/kg 

Groups with IIT for 24 hours 

C ≅ SI+I < SI 

IIT did not induce 
hypoglycemia. Had significant 
difference between SI+I and SI 
groups, for 3, 6, 12 and 24h 
after IIT 

 

IIT attenuated the increase of 
pulmonary endothelial 
permeability and decreased 
pulmonary edema, hemorrhage, 
inflammatory cell infiltration 
and apoptosis 

Przkora et 
al., 2007 
[47] 

35% 
Intermediate
-acting 
insulin 

Intraperitoneal
ly 

Once a day, 
5UI/Kg 

Group with IIT for 5 days SI+I ≅ SI 

IIT decreased pro-inflammatory 
cytokines and increased anti-
inflammatory cytokines in 
serum blood, increasing survival 
to Pseudomonas aeruginosa 

 

Pidcoke et 
al., 2014 
[40] 

40% 
Protamin 
zinc insulin - 
Long-acting 

Subcutaneous 
Once a day, 
5UI/Kg 

Group with IIT for 12 days 

Glucose tolerance test 

C ≅ SI+I < SI 

Had significant difference 
between the groups 

IIT attenuated the 
hypermetabolic response and 
atrophy muscle 

Gauglitz et 
al., 2010 
[42] 

60% 
Insulin 
Glargine - 
Long-acting 

Subcutaneous 
Once a day, dose 
was gradually 
increased 

1U (day 1), 2,5U (day 2), 5U (day 
3)/100g. Groups with IIT for 28 
days 

C ≅ SI+I < SI 

Had significant difference 
between SI+I and SI groups, 
for 3 and 6h after IIT 

IIT attenuated acute pro-
inflammatory response, 
increasing survival to 
Pseudomonas aeruginosa burn 
wound infection 

Jeschke et 
al., 2010 
[43] 

60% 
Insulin 
Glargine - 
Long-acting 

Subcutaneous 
Once a day, 2.5 
UI/kg 

Group with IIT for 1 and 2 days 

C ≅ SI+I < SI 

Had significant difference 
between the groups 

IIT decreases hepatic apoptosis, 
mitochondrial damage, and 
increases albumin production 

*To facilitate the understanding of the reader, we will call here the groups of the revised papers: Control for sham animals without IIT and without SI; SI for the injured group without IIT; and SI+I for 
injured and treated groups. 

**Only this paper presented a SI group with treatment mixed insulin (IIT) and glucose (SI+GI)
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3.3. Intensive insulin therapy in experimental models of extensive burn injury 

The extent of the SI varied greatly between articles (13-60%). SI of 30% TBSA or more was considered extensive and 
resulted in hormonal and metabolic, local and systemic responses [4, 5, 10, 36]. However, all articles presented in Table 
1 indicated several systemic responses in many body organs or systems, independent of the TBSA scald burn. 

The periods of IIT in the papers studied changed considerably. Some focused on short-term treatments between 1 and 
5 days, regardless of the type of insulin used or daily doses defined. However, only two articles focused on 7-day 
treatments to evaluate the long term infiltration of adipose tissue into the liver [37] and the decrease of several pro-
inflammatory markers [38]. Finally, just one paper lasted 15 days, until the complete regeneration of the animals’ skin 
wounds. 

Seven of the fourteen papers (Table 1) mentioned the use of long-acting insulin for IIT; three used protamine insulin 
[38–40] and four used glargine insulin [37, 41–43]. Five other papers used intermediate-acting insulin [15,44–47]. Two 
papers [48, 49] did not report the period of insulin action, but reported that the insulin dose and glucose blood level 
were controlled daily. Just one paper used a mixture of 5 IU/kg insulin injected together with glucose, once a day [41], 
in order to avoid hypoglycemia in treated animals.  

Insulin glargine and protamine are long-acting types of insulin that reach a plateau of biological action, promoting a 
basal coverage throughout 24 hours [50, 51]. Studies with humans showed that patients treated with glargine, long-
acting insulin, had significantly lower hypoglycemia events compared to patients that use intermediate-acting insulin, 
such as neutral protamine hagedorn insulin (NPH) [52]. 

Regarding the dosage of IIT, the groups that applied insulin with a gradual dosage increase from 0.5IU to 1.0IU per 100 
g of animal body weight, used two applications per day because they used intermediate-acting insulin that has a half-
life of between 11 and 12 hours [15, 44–46]. The similar dosage was applied in the groups that received long-acting 
insulin (2.5 to 5 IU / kg), but only a daily dosage was applied [38–40, 43, 48, 49, 53]. Just a paper utilized intermediate-
acting insulin in a daily dosage [47]. Related to the insulin routes of administration form, only Medihally et al. [46] used 
oral insulin, the other authors applied intraperitoneal or subcutaneous injections. 

Regarding the insulin action, the number of daily injections was once when the authors used a long-acting insulin, and 
two for intermediate-acting insulin. This latter insulin type required an increase of animal manipulation and 
consequently this animal receive more stress than the animal that received double subcutaneous injections, except for 
assays presented by Przkora et al. [47] who injected the intermediate-acting insulin once a day. Then, a long-acting 
insulin therapy would minimize the stress and manipulation of animals that already have the injury burn stress. 

Among the factors that provided influence in experimental models with IIT, the most important was the glycemic 
control. In experimental models with extensive SI, the rats or mice had an acute state of hyperglycemia that was 
maintained in few days after SI. Hyperglycemia and hypermetabolism cause metabolic stress, which is the most 
significant response to SI [6, 42], as result of increased hepatic gluconeogenesis [6]. 

In the surveyed papers, the glycemic control was carried out daily in all animals that received the treatment because of 
IIT and the glycemic changes promoted by extensive SI. Thus, the blood glucose level evaluations showed that the 
animals’ glycemia returned to normal values approximately 3 hours after IIT, indicating that IIT does not induce long-
term hypoglycemia [44, 46]. However, in studies that administered a gradually increasing IIT dose, the animals had 
hypoglycemia in the first hour after insulin administration (1U/100g) [44, 45]. That indicated that the dosage was too 
high for these animals. Interestingly, just one study used a fourth group for comparing parameters of glycemia and 
insulinemia control. The sham group received ITT the same as the SI group [45]. 

For studies that use hormone therapy with insulin, an important consideration is regard to glycemic control because 
the risk of hypoglycemia [7, 54]. Therefore, all the reviewed papers focused on glycemic control of the animals, one hour 
or a few days after starting IIT, or at the end of IIT. 

In the initial phase of the response to the extensive SI, a hyperglycemic state occurs, followed by a subsequent phase 
where there was predominance of protein hypermetabolism [6]. Thus, some studies consider that insulin did not induce 
long periods of hypoglycemia after IIT, regardless of the dosage injected. Approximately 3 hours after application, the 
animals were euglycemic [15, 44–46]. So, IIT with exogenous insulin has been shown capable of reducing 
hyperglycemia, together with the level of IR [54]. In the surveyed papers, the animals submitted to extensive SI showed 
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hyperglycemia in the evaluation of glycemic control, compared to the Control and SI+IIT groups. Therefore, insulin was 
able to revert the hyperglycemia after SI, regardless of the dosage administered, number of daily applications, type of 
insulin (intermediate or long action) and, number of days of treatment [38,39,41,43,47–49,53,55].  

In addition to the glycemic control results, the IIT also was able to promote systemic responses linked to the 
consequences of extensive SI that the animals received. Other effects of IIT were observed in wound healing, several 
organs, such as liver, skeletal muscle, lung and intestine, and investigated in inflammatory cascades in blood.  

IIT induced wound healing. Four days after SI, in the acute phase, a histologic evaluation of SI wounds showed decrease 
of inflammatory cells, and increase in vasodilation and collagen deposition. In a late phase, after 15 days, IIT increased 
re-epithelization when compared to SI untreated group [15]. The acceleration of wound healing in animals that received 
IIT also promoted body weight gain [46]. 

Regarding the liver, IIT decreased hepatic apoptosis, mitochondrial damage, and increased albumin production in acute 
phase, at 24 and 48 hours, after SI [43]. Seven days after SI, in the late phase, IIT decreased blood levels of alanine 
aminotransferase enzyme, related to damage to hepatocytes membrane. In addition, it prevented an increase of 
microvesicular steatosis [53], and decreased the mRNA expression of some pro-inflammatory cytokines [39].  

IIT markedly attenuated acute lung injuries. In histologic analyses of lungs, a decrease has been observed in pulmonary 
edema, haemorrhages, inflammatory cell infiltration and cell apoptosis after 12 hours [48,49] and 24 hours [48], besides 
attenuating the increase of pulmonary endothelial permeability induced by BI [49]. Finally, Wang et al. [41] investigated 
the effects of SI on the intestine and used IIT together with glucose. After 2 days of treatment, the animals showed a 
decrease in infiltration of inflammatory cells and necrosis sites in intestinal epithelium compared to the untreated SI 
group. 

IIT has been found to suppress the ubiquitin conjugation of endogenous proteins in muscle, and to decrease some 
cathepsin activities after 1 and 4 days [44], and also to restore body weight by reducing accelerated protein degradation 
after 4 days [45]. In animals that have been submitted to SI and had their limbs immobilized, IIT attenuated the muscle 
loss in soleus and gastrocnemius muscles, the hypermetabolic response and atrophy. It also increased glucose clearance 
and normalized circadian-metabolic protein [40]. 

Regarding of SIRS the extensive SI, IIT was also capable of reducing the inflammation after 1 to 7 days, by decreasing 
several pro-inflammatory cytokines (TNF, IL-1 and IL-6), and increasing anti-inflammatory cytokines (IL-2, IL-4 and IL-
10) in blood serum [45]. The application of IIT together with glucose after 1 to 5 days decreased the IL-10 and TNF 
expression [41]. One of the most common bacteria that cause lethal infections in burn patients is Pseudomonas 
Aeruginosa. In animals that received an injection of these bacteria after SI, IIT was capable of decreasing several pro-
inflammatory cytokines and increasing several anti-inflammatory cytokines in serum blood in these animals [47]. IIT 
also improved the survival of the animals following infection of SI wounds with Pseudomonas Aeruginosa [42].  
Summering IIT has been shown as effective therapy for the care of systemic effects post extensive BI. 

The variations of treatment and difficulties related to obtaining invasive analysis of tissues in humans and appropriate 
glucose levels without hypoglycemic episodes during the treatment, justify the importance of experimental study in this 
area. In experimental models, ITT has been shown as capable of improving glycemic control and attenuate numerous 
disturbs caused by SI. However, it is important to highlight that the extension of lesion, periods of IIT, type and dosage 
of insulin varied considerably. Thus, Figure 2 presents the benefits and limitations of the ITT of extensive SI models in 
a schematic form on a scale. In addition, there are difficulties to establish the ideal glucose level to consider 
normoglycemic state of varieties of species utilized. The main challenge consists in establish the gold standard of glucose 
level associated to the attenuation of as much as possible systemic effects of SI. So more studies about results of 
treatments in humans and standardized experimental models are necessary to the best knowledge of insulin treatment 
post extensive burn. 
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Figure 2 Benefits and limitations of ITT of extensive SI models. Note that although there are limitations based on burn 
standard or insulin administration, numerous benefits of systemic effects attenuation post SI are considered. 

4. Conclusion 

It concludes, although there are limitations related to burn standard or insulin administration, the systemic benefits 
effects of ITT outweigh limitations.  
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