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Abstract 

Data privacy and security in heterogeneous edge-to-cloud architectures have become increasingly critical due to the 
distributed nature of modern computing environments. Confidential computing techniques, such as trusted execution 
environments (TEEs) and homomorphic encryption, provide a promising approach to secure sensitive data while it is 
being processed across edge and cloud systems. However, challenges persist in achieving efficient and secure 
computations due to the dynamic and decentralized characteristics of these environments. This research proposes a 
novel framework that leverages confidential computing technologies to optimize data privacy and security across 
heterogeneous edge-to-cloud architectures. The framework integrates TEEs with advanced encryption methods to 
ensure secure processing of sensitive data while maintaining low latency and high throughput. The proposed model is 
evaluated using several real-world edge-to-cloud datasets and scenarios, focusing on the performance in terms of data 
confidentiality, computational efficiency, and scalability. Experimental results demonstrate that the proposed framework 
outperforms existing solutions, achieving enhanced security without compromising system performance. The findings 
highlight the potential of confidential computing in enabling secure, distributed computations across edge-to-cloud 
environments, ensuring both privacy and security in emerging decentralized computing paradigms.  
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1. Introduction

The increasing adoption of edge-to-cloud computing has revolutionized data processing and storage, enabling seamless 
integration between edge devices and cloud infrastructures. However, this decentralized architecture introduces 
critical security and privacy concerns, as data is frequently transmitted, processed, and stored across multiple 
distributed nodes. Traditional security measures such as encryption during transit and at rest are insufficient to protect 
sensitive data while it is being processed. This gap in security exposes data to potential breaches, unauthorized access, 
and insider threats, particularly in multi-tenant environments where resources are shared among different users and 
organizations [1-5]. 

To address these challenges, confidential computing has emerged as a powerful solution that ensures data remains 
secure even during computation. This approach leverages Trusted Execution Environments (TEEs), which create 
isolated and hardware-protected enclaves where sensitive computations can be executed without exposing data to 
external threats [9]. By implementing TEEs in heterogeneous edge-to-cloud infrastructures, organizations can prevent 
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data leaks, ensure compliance with privacy regulations, and enable secure distributed computing. This is particularly 
crucial for industries handling sensitive information, such as finance, healthcare, and government services. 

Despite the advantages of confidential computing, integrating TEEs into large-scale edge-to-cloud architectures 
presents several challenges, including performance overhead, scalability, and compatibility across different hardware 
and cloud platforms [11]. This research aims to optimize data privacy and security in heterogeneous edge-to-cloud 
environments by developing an efficient framework that leverages confidential computing for secure distributed 
computations. Our key contributions include: 

• Secure Execution Framework: Implementing TEEs to ensure that sensitive computations remain protected, 
even in untrusted environments. 

• Privacy-Preserving Distributed Computing: Enabling secure data sharing and processing without exposing 
sensitive information to cloud providers or third parties. 

• Adaptive Security Policies: Developing an intelligent security mechanism that dynamically adjusts protection 
levels based on workload variations and threat assessments. 

The remainder of this paper is structured as follows: Section 2 presents a comprehensive literature review on existing 
security models in edge-to-cloud computing. Section 3 describes the proposed methodology for integrating confidential 
computing into distributed environments. Section 4 evaluates experimental results demonstrating the effectiveness of 
our approach. Finally, Section 5 concludes the paper with key findings and future research directions. 

2. Literature review 

Confidential computing has emerged as a critical approach to ensuring secure data processing in edge-to-cloud 
architectures. Several researchers have explored various frameworks and methodologies to enhance security and 
privacy in distributed computing environments. Carter et al. [1] discussed the role of confidential computing in securing 
data processing workflows across cloud infrastructures, emphasizing the advantages of hardware-backed trusted 
execution environments (TEEs) for ensuring privacy and integrity. Similarly, Gupta et al. [2] proposed a confidential 
computing framework that enhances data privacy in decentralized cloud environments, leveraging TEEs to enable 
secure distributed computations. 

Zhang et al. [3] introduced a novel secure distributed computation model utilizing trusted execution environments to 
mitigate data exposure risks in multi-cloud settings. Patel and Ghosh [4] conducted a comprehensive survey on 
confidential computing in heterogeneous edge-cloud infrastructures, highlighting future research directions and 
emerging challenges. Rahman et al. [5] explored privacy-preserving federated learning to enhance AI-driven cloud 
security. Their study demonstrated the effectiveness of encrypted model training and inference using confidential 
computing principles. Focused on scalable data processing in edge-based confidential computing architectures, 
proposing a framework that ensures end-to-end data confidentiality. 

The literature highlights the growing importance of confidential computing in optimizing data privacy and security 
across heterogeneous edge-to-cloud architectures. Future research can focus on refining these techniques and 
integrating them with emerging technologies such as quantum computing and homomorphic encryption [4]. 

3. Proposed methodology 

This research proposes a Confidential Computing-Enhanced Secure Framework (CCESF) for optimizing data privacy 
and security in heterogeneous edge-to-cloud architectures. The framework leverages Trusted Execution Environments 
(TEEs), blockchain-based authentication, and a hybrid anomaly detection model using Long Short-Term Memory 
(LSTM) networks with Multi-Activation Function (LSTM-MAF). The proposed method enhances secure distributed 
computations in decentralized environments while ensuring efficient anomaly detection. The block diagram for the 
proposed methodology is illustrated in Figure 1. 
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Figure 1 The block diagram of proposed methodology 

3.1. Dataset 

To evaluate the framework’s performance, we utilize NSL-KDD and CSE-CIC-IDS2018 datasets. The NSL-KDD dataset 
comprises 41 features representing different network attributes and an attack class with four primary intrusion 
categories: Denial of Service (DoS), Probe, User to Root (U2R), and Remote to Local (R2L). The CSE-CIC-IDS2018 dataset 
includes 80 features and covers modern attack scenarios such as botnets, brute force attacks, and DoS. These datasets 
provide comprehensive benchmarking for intrusion detection in decentralized edge-cloud architectures. 

3.2. Pre-processing 

The data undergoes min-max normalization to scale features within a uniform range of [0,1], preserving relationships 
in the dataset while mitigating the impact of outliers. This ensures equal contribution from all features, enhancing the 
accuracy of subsequent processing. The normalization is defined by Equation (1): 

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑜𝑟𝑖𝑔−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
      ………….   (1) 

where 𝑋𝑜𝑟𝑖𝑔 represents the original data, 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥 are the minimum and maximum values of the feature, 

respectively. The normalized dataset is then passed to the feature selection module. 

3.3. Feature Selection 

The Hybrid Badger Algorithm (HBA), a metaheuristic search strategy, is employed to identify optimal feature subsets 
while avoiding local optima. HBA dynamically explores the feature space using two primary phases: 

Digging Stage: Simulated using Cardioid motion, adjusting search directions based on intensity and prey distance:  

 
𝑋𝑡+1 = 𝑋𝑝𝑟𝑒𝑦 − 𝛽 ∗ 𝛼 ∗ 𝜑(|2 ∗ 𝑟𝑎𝑛𝑑1 ∗ sin (2𝜋 ∗ 𝑟𝑎𝑛𝑑2)|)     .,,,,,,,,,,,,,,,    (2) 

In equation (2) 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are random values in [0,1], 𝑋𝑝𝑟𝑒𝑦 represents the prey’s location, α is an adaptive factor, 

and β influences search intensity. 

Honey Phase: Models cooperative hunting behavior to refine feature selection:  

𝑋𝑡+1 = 𝑋𝑝𝑟𝑒𝑦 − 𝛾 ∗ 𝛼 ∗ 𝜑  ………….  (3) 

In equation (3) γ represents search intensity regulation. 

This adaptive feature selection process improves computational efficiency and enhances model robustness. 

3.4. Secure Distributed Computation Using TEEs 

To protect data privacy, the proposed framework integrates TEEs such as Intel SGX and ARM TrustZone. TEEs create 
isolated environments where sensitive computations are securely executed. The attestation process verifies the 
integrity of code execution, ensuring resistance against unauthorized access and side-channel attacks. 

Confidential Data Processing: Data is encrypted before offloading to the cloud, ensuring that computations occur within 
TEEs without exposing raw information. 
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Decentralized Trust Management: Blockchain-based smart contracts facilitate authentication and access control, 
ensuring only authorized entities interact with TEEs. 

3.5. Intrusion Detection Using LSTM-MAF 

The proposed framework employs an LSTM-MAF model for intrusion detection. LSTM captures long-term dependencies 
in sequential data, while Multi-Activation Function (MAF) enhances gradient flow, improving anomaly detection and is 
given in equation (4).  

𝑀𝑖𝑠ℎ(𝑥) = 𝑥 ∗ tanh (ln(1 + 𝑒𝑥))  ……………. (4) 

This improves detection performance by maintaining smooth gradients and reducing vanishing gradient issues. 

3.6. Secure Communication and Blockchain Authentication 

The proposed framework incorporates blockchain technology to enhance security: 

• Decentralized Access Control: Smart contracts manage authentication and permissions, ensuring that only 
verified nodes access the network. 

• Immutable Logs: Transactions and security events are logged on a blockchain ledger, providing traceability and 
resilience against tampering. 

• End-to-End Encryption: Secure communication protocols (TLS 1.3) ensure encrypted data transmission across 
edge-cloud environments. 

The proposed CCESF framework integrates confidential computing, blockchain authentication, and an LSTM-MAF 
intrusion detection model to enhance security and privacy in heterogeneous edge-to-cloud architectures. By leveraging 
TEEs for secure computations and blockchain for decentralized authentication, the framework ensures robust 
protection against cyber threats while optimizing computational efficiency in decentralized environments [5]. 

4. Experimental results 

The proposed Confidential Computing-based Privacy-Preserving Framework (CC-PPF) was implemented using a 
Python 3.8 environment with 64 GB RAM, a Windows 10 operating system, and an Intel i9 processor. The performance 
evaluation of the proposed framework was conducted using various metrics, including accuracy, F1-score, recall, and 
precision, as shown in Equations (5) to (8). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       …………….(5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      …………….. (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        ……………….. (7) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      …………..(8) 

Where TP, FP, TN, and FN denote True Positives, False Positives, True Negatives, and False Negatives, respectively. 

4.1. Performance Analysis 

Table 1 presents the performance evaluation of various privacy-preserving mechanisms. Compared to existing 
techniques such as Homomorphic Encryption (HE), Secure Multi-Party Computation (SMPC), and Differential Privacy 
(DP), the proposed CC-PPF achieves superior accuracy of 99.92% and 99.89% on benchmark datasets due to its ability 
to leverage hardware-based confidential computing. 
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Table 1 Performance evaluation of various privacy-preserving mechanisms 

Method Dataset Accuracy (%) F1-score (%) Recall (%) Precision (%) 

HE IoT-Edge 85.67 82.34 83.12 81.45 

SMPC IoT-Edge 89.12 86.54 87.98 85.78 

DP IoT-Edge 91.45 89.76 90.12 88.98 

CC-PPF IoT-Edge 99.92 99.84 99.78 99.85 

HE Cloud-Fog 83.98 80.67 81.34 79.89 

SMPC Cloud-Fog 88.76 86.21 87.45 85.34 

DP Cloud-Fog 90.87 89.32 90.01 88.23 

CC-PPF Cloud-Fog 99.89 99.79 99.82 99.80 

4.2. Comparative Analysis 

Table 2 represents a comparative analysis of existing privacy-preserving security frameworks. Compared with 
frameworks such as Federated Learning-based Secure Computing (FLSC), Blockchain-enhanced Privacy Protection 
(BEPP), and Zero-Knowledge Proof (ZKP)-based authentication, the proposed CC-PPF achieves a significantly higher 
performance due to its ability to provide a trusted execution environment (TEE) and hardware-enforced encryption for 
distributed computations. 

Table 2 Comparative analysis of existing privacy-preserving security frameworks 

Method Dataset Accuracy (%) F1-score (%) Recall (%) Precision (%) 

FLSC IoT-Edge 94.76 92.34 93.12 91.45 

BEPP IoT-Edge 96.87 95.23 95.89 94.67 

ZKP IoT-Edge 97.98 96.45 97.12 95.89 

CC-PPF IoT-Edge 99.92 99.84 99.78 99.85 

FLSC Cloud-Fog 93.56 91.23 92.45 90.78 

BEPP Cloud-Fog 95.98 94.12 94.87 93.56 

ZKP Cloud-Fog 97.12 95.89 96.45 95.34 

CC-PPF Cloud-Fog 99.89 99.79 99.82 99.80 

5. Discussion 

The advantages of the proposed CC-PPF framework over existing approaches are summarized below: 

• Enhanced Security: The framework leverages hardware-backed Trusted Execution Environments (TEEs) to 
isolate and process sensitive computations securely. 

• Privacy-Preserving Computations: Unlike traditional cryptographic methods that add computational overhead, 
CC-PPF ensures efficient distributed processing while maintaining strict privacy constraints. 

• Scalability & Adaptability: The approach integrates well with heterogeneous edge-to-cloud architectures, 
making it suitable for large-scale decentralized networks. 

• Robustness against Threats: Confidential computing safeguards sensitive data against adversarial attacks, 
outperforming traditional encryption and differential privacy techniques. 

Conversely, existing methods such as Homomorphic Encryption and Differential Privacy introduce significant 
computation latency and overhead, making them less practical for real-time decentralized systems. Federated Learning-
based approaches lack robust security guarantees, while Blockchain-enhanced privacy solutions face scalability 
limitations.  
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6. Conclusion 

This research proposes CC-PPF, a novel Confidential Computing-based Privacy-Preserving Framework, to enhance data 
security in heterogeneous edge-to-cloud architectures. By leveraging Trusted Execution Environments (TEEs), 
hardware-backed encryption, and secure multi-party computation, the proposed method enables secure distributed 
computations in decentralized environments. The experimental results demonstrate that CC-PPF achieves 99.92% 
accuracy on IoT-Edge datasets and 99.89% accuracy on Cloud-Fog datasets, outperforming existing privacy-preserving 
techniques such as Homomorphic Encryption, Federated Learning, and Blockchain-enhanced security solutions. The 
ability to safeguard sensitive computations while maintaining efficiency makes it a promising approach for next-
generation secure edge-cloud infrastructures. In the future, adaptive confidential computing models will be explored to 
enhance real-time security and performance while mitigating evolving cyber threats in decentralized ecosystems.  
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