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Abstract 

Waste food by-products represent a major disposal problem for the food industry, and they are often used as animal 
feed or fertilizers. This study examined the possible utilization of tomato waste as good sources of lycopene. Results 
revealed that lab-prepared tomato waste (LPTW) contains significantly (p<0.05) a larger amount of lycopene 
(57.87±5.30 µg/g fresh wt.) than industrial tomato waste by-products (ITWBP) (27.11±0.83 µg/g fresh wt.). The 
average amounts of extracted lycopene obtained from ultrasonication, freeze drying, and their combination were 
45.51±1.84, 104.10±1.23 and 138.82±6.64 µg/g fresh wt., respectively. Subjecting ITWBP to freeze drying and to 
ultrasonication separately increased their lycopene contents by 2.8 and 0.68 folds, respectively. However, applying the 
combined treatment of freeze drying and ultrasonication (45 min at 50 Hz) increased the yield of extracted lycopene 
from industrial tomato waste by 4.12 folds.  Antioxidants scavenging capacity of FDITW calculated as % reduction in 
the DPPH and ABTS free radicals using1.5mg freeze dried industry tomato waste were 49.64±0.44 and 12.3±0.11, 
respectively.  

Keywords:  Antioxidants; Lycopene; Ultrasonication; Freeze Drying; Tomato Wastes; Scavenging Capacity. 

1. Introduction

A rapidly accumulating and overwhelming evidence from various epidemiological studies around the world indicates 
that fresh fruits and vegetables are the primary and well known resource of antioxidants. Antioxidants are chemical 
compounds that can scavenge free radicals in the body [1]. Antioxidants include many compounds such as carotenoids, 
vitamins, flavonoids, dietary glutathione, endogenous metabolites, and other polyphenolics [2, 3].  

The antioxidants, carotenoids, are natural pigments present in various vegetables, plants, birds and marine animals. 
The presence of conjugated double bonds in carotenoids provide them with the antioxidant properties and their ability 
to successfully delocalize of captured free radical species [4]. Approximately 600 fat-soluble carotenoids have been 
identified in nature but only 40 are present in human diet. Almost 90 % of the carotenoids in the diet and human body 
are represented by β-carotene, α-carotein, lycopene, lutein and cryptoxanthin. Fruits and vegetables are considered as 
main sources of antioxidant in human diet. Orange fruits provide α-cryptoxanthin, dark green vegetables provide lutein, 
where tomatoes and tomato products are the primary sources of lycopene [5, 6].  

Lycopene (C40H56) is an acyclic carotenoid containing thirteen double bonds and it is the major carotenoid present in 
tomatoes, accounting for more than 80 % of the total tomato carotenoids in fully red-ripe fruits [7, 8, 9]. Lycopene is 
shown to be present in high concentrations in tomatoes and tomato products and has received a great interest in the 
past decade. Epidemiological evidence continues to suggest that lycopene may provide protection against cancer and 
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other degenerative diseases mediated by free radical reactions [10]. The ability of lycopene to act as a potent antioxidant 
is believed to be responsible for protecting cells against oxidative damage and thereby decreasing the risk of chronic 
diseases [8]. Recent epidemiological studies revealed that the intake of tomatoes and blood lycopene levels are inversely 
associated with the risk of developing cancers at several anatomical sites, including the prostate, skin, stomach, breast 
and lungs [11, 12, 7, 13, 10, 9] and cardiovascular diseases [14, 5].  Moreover, the consumption of tomatoes has been 
demonstrated clinically to have beneficial, protective effects against coronary artery disease and several neoplasms 
[14]. 

In addition to fresh consumption, tomatoes are processed into various products, including juices, ketchup, sauce, paste, 
puree and powder. The solid waste (70-75 % of fresh tomatoes), remaining after juice/pulp extraction and processing, 
consists of skin, seeds and fibrous matter. This waste along with damaged tomatoes are dumped as a solid waste or to 
some extent used as fertilizers [15]. Lycopene contents in the skin, seeds and fibrous matter of tomato waste vary 
significantly. It is suggested that 72-92 % of lycopene was associated with the water insoluble fraction and the skin [4]. 
Based on these observations and considering the nutritional value of lycopene and the continuous increase in the 
production of tomatoes and tomato products, there has been significant interest in recent years to retrieve and utilize 
tomato waste-by-products. This study investigated the presence and recovery of antioxidant (lycopene) from 
laboratory and industry generated tomato waste by-products using ultrasonication and freeze drying techniques. 
Additionally, the antioxidant activities of freeze dried industrial tomato waste by-products were assessed using 2 
different in vitro methods, namely: 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and [2’.2’-azinobis(3-ethylbenzothiazline-6-
sulfonic acid diammonium salt] (ABTS) free radical scavenging assays.  

2. Material and methods 

2.1. Experimental design 

A split blot randomised design was followed in this investigation. The experiments were repeated at three different time 
intervals. Fresh and frozen tomato waste by-products were handled and prepared following the exact same procedures 
to minimise variations among repeated experiments. Antioxidant activities were determined in freeze dried tomato 
waste only, since the main object of this project was targeting mainly the industrial tomato waste.  

2.2. Chemicals 

All the chemicals used in this study, including lycopene standard (90-95% pure) and HPLC grade methylene chloride, 
hexane, methanol, acetone, methanol, toluene, Potassium Hydroxide (KOH), Sodium Sulphate (Na2SO4), Butylated 
Hydroxytoluene (BHT), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2’,2’-azinobis(3-ethylbenzothiazline-6-sulfonic acid) 
diammonium salt (ABTS), 6-hydroxy-2,5,7,8-tetramethylchro-man-2-carboxylic acid (Trolox), and chloroform were 
purchased from Sigma Chemical Company (St. Louis, USA).  

2.3. Tomato samples 

Fresh tomato samples were bought from a local market in central Melbourne at different time intervals to produce lab-
prepared tomato waste (LPTW) in laboratory. Efforts were made to choose the fruits of same cultivar, similar size and 
comparable degree of ripeness and colour. Frozen industrial tomato waste (FITW) by-products were kindly supplied 
by one of the food processing companies in north Victoria and stored at -20 oC until used. 

2.4. Preparation of fresh tomato extract 

Tomato tissue waste product was separated following the method of Ajlouni et al., [16] with some modifications. 
Tomatoes (about 3 kg) were rinsed with distilled water, sliced, and then homogenized in a fruit blender (Breville, 
Powermax 550 watt) for 1 minute at room temperature. The homogenate was filtered using cheese cloth, and the 
separated tomato tissues were squeezed many times by hand to remove all juice from the waste by-product. 

2.5. Lycopene extraction from laboratory prepared tomato waste by-product using ultrasonication 

The laboratory prepared tomato waste (LPTW) was ultrasonicated using a bench top ultrasonication cleaner 
(Unisonics PTY. LTD,type Fx P8M, at freq 50 Hz, NSW, Australia). About 10 g LPTW was transferred into a100ml 
volumetric flask and mixed with 30 ml of hexane: acetone:methanol:toluene, 10:7:6:7 v/v/v/v. That step was repeated 
4 times and one of these samples was left as a control, while the remaining flasks (3) were ultrasonicated at room 
temperature for 15, 30 and 45 min, respectively. Each ultrasonicated sample was then mixed with 6 ml of a 4 % 
methanolic KOH, Each samvortexed for 1 min, and stored in the dark at room temperature for16 hrs. of saponification , 



Ajlouni et al. / World Journal of Advanced Research and Reviews, 2020, 05(02), 177–185 

179 
 

The saponified mixture was then mixed with 30ml of hexane followed by gentle swirling for 1 min, before diluting   to a 
final volume 100 ml with 1 % Na2SO4. The flask was left to stand in the dark for an additional 1 hr. then transferred 
into a separation funnel. The upper phase was transferred into a rotary evaporator and evaporated at 50 ºC. The rotary 
evaporated sample was then dissolved in 15 ml of methanol-methylene chloride 45:55 v:v [17]. Within 24 hours of the 
extraction, all samples were filtered through 0.22 µm membrane and 10 µl of each sample extract were injected into the 
HPLC using an automatic injector. 

2.6. Lycopene extraction from the industrial tomato waste by-product 

After the successful extraction of lycopene from LPTW using ultrasonication, the procedures were developed further to 
extract lycopene from industrial tomato waste by-products (ITWP).  

Ultrasonication at frequency 50 Hz (a), freeze drying (b), and a combined treatment of freeze drying and ultrasonication 
(c) were used in these studies.  

 Frozen ITWP was delivered to our laboratory at The University of Melbourne in small boxes containing 8-10 kg 
each. These frozen samples were stored at -20 oC until analysed. About 100 g of ITWP was thawed at room 
temperature, squeezed thoroughly by hand to remove remaining juice, and lycopene was extracted after 
ultrasonication for 45 min as explained before (section 2.5).        

 Freeze drying was performed on frozen ITWP. About 8-10 g of frozen tissues were spread in a plastic Petri dish, 
and 9-12 of these dishes were arranged inside the vacuum chamber of a freeze drier (Dynavac Engineering FD3 
freeze-dryer, NSW Australia) and freeze dried at -40 oC. Freeze dried Industrial tomato waste (FDITW) samples 
were ground into powder using porcelain pestle and mortar. The powder was packaged in zip lock plastic bags 
and then stored in a refrigerator until used. 

 The freeze dried powder (3 g each) was then subjected to the same procedures of ultrasonication and extraction 
used with LPTW as explained before (section 2.5). 

2.7. Assessment of lycopene contents 

Lycopene analysis was performed using a Shimazu High Performance Liquid Chromatography equipped with a 
workstation computer (Class VP) and a photodiode array (PDA) detector (SPD-M10Avp) following the method of 
Ajlouni et al. [16]. The column used was a LC18 stainless steel column of 25cm × 4.6 nm packed with C18 reversed-phase 
material with a particle size of 5µm (SUPELCO). The lycopene standard was dissolved in chloroform containing 0.1 % 
butylated hydroxytoluene (BHT), divided into 1ml aliquots and stored at -80 ºC until used. All samples (standards and 
extracts) were filtered through 0.22 µm membrane, and 10 µl from each sample were injected into HPLC. The elution 
was performed at room temperature with an isocratic solvent, methanol: (methanol : methylene chloride, 45:55 v/v) 
99:1 v/v, at a constant flow rate of 2.0 ml/min. The peak response of lycopene was detected at 472 nm and the 
quantification of the lycopene was performed using data from external standard curves and the linear regression 
equations (Fig.1). 

 
A
Q 
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Figure 1 External standard curve and linear regression equation of lycopene standard (A), and HPLC chromatogram 
of freeze dried industry tomato waste (FDITW) (B). 

2.8. Antioxidant activity of the freeze dried industrial tomato waste 

Antioxidant extract was prepared by dissolving FDITW samples in 50 % ethanol at room temperature following the 
method of Tow et al. [18]. The mixture was vortexed for 1 min and centrifuged at 14000×g (Eppendrof centrifuge, 
Germany) for 4 min before collecting the supernatant for antioxidant activity determination. The antioxidant activities 
of the lycopene extract were assessed using two different methods.  

The 1st method was based on the evaluation of the free radical scavenging capacity of the lycopene extract using 2,2-
Diphenyl-1-picrylhydrazyl (DPPH) as reported by D’Angelo, et al. [19] with some modifications. Reduction of 2,2-
Diphenyl-1-picrylhydrazyl (DPPH) by an antioxidant or by a radical species results in a loss of absorbance at 517 nm. 
Thus, the degree of discoloration of the solution indicates the scavenging efficiency of the added substances. The DPPH 
solution was freshly prepared daily, covered with aluminium foil, and kept in the dark at 4 ºC between measurements. 
FDITW sample extract (1.5 mg each) was mixed with 60μl 0.5mM Tris-HCl (pH 7.2) in a 96-well micro plate. The reaction 
was initiated by adding 150 μl/well of DPPH solution in ethanol to each well. The reaction mixture was kept in the dark 
at room temperature for 30 minutes, before measuring its absorbance at 517 nm using microplate reader (Thermo, 
Multiskan Spectrum). The percentage reduction of the initial DPPH adsorption was calculated using the following 
formula:  

% Reduction in absorbence= [(absorbance DPPH control–absorbance sample) / absorbance DPPH control] X 100 

The 2nd  method was based on the measurement of the rate of radical [2’.2’-azinobis(3-ethylbenzothiazline-6-sulfonic 
acid diammonium salt] (ABTS) decolourisation. The assay was performed according to the method of Seeram et al. [20] 
with minor modification. The radical cations ABTS were prepared by adding 80 mg of solid manganese dioxide to 20 ml 
of 5 mM ABTS·+ aqueous stock solution (using a 75 mM Na/K buffer at pH 7). Excess manganese dioxide was removed 
from the filtrate by passing through a 0.22 µm membrane. This solution was then diluted with 5 mM phosphate buffered 
saline (PBS) pH 7.4 to an absorbance of 0.70±0.02 at 734 nm, and pre-incubated at 30 °C prior to use. Fresh ABTS·+ 

radical cation solution was prepared each day. Antioxidant extract of FDITW samples (1.5 mg) was mixed with 200 μl 
of ABTS·+ radical cation solution in 96-well micro plates. The absorbance was read at 734 nm after 6 min of incubation 
at 30 °C. The percentage reduction of the initial ABTS free radical absorption) was calculated using the following 
formula:  

% Reduction in absorbence = [(absorbance ABTS control–absorbance sample) / absorbance ABTS control] X 100 

2.9. Statistical Analysis 

The statistical analysis was done using Statistical Analysis System (SAS) program (1990, SAS/STAT User's guide, 
Version 6.06, 4th ed. Cary, NC.). Data were analysed using the one –way ANOVA. The LSD was used to test differences 
between experiment means. Differences among means with p < 0.05 were accepted as representing statistically 
different samples. 

B 
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3. Results and discussion 

3.1. Impact of Ultrasonication on lycopene contents in lab-prepared tomato waste (LPTW)  

Ultrasonicating of LPTW for 15, 30 and 45 minutes using 50 Hz at room temperature showed significant (p<0.05) 
improvement in the amount of extracted lycopene. Ultrasonication of LPTW also indicated a positive correlation 
between ultrasonication for 45 min and the amount of extracted lycopene (Fig. 2). Non-ultrasonicated (control) LPTW 
showed average lycopene contents of 57.87± 5.30 µg/g fresh wt. Increasing ultrasonication time from 15 min to 30 min 
showed insignificant improvement (P>0.05) in lycopene contents.  However, data revealed significant (p<0.05) 
increment in the amounts of extracted lycopene when the ultrasonication time was increased to 45 minutes at room 
temperature. The amount of extracted lycopene from LPTW after 45 min ultrasonication was 87.68±1.59 µg/g fresh wt 
(Fig.2), which represented an increment of 51.51 %, in comparison to the control. These findings clearly indicated that 
tomato waste tissues could be utilized as an excellent source of lycopene when treated properly. Additionally, these 
results confirmed that ultrasonication (50 Hz) for 45 min could be considered a good method to improve lycopene 
extraction from tomato waste tissues. It was observed also that those ultrasonication treatments did not affect the 
integrity of the treated tomato waste tissues. Consequently, it was assumed that modifying the ultrasonication process 
to help rupturing the cellular structure of the tomato tissues could be an essential requirement to improve the yield of 
lycopene extraction. To test that assumption, lycopene was extracted from the industrial tomato wastes as thawed 

samples, after freeze drying, and after freeze drying and ultrasonication. 

 

Figure 2 Lycopene contents in lab-prepared tomato waste (LPTW) ultrasonicated for 15, 30 and 45 min at room 
temperature. Results represent the average of 9 measurements ±SD. Columns with different superscripts (a, b, c, d) were 

significantly different (p<0.05). 

3.2. Impact of Ultrasonication on lycopene contents in thawed industrial tomato waste (TITW) 

The initial lycopene contents in the thawed industrial tomato waste (TITW) was 27.11±0.83 µg/g fresh wt. (Fig. 3). This 
value was significantly (P<0.05) smaller than the value (57.87± 5.30 µg/g fresh wt.) obtained from lab-prepared tomato 
waste (Fig. 2). Such variations may be attributed to the high pressure processing conditions used by the industry to 
extract tomato juice, and the squeeze out of most of the lycopene from the tissues. Aside from these variations, data 
generated from thawed industrial tomato wastes (TITW) clearly confirmed the positive impact of ultrasonication on 
the amounts of extracted lycopene from tomato waste by-products.  Ultrasonicating (50 Hz) TITW for 45 min increased 
the amounts of extracted lycopene significantly (P<0.05). The amount of lycopene isolated from ultrasonicated thawed 
industrial tomato waste was 45.51±1.84 µg/g fresh wt, as compared to 27.11±0.83 in untreated (control) samples 
(Fig.3). 
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Figure 3 Lycopene contents in thawed industry tomato waste (TITW) and freeze dried industry tomato waste 
(FDITW) ultrasonicated for 45 min at room temperature. Results represent the average of 9 measurements ±SD. 

Columns with different superscripts (a, b) were significantly different (p<0.05). 

Comparing the percentage increment in lycopene contents in both laboratory prepared and industry generated tomato 
waste by-products as a result of ultrasonication (45 min) clearly revealed that the % increment in  industry tomato 
waste (67.87 % = 0.67 fold) was significantly (P<0.05) larger  than that in laboratory prepared tomato waste (51.51 %). 
Such variations could be attributed to many factors, including tomato cultivar, degree of ripeness, level of damaged 
tissues, and most importantly, the method of processing [21]. Additionally, as mentioned earlier, the high pressure used 
by the industry to extract tomato juice left the remaining tissue with less lycopene content (27.11±o.83 µg/g fresh wt.) 
(Fig.3) in comparison to laboratory prepared samples (57.87±5.30 µg/g fresh wt.) (Fig. 2). These variations could 
indicate that the larger initial lycopene content in laboratory prepared tomato waste (57.87±5.3 µg/g fresh wt.) (Fig 2) 
than the industrial tomato waste samples (27.11±0.83 µg/g fresh wt.) (Fig 3) reduced the chance of percentage lycopene 
increment as a result of ultrasonication. In another word, the gap between the initial (27.1±0.83 before ultrasonication) 
and final lycopene content (45.51±1.84 µg/g fresh wt.) in the industrial waste was lager that that in laboratory samples 
and led to larger percentage increment of lycopene content. 

3.3. Impact of freeze drying on lycopene contents in industrial tomato wast 

Freeze drying of industrial tomato waste by-products significantly (P<0.05) improved the lycopene yield. The average 
amounts of lycopene based on fresh weight ranged from 27.11±0.83 µg/g in the control samples (none freeze dried) to 
104.10±1.23 µg/g in freeze dried sample (Fig 3). Consequently, it could be concluded that that freeze drying treatment 
could increase the yield of lycopene extraction from tomato waste by-products by 2.8 fold. These results clearly 
emphasised the previously proposed theory (section 3.1) that rupturing the cellular structure of tomato tissues might 
be essential treatment to improve the yield of extracted lycopene. Freeze drying could be considered an excellent 
technique to improve antioxidants extraction, such as lycopene, without exposing the tissue to any heat treatment. 
However, the amount of energy needed during the processes of freezing and vacuuming would increase the cost of 

extraction much more than ultrasonication and might become a limiting factor. 

3.4. Impact of freeze drying and Ultrasonication (50 Hz and 45 min) on lycopene contents in freeze dried 
industrial tomato wastes (FDITW) 

Subjecting FDITW tissue to ultrasonication (50 Hz) for 45 min caused additional significant (P<0.05) improvement in 
the amounts of extracted lycopene (Fig.3). Results from ultrasonicating freeze dried tomato waste showed an increment 
in lycopene content from 104.10±1.23 to 138.82±6.64 µg/g fresh wt. after ultrasonication (Fig.3). The calculated 
additional percentage increment in extracted lycopene as a result of ultrasonication reached 33.35 %. These results 
confirmed our previous speculation (section 3.3) that freeze drying and grinding of tomato waste would rupture and 
damage the tissues cellular structure, consequently, facilitate and improve the efficacy of ultrasonication. 

These findings showed that industrial tomato wastes can be a significant source of lycopene when subjected to freeze 
drying, ultrasonication and their compensation. Freeze drying appeared to be more efficient than ultrasonication, and 
their combination was proved to be the best treatment for the largest lycopene yield. As several previous studies [4, 13, 
22, 23], confirmed that tomato wastes contains more lycopene than tomato juice it is strongly recommended that tomato 
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waste by-products should be recycled using these new techniques and utilized as additional nutritional sources of 
lycopene. 

3.5. Antioxidant activity of freeze dried industrial tomato waste (FDITW) 

In vitro antioxidant analysis to assess the antioxidants capacity of FDITW was performed using two different methods, 
namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical reduction and [2’.2’-azinobis(3-ethylbenzothiazline-6-sulfonic 
acid diammonium salt] (ABTS) radical decolourisation. Results from these analyses revealed that DPPH method was 
more sensitive than ABTS.  Only 1.5 mg freeze dried sample was sensitive enough with the DPPH method, while 10 mg 
was needed with the ABTS. The percentage reduction of the initial DPPH via the FDITW antioxidant scavenging 
capacities ranged from 48.87±2.39 to 50.25±1.09 in the presence of 1.5 mg freeze dried tomato tissue (Table 1).  The 
calculated scavenging activity of FDITW using ABTS radicals revealed an average reduction in the absorbance of the 
initial ABTS radical by 12.30 % (Table 1). Consequently, comparing the % scavenging capacity of DPPH and ABTS 
showed that antioxidants from FDITW were more active in the presence of DPPH free radicals. These results were in 
disagreement with those reported by Chen et al. [24], who reported that antioxidants extract from persimmon and 
tomato fruits had almost identical ability to scavenge both ABTS and DPPH radicals. However, data by same authors 
showed significant differences between DPPH and ABTS results when testing grape and apple antioxidant extracts. 
Consequently, our results were in agreement with those reported on grape and apple and could suggest that 
antioxidants from different fruits may show different rate of scavenging activities to DPPH and ABTS free radicals. The 
ABTS scavenging capacity could also be reported using as the micromolar Trolox equivalent (mM TEAC) as suggested 
by D’Angelo, et al. [19]. 

The antioxidant properties of phytochemicals have been suggested to reflect the rates of free radical scavenging [25]. 
The properties underlying the activities of antioxidants towards free radicals and their scavenging effects relate 
particularly to their abilities to donate electrons or hydrogen atoms and to their relative propensities to undergo 
oxidation [25]. Another study by Chang et al. [26] reported that the reducing power could be attributed mainly to the 
bioactive compounds associated with some antioxidant activity, such as lycopene, present in tomatoes. Lycopene are 
good electron donors and could terminate the radical chain reaction by converting free radicals to more stable products. 

Table 1 Antioxidant activities of freeze dried industry tomato waste (FDITW) using DPPH and TEAC assays 

Trials  
Percentage reduction of the initial absorption in the presence of 1.5 mg 
FDITW* 

 DPPH ABTS 

1 50.25±1.09 12.15±1.50 

2 48.87±2.39 12.33±0.11 

3 49.64±0.44 12.24±0.16 

*Results represent the average of 9 measurements ±SD. 
 

4. Conclusion 

Results from this study have clearly demonstrated that freeze drying, ultrasonication (50 Hz, 45 min), and their 
combination could be excellent methods to improve lycopene extraction from tomato wastes. Additionally, this study 
also demonstrated that the yield of antioxidant extraction form industrial tomato wastes can be significantly improved 
via freeze drying alone or in combination with ultrasonication. The current industrial practices use food wastes, in 
general, as animal feed and/or fertilizers, which may require additional costs to transfer the wastes into the farm. 
However, based on this investigation it is anticipated that these developed methods, especially the combination of freeze 
drying and ultrasonication, could be applied to extract antioxidants from various food wastes, and will provide the food 
industry with better alternative options to re-utilize such wastes. Further investigation is continuing to examine the 
possible use of extracted lycopene as a functional ingredient in food mixes and/or in the pharmaceutical products.  
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