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Abstract 

Severe burn injuries (BI) represent a public health problem in the world, especially children, most of cases due to hot 
liquids. In these situations, it tends to be more superficial and extensive injuries. BI above 40% of total body surface 
area are considered extensive and result in local and systemic responses. After an extensive BI, a persistent 
hypermetabolic and catabolic state begins, resulting several alterations in skeletal muscle. Since skeletal muscle is as a 
reservoir of amino acids in organisms, catabolic states occurs a protein metabolism deviation to the site of injury and 
to essential metabolism, resulting in loss of muscular mass and atrophy. The muscular connective tissue wrap also 
suffers the changes in favor of accompanying the morphological alterations of muscle fibers. Besides that, the skeletal 
muscle regeneration depends on a delicate balance between systemic inflammatory response, and muscle regulatory 
and atrophy factors. Thus, the aim of this review is contribute to understanding of these relationships.  
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1. Introduction

Severe burn injuries (BI) represent a public health problem. The incidence of this type of injury is high in all age 
groups, especially children and due to hot liquids in most of cases. In these situations, it tends to be more superficial 
and extensive injuries, resulting in systemic consequences as increased metabolism and protein catabolism. In view of 
this question, several studies should be conducted to understand the systemic consequences of extensive BI. 

In children who have suffered severe BI, the musculoskeletal system may be prejudiced; resulting in a delay in the 
growth when compared with who do not suffered the injury promoted by a persistent hypermetabolic state with 
consequent protein catabolism and muscle atrophy. 

Since skeletal muscle is as a reservoir of amino acids in organisms, catabolic states occurs a protein metabolism 
deviation to the site of injury and to essential metabolism, resulting in loss of muscular mass and atrophy. The 
muscular connective tissue wrap also suffers changes in favor of accompanying the morphological alterations of 
muscle fibers. Besides that, the skeletal muscle regeneration depends on a delicate balance between systemic 
inflammatory response, and muscle regulatory and atrophy factors.  

This review paper we discuss the relationship between severe burns and the systemic consequences that affect 
skeletal muscle tissue. Experimental model of burn injury assays, as well as articles involving human suffered burn 
injury were mentioned. This review was structured in topics, aiming a comprehensive and actual view of the 
metabolic mechanisms related to the systemic consequences in skeletal muscle after severe burn injury. 
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1.1. Incidence and classification of burn injuries 

World Health Organization (WHO) defines burn injury as a skin injury or in other organic tissues [1], resulting in 
varying degrees of tissue loss with local and systemic clinical repercussions [2]. WHO indicates that there are 
approximately 265,000 deaths per year due to BI, this type of injury be the 11th cause of death in children 1 to 9 years 
of age and the fifth most common cause of nonfatal injuries in childhood. The infant mortality by BI is 7 times higher in 
developing and underdeveloped countries than in developed countries [1]. 

Children are more vulnerable to BI risk, since they are less aware of danger, have reduced reflex capacity compared to 
adults, and are less able to react quickly and properly. In addition, children's natural curiosity increases with the 
development of motor activity and skills, so the younger the child, the greater the risk of BI [3]. 

Epidemiological studies in the treatment center for burn injuries show that scalds by outpouring of warm substances 
in children are one of the most common accident; predominating second degree BI in domestic environments, and the 
thorax is the most affected site [2,4–7]. Among the most common accidents are boiling water in the kitchen, hot water 
bath, hot drinks and cooking oil. In these case, the lesions are usually more superficial, but more extensive [2,8]. 

BI can be classified according to its extent, location, depth, pathophysiological status, age, and social and individual 
circumstances of the patient [8,9]. Depth lesion classification is the most common. In first degree lesions, the 
superficial layer of the dermis is affected, and it is characterized by erythema, swelling, local pain, without bubbles; 
while in the second degree lesions occur in the deeper layers of the dermis, appearing bubbles, detachment of layers, 
erythema, pain and swelling. Finally, in the third degree lesions all the layers of dermis are affected, reaching muscles 
and bones [10].  

In first-degree BI, healing occurs within 7 days, and in the second degree it may vary from 7 to 21 days, depending on 
whether superficial or deep, and third degree usually there is no spontaneous cure, requiring surgical intervention [9]. 
Depth and extent of the total body surface area (TBSA) are important factors that influence patient survival and 
systemic responses [6]; so the longer the TBSA is, the greater the risk of systemic repercussions [2,8,11,12]. 

1.2. Systemic responses due to BI 

BI above 40% of TBSA are considered extensive and result in local and systemic responses, as hormonal and 
metabolic alterations [2,11,12]. Extensive BI are followed by long periods of stress, inflammation and 
hypermetabolism; characterized by increase of body temperature, glycolysis, myofibrillar proteolysis, glycogenolysis 
and lipolysis [13]. The increase of catecholamines, glucocorticoids, glucagon and dopamine secretion are responsible 
for initiating the hypermetabolic response [13,14]. 

In an early phase to an extensive BI response, a hyperglycemic state occurs, followed by a late phase with a 
predominance of protein hypermetabolism [15]. Other alterations, such as fever, hyperdynamic blood circulation, 
gastrointestinal barrier deficiency with passage of bacteria and toxins into bloodstream are also observed. In addition, 
dehydration due to exudation in the area of the injury leads to hydroelectrolytic imbalance [2]. 

Amidst extensive BI pathophysiology, the expression of inflammatory mediators and a decrease in the level of 
anabolic hormones contribute to a significant increase in catabolic state and energy expenditure [12]. Children who 
have suffer extensive BI have an increase of up to 100% in energy expenditure when compared to healthy children 
[16]. BI in children have two main differences when compared to adults. First, children suffer greater fluid loss than 
adults [17], because the skin layers are thinner and have a smaller amount of insulating subcutaneous tissue than 
older children and adults [3]. In addition, children need follow-up until full growth [17] as persistent protein 
catabolism may contribute to the delay in growth for up to two years after BI [13,18]. And the presence of 
contractures limit the range of movement, resulting in functional limitation and inadequate musculoskeletal growth 
[17], increasing the risk of bone deformities [19]. 

The response after severe BI is characterized by a hypermetabolic state that always varies increasing the larger the 
affected TBSA. In BI above 40% of TBSA, there is a protein catabolic state that persists for at least one year after BI 
[20]. Such factors contribute to muscle protein loss, bone mineral density, and total bone mineral content [12]. 
Oliveira et al [21] verified changes in the condyle of the mandible of young Wistar rats submitted to scalding injury 
(SI) of 45% of TBSA, and observed that bone remodeling was affected, with a decrease in bone mineral density and 
alteration of bone morphology affecting the growth of the mandibular condyle. 
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In face of these consequences, hypermetabolism and chronic systemic inflammatory response induce insulin 
resistance, which is maintained for up to three years after BI [13]. According to Atiyeh et al. [15], the second most 
prominent BI response is metabolic stress due to hyperglycemia and the first is hypermetabolism. 

Hyperinsulinemia and hyperglycemia are hallmarks of insulin resistance soon after BI [22]. Hyperglycemia remains as 
a result of increased hepatic gluconeogenesis and glucose substrate [15]. Such metabolic changes lead to decreased 
anabolic action of insulin, increased glucose release, lipolysis in adipose tissue, hepatic gluconeogenesis and 
proteolysis in skeletal muscle [23], in order to provide increased glucose availability in an attempt to enhance the 
energy source to glucose-dependent tissues [24] thus providing a cycle in the body. 

 

Figure 1 Extension of burn injury and main systemic alterations. Extensive BI leads to local and systemic responses. 
As chronic inflammation and oxidative stress with increased expression of several inflammatory mediators and 
release of reactive oxygen species. Hypermetabolism with consequent increase of energy expenditure and catabolic 
state, such as: proteolysis, glycolysis, lipolysis, gluconeogenesis and glycogenolysis. And insulin resistance with 
increased serological parameters such as hyperinsulinemia and hyperglycemia. These systemic responses remain for 
long periods, according to TBSA. 

2. Impacts of severe BI on skeletal muscle 

This topic brings the systemic consequences of the extensive burn injury to the skeletal muscle, and also how 
regeneration occurs with consequent remodeling of the connective tissue wrap.Finally followed by processes of 
atrophy, inflammation and oxidative stress that may occur in this tissue during hypermetabolism state. 

2.1. Systemic effects of BI on skeletal muscle 

The skeletal muscles development, with the exception of some craniofacial and esophageal muscles, is derived from 
precursor cells of the paraxial mesoderm, from somites originating on the sides of the neural tube of the embryo, 
during the embryogenesis of vertebrates [25]. Expression of progenitor genes for cell cycle entry or arrest, as well as 
cell differentiation, occurs in response to signals from the neural tube, notochord, and mesoderm. Signaling factors 
have effects on the expression of genes in the myotome domains; whose signaling pathways regulate a cascade of 
molecules in order to coordinate and balance the proliferation, differentiation, and specification of the myogenic 
lineage during vertebrate development [26]. 

Postnatal muscle growth occurs through the fusion of satellite cells with preexisting muscle fibers. The satellite cells 
are located at the periphery of the muscle fibers between the basement membrane and the plasma membrane; 
following a mechanism similar to that occurring in muscle recovery and repair [27]. Proteolysis in skeletal muscle and 
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consequent reduction of muscle mass are characteristic of denervation, cachexia [28], diabetes, renal failure and AIDS 
[29], cancer, sepsis, and extensive BI [15,30]. After an extensive BI, a persistent hypermetabolic state begins, resulting 
in skeletal muscle atrophy, decreased muscle mass and function. Such complications are considered the main 
complications of this type of injury [15,31]. The balance between catabolism and protein anabolism, as a consequence 
of more than 40 % of TBSA in BI undergoes reorganization [16]. Skeletal muscle, which is an endogenous protein 
reservoir, undergoes increased proteolysis and the amino acids resulting from this process are destined for essential 
metabolisms as well as the restoration of BI [2,16]. 

The flow of protein synthesis to the BI site becomes five times greater than that of the muscular protein stock 
replenishment. The muscular catabolism, associated with hypermetabolism, is maintained for several months after BI 
and subsequent healing [16], making skeletal muscle function as a primary source of amino acids, serving as a 
substrate for energy production in gluconeogenesis during a hypermetabolic state [32]. Thus, increased glucose flux is 
directed to BI restoration so that glucose is consumed during anaerobic metabolism by fibroblasts, endothelial cells, 
and inflammatory cells at the site [15]. 

In order to provide glucose to vital organs during hypermetabolism, gluconeogenesis is increased in the liver and 
glucose, which is a substrate for such organs, comes from lipolysis and myofibrillar proteolysis. However, in healthy 
subjects, postprandial glucose metabolism increases blood glucose concentration and stimulates the release of insulin 
by the beta cells of the pancreas. Insulin mediates the uptake of glucose into muscle and adipose tissue by suppressing 
hepatic gluconeogenesis and maintaining glycemic homeostasis. In extensive BI cases there is a significant metabolic 
alteration of energetic substrate and hyperglycemia cannot suppress gluconeogenesis [13]. Therefore, both 
degradation and muscle protein synthesis are increased. Thus, degradation exceeds protein synthesis, resulting in 
more loss than protein gain [15]. Therefore, the persistent hypermetabolic state due to large BI leads to increased 
muscle proteolysis [33] and such damage brings about the need for regeneration of this tissue [26]. 

2.2. Regeneration of skeletal muscle after BI 

Postnatal muscle growth and muscle regeneration occur through the fusion of satellite cells with preexisting muscle 
fibers; such cells are located at the periphery of the muscle fibers between the basement membrane and the plasma 
membrane [27]. Satellite cells provide skeletal striated muscle with the ability to respond from physiological stimuli 
such as exercise to severe injury. However, muscular regenerative capacity is limited by the exhaustion of the 
population of these cells, which can lead to muscle deterioration [26]. So after a myotrauma, rupture of basal lamina 
occurs and consequent migration of the satellite cells to the region of the lesion. Such processes are mediated by 
inflammatory cytokines [25] and regulatory myogenic factors [26]. 

The regeneration of a muscle injury has three phases: destruction, repair and remodeling. In the destruction phase, 
inflammatory cells, such as lymphocytes and macrophages, phagocyte the necrotic muscle fibers [34]. In the repair, 
the satellite cells, which were in quiescence, are activated and return to the cell cycle within 2 hours after the injury. 
After 2 to 3 days, these cells initiate proliferation (or amplification) process, where occur cell division, and one 
daughter cell differs in myoblast while the other cell replenishes the pool of stem cells and returns to the state of 
quiescence [26,34].  

Within 5 to 7 days after injury, differentiation occurs, where myoblasts are withdrawn from the cell cycle, forming 
small basophilic myotubes with a centralized nucleus, characteristic of muscle regeneration. In the next phase, fusion 
of myoblasts occurs in myotubes and the growth of myofibers with centralized nuclei. In the remodeling, maturation 
of myofibers occurs and the nuclei to the periphery, characteristic of mature muscle fibers, since sarcoplasm is filled 
with contractile myofilaments organized as myofibrils, and restoration of cellular architecture occurs within 2 weeks 
after injury [26,34]. 

All events involved in muscle regeneration are coordinated by the expression of regulatory myogenic factors (MRFs): 
MyoD, Myf5, Mrf6 and Myogenin. These are nuclear transcription factors expressed sequentially during myogenesis 
[35]. At the beginning of myogenesis, satellite cells, when activated, express markers such as paired-box protein 7 
(Pax7), while active cells in early stages of myogenesis express helix-loop-helix transcription factors such as Myf5 and 
MyoD [36], both with increase of expression within two to six hours of a muscle injury [26]. 

MyoD is released in stages of primary myogenesis, in satellite cell activation and myoblast proliferation, participating 
actively until differentiation of these cells [37,38], and these phases are marked by the increased expression of this 
protein, with peak in its production three days after an injury [39]. Myogenin is involved in secondary stages of 
myogenesis, from differentiation [40]. The expression of Myf5 is later, with peaks within five days of the lesion, and 
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has similar expression to Myogenin [26]. The severe BI causes increased MyoD and Myogenin immunoexpression in 
skeletal muscle of young rats [41]. 

Like MRFs, the insulin-like growth factor (IGF) is also associated with the regulation of muscle regenerative capacity, 
participating in the hypertrophy of this tissue [42]. IGFs are peptides structurally related to insulin and include IGF1 
and IGF2. The main target tissue of these growth factors is skeletal muscle, stimulating hypertrophy and inhibiting 
muscle atrophy [36]. 

IGF-1 is an important regulator of postnatal growth and its isoform, IGF-1Ea, participates as a muscle regeneration regulator 

by increasing the activity of satellite cells, preserving the integrity of the fibers and prolonging the regenerative potential of 

skeletal muscle [43]. Under physiological conditions, the level of anabolic hormone IGF-1 in the tissues inhibits the 

degradation of myofibrillar proteins. Catabolic states caused by long BI, lead to a decrease in IGF-1 levels, favoring an 

increase in myofibrillar catabolism [44]. 

2.3. Remodeling of skeletal muscle after BI 

The skeletal muscle tissue consists of contractile, elongated, striated, multinucleate fibers with peripheral nuclei. The 
cytoplasm or sarcoplasm consists mainly of myofibrils that extend throughout the fiber and this myofibrils 
arrangement is responsible for the transverse striations [25]. The individual myofibers are connected by a connective 
tissue composed of three levels of wraps called endomysium, perimysium and epimysium. Each muscle fiber is 
connected at both ends by connective tissue called tendon [45]. 

In paper with rats submitted to SI of 45% of TBSA, the Sham group presented equidistant, polygonal, regular sized 
muscle fibers with peripheral nuclei. While 14 days after SI, the animals presented rounded, degenerating, irregular 
contours and varied sizes of the fibers, and increase of distance between fibers [41,46], fibers in process of splitting 
[41] besides inflammatory cells from vessels with vascular congestion [47]. There are also changes in the collagen 
type, after 4 and 14 days of SI, this authors observed the presence of collagen type III, which is an immature collagen 
characteristic of regeneration processes [41]. And the changes in muscle tissue that promote muscle mass decrease 
also lead to alterations in the muscle phenotype, accompanied by a change in the type of collagen from I to III [48]. 

Furthermore, efficient muscle repair requires the migration and proliferation of fibroblasts in order to produce new 
temporary components of the extracellular matrix, such as several types of collagen, fibronectin, elastin and laminin. 
These elements serve to stabilize the tissue, and act as a scaffold for the new fibers [49]. The amount of extracellular 
collagen is determined by the balance between synthesis and degradation [50]. According to Uemura et al. [51], 
metalloproteinases (MMPs) degrade components of the extracellular matrix and basement membranes, such as 
interstitial collagen, fibronectin, laminin and proteoglycans [52], this family of enzymes have the capacity to act both 
in physiological and pathological processes and its performance is a prerequisite for tissue remodeling and its 
expression may respond to growth factors and inflammatory cytokines [53]. 

Fusion of satellite cells in skeletal muscle to form new contractile fibers is a key step in the process that relates to 
metalloproteases [54], since the distribution of muscle strength and the process of muscular contraction depend on 
the collagen of the intra, inter and extra-muscular connective tissue [55]. MMP2 and MMP9 assist in myotube 
formation by migrating and differentiation of satellite cells in both muscle cells cultured in vitro and in animal models 
in vivo [56].  Theses both enzymes are characteristic in skeletal muscle injuries, even at distant sites from where the 
injury occurred because of their relationship to the degradation of basement membranes. MMP2 is capable of 
degrading components of the extracellular matrix such as elastin, fibronectin and collagens type I, II, III and IV. [57]. 

2.4. Atrophy of skeletal muscle after BI 

In skeletal muscle, there are pathways responsible for regular proteolysis, such as lysosomal, calcium-dependent and 
ubiquitin-proteasome-dependent pathways [58]. Among such mechanisms the most notable in with accelerated 
proteolysis states is the ubiquitin-proteasome system (UPS) [30], that during muscle atrophy acts to reduce protein 
synthesis and increase protein degradation [59].  

The proteolytic action of UPS is ATP-dependent and involves ubiquitin-activating enzyme (E1), ubiquitin-conjugating 
enzyme (E2) and ubiquitin ligase enzyme (E3). E3 transmits specific substrate for gene expression of two muscle-
specific enzymes, muscle RING finger 1 (MuRF1) and muscle atophy F-box (MAFbx, also known as atrogin-1) [60–62], 
leading to the primary regulation of muscle proteolysis under muscular atrophy conditions-induced, such as 
immobilization, denervation or systemic response to extensive BI [58]. In experimental models of animals submitted 
to extensive BI, have shown that muscular atrophy occurs by protein catabolism from the action of the proteases 
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dependent on calcium activation; by apoptosis and the ubiquitin-proteasome system [63]. In this condition, there is 
greater expression of the MuRF1 and MAFbx enzymes [58]. 

UPS pathway is not able to degrade intact proteins, suggesting that there is another system responsible for initiating 
degradation, probably a result of increased caspase-3 or calcium-dependent enzymes. UPS initiates the proteolytic 
action from the binding of free ubiquitin (Ub) molecules to the enzyme E1, and then Ub molecule is transferred to the 
enzyme E2. Ub molecule is then catalyzed by E3 and conjugated to the target myofibrillar protein by a protein-enzyme 
binding isopeptide in up to a minimum of four molecules. Finally, the 26S proteasome is capable of recognizing the 
signal in order to degrade the target protein and cleaves it in small oligonucleotides [29]. 

Recent studies have shown the specific function of each of E3 ligases, so that MuRF1 preferentially interacts with 
muscle structural proteins and promotes degradation of sarcomere proteins such as titin, myosin, nebulin and 
troponin [64]. In contrast, MAFbx interacts with MRFs, modulating myoblast differentiation, protein synthesis and 
muscle growth. This enzyme acts inhibiting the differentiation of myotubes by their interaction with MyoD. Similarly 
to this process, MAFbx binds to Myogenin promoting myotube degradation. In this way, both E3 ligases contribute to 
remodeling activity, atrophy and muscular metabolism [65]. 

Thus, skeletal muscle mass is regulated by balancing the rates of protein synthesis and degradation. Some of the 
signaling pathways that mediate this delicate balance include: Akt-mTOR, Akt-GSK3b, Akt-FoxO, and myostatin. Akt 
can be activated by insulin and IGF-1 to regulate protein synthesis and protein degradation. For the FoxO pathway, 
Akt is phosphorylated and activates the FoxO3 transcription factor of this family. Activation of FoxO3 induces the 
transcription and activation of ubiquitin ligaments MuRF1 and MAFbx and consequent increase of myofibrillar 
proteolysis [66].  

The increase of anabolic hormones such as insulin and IGF-1 acts on the regulation mechanism of MuRF1 and MAFbx 
decreasing the expression level of both and consequently acting in the reduction of skeletal muscle atrophy [66]. In 
experimental model of extensive SI occurs an increase in mRNA expression for MurRF1 occurs four days after injury, 
as well as an increase of MAFbx at 14 days post-injury [41]. The regulation of transcription of MAFbx and MuRF1 is 
closely linked to the metabolic and inflammatory state of cells, and in well-coordinated signaling events [29]. 

2.5. Inflammation and oxidative stress in skeletal muscle after BI 

The increase in expression of several inflammatory cytokines after extensive BI promotes the start and maintenance 
of hypermetabolism, compromising the structure and function of several tissues, such as muscle, skin, heart, immune 
system and liver [67]. In skeletal muscle, these cytokines contribute to the induction of muscle proteolysis, even in 
muscles not directly injured, resulting in mass deficit and consequent muscular atrophy [28]. The cause that results in 
hypermetabolism is still not well understood, however, it is known that interleukins, such as IL-1 and IL-6 and tumor 
necrosis factor alpha (TNF-α), arachidonic acid metabolites via cyclooxygenase and reactive species of oxygen, are 
some of the complexes that participate in this state [15]. 

In muscle, the systemic inflammatory response acts in order to optimize myogenesis by phagocytosis of cellular debris 
by macrophages, release of cytokines and growth factors [39]. Macrophages play a decisive role in the removal of 
necrotic or lesioned tissues, along with fibroblasts, producing complementary chemotactic signals (cytokines and 
growth factors) to attract circulating inflammatory cells. Inflammatory cytokines, such as interleukin-1beta (IL-1b-), 
IL-6, IL-8, TNF-α, are important in modulating chemotaxis for injured muscle [45].  

COX-2 is responsible for muscle fiber growth during regeneration, but is not required for constant maintenance of 
muscle fiber size. It also acts on satellite cell activation, regulation of myoblast proliferation and apoptosis [39]. In the 
skeletal muscle, prostaglandins are synthesized and catalyzed by COX-2, regulating muscle regeneration by 
inflammation response modulation such as synthesis and degradation proteins [68]. 

In patients who suffered 20 to 60% TBSA of BI, serum levels of IL-1, IL-6, IL-8 and TNF-α were found to be higher 
when compared to clinically healthy individuals [63]. In a study using an experimental model of SI of 45% TBSA in 
rats occurs an increase in iNOS and TNF-α gene expression in distal skeletal muscle, after 4 and 14, respectively [41]. 

Muscle degeneration after BI as a result of the systemic inflammatory response is associated with the release of 
reactive oxygen species. After 14 days of SI of 45% TBSA, an increase in the COX-2 immuno-expression and the 
marker for oxidative stress 8OHdG in muscle distant from the lesion site was noted [47]. During oxidative stress 
processes occurs reactive oxygen species (ROS) formation, which are produced from the oxidative deterioration of 
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proteins, lipids and DNA [69]. ROS can be produced mainly in the mitochondria and the endoplasmic reticulum [70] 
and the damage generated by ROS is linked to severe degenerative conditions [71]. Among the main ROS are free 
oxygen radicals, such as hydroxyl (HO) capable of interacting with DNA strands, causing the addition of DNA bases, 
generating a variety of oxidation products [72].  

3. Conclusion 

In face of an extensive or severe BI, skeletal muscle behavior will pass by changes, such as morphological alterations 
of the muscle fibers, reorganization of it with changes in the connective tissue surround them, oxidative stress, 
inflammatory process and muscle catabolism that can cause atrophy of this tissue. Indeed, there will be a need for 
repair with increased expression of myogenesis genes.  
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