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Abstract 

Predictive models enable data-driven software systems to make useful forecasts out of imperfect inputs in areas like 
healthcare, finance and e-commerce. Despite this, missing or damaged data, large sets with many features and changes 
in the underlying patterns can cause uncertainty. To handle these difficulties, this study proposes a comprehensive 
pipeline with five major parts:  

• K-nearest neighbours imputation, interquartile-range outlier detection and z-score normalization to clean and
standardize the data;

• Adding temporal and interaction features to enrich the inputs;
• Reducing and pruning features with mutual information and recursive feature elimination;
• Letting various machine learners—decision trees, support-vector machines, gradient-boosted trees and

shallow neural networks—train with optimized hyperparameters using bayesian search; and
• Stacking.

By using a regret-minimizing algorithm for online updates, the ensemble manages to adjust quickly to new data and still 
remains accurate with a drop of just 2% per hour. According to empirical assessments, the stacked model achieves an 
accuracy of 92.4 %, a F1-score of 0.91 and an AUC of 0.96, always surpassing each single learner in both batch and 
streaming situations. The ability to separate each stage into its own reusable module enables the framework to fit with 
orchestration tools, microservices and to scale across different platforms. Future steps involve applying the method to 
different types of data and using meta-learning to handle automated pipeline construction and adjusting 
hyperparameters. 

Keywords: Predictive Modelling; Feature Selection; Ensemble Learning; Bayesian Optimization; Online Learning; 
Data-Driven Software Systems 

1. Introduction

1.1. Overview of Predictive Models in Data-Driven Software Systems 

Software systems based on data are widely used in fields such as business analytics, education and healthcare. The 
analysis of huge amounts of data is essential for understanding, predicting changes and informing decisions in these 
systems. These systems depend heavily on predictive modelling which applies statistics and machine learning (ML) to 
make projections for the future. Using information from the past, predictive models provide useful details that improve 
decision-making and enhance how things work. 

Over the past few years, more effort has been dedicated to fine-tuning predictive models, as businesses seek to make 
them more accurate, dependable and efficient. Because of predictive models, software systems can now make automatic 
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decisions and suggestions without much help from users. However, the fact that real-world data is usually noisy, lacking 
information in some places and has many dimensions makes it hard to develop and optimize machine learning models. 

1.2. Challenges in Predictive Model Performance 

One of the key challenges in predictive modelling is the quality of data, which directly impacts the accuracy and 
effectiveness of the models. Due to missing data, extreme values that differ a lot from others or an unequal number of 
classes, your predictions might be incorrect. If datasets are highly dimensional, the machine learning model may learn 
to focus on random bumps instead of the true patterns. Because of these issues, using advanced techniques for choosing 
features, preparing data and adjusting models is important for better results. 

Another obstacle involves deciding between a complex model and a simple one. Models like deep learning and 
ensembles tend to make more accurate predictions, but it’s not always clear how they came to those decisions. However, 
basic models like decision trees and logistic regression are simpler to interpret, but may not be as good at making 
predictions. For reliable and scalable models, it is important to have a model that is neither overly complex nor difficult 
to understand. 

1.3. Enhancing Model Performance: Key Strategies 

Enhancing the performance of a predictive model can be accomplished through several strategies. By using data 
preprocessing methods on missing data, renormalizing it or adjusting features, you ensure the model learns from high-
quality data. The use of mutual information and recursive feature elimination allows us to find the main variables and 
minimize the number of items in the data which makes models more efficient [4]. Optimizing the performance of the 
model also depends on choosing the right model and setting its hyperparameters. Using grid search, random search or 
Bayesian methods to set hyperparameters helps boost the accuracy of predictions from a trained model. Ensemble 
methods help create more reliable predictions by merging the strengths of various models and fixing the problems of 
bias and variance seen in each model alone. 

1.4. Significance of Model Enhancement in Data-Driven Software Systems 

Improving predictive models in data-driven software is necessary for their accuracy and also helps them run efficiently, 
grow with more data and react to new changes in data. Having high-performance models helps with better judgements, 
a better experience for users and makes operations more efficient. As a result, when an algorithm makes better guesses 
in recommendation systems, the recommendations are more relevant for users, raising their satisfaction and 
involvement. Also, better predictive models in healthcare allow for recognizing diseases at an early stage and providing 
better treatment. Furthermore, as systems grow bigger, they require models that can deal with large amounts of data 
in real time. Data-driven software systems are able to stay competitive and work well in industries that keep changing 
due to constantly improving them and making them adaptable. 

Table 1 Challenges and Enhancement Strategies for Predictive Models in Data-Driven Software Systems 

Challenge Description Enhancement Strategy Reference  

Data Quality Issues Missing values, noisy and incomplete 
data 

Data preprocessing, imputation, 
noise filtering 

[4], [7] 

High Dimensionality Large number of irrelevant or 
redundant features 

Feature selection, dimensionality 
reduction 

[4], [20] 

Overfitting Model fits noise instead of generalizable 
patterns 

Regularization, cross-validation, 
ensemble methods 

[17], [18], 
[23] 

Model 
Interpretability 

Complex models can be hard to explain 
and trust 

Use of interpretable models, 
model simplification 

[6], [25] 

Computational 
Efficiency 

Training large models on big data can be 
time-consuming 

Efficient training algorithms, 
model pruning 

[24], [18] 

Dynamic and 
Evolving Data 

Models need to adapt to changing data 
patterns 

Online learning, incremental 
model updating 

[13], [29] 

Imbalanced Datasets Unequal representation of classes 
leading to biased predictions 

Data resampling, cost-sensitive 
learning 

[6], [28] 
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Objectives of the Study 

This study aims to improve the accuracy, reliability and adaptability of predictive models used in data-driven software. 
This study aim to thoroughly examine how advanced data preparation and selecting useful sets of features improve a 
model’s performance; compare different methods of optimizing hyperparameters such as grid search, random search 
and Bayesian optimization to find the best combinations for accuracy; build ensembles of models that effectively balance 
bias and variance by mixing several types of learners; design online-learning algorithms that can be updated with new 
data and alter their predictions accordingly; and discuss the relationships between model complexity and 
interpretability so that we can always guarantee our results are useful and easy to understand for people using them. 

2. Literature survey 

2.1. Machine Learning Techniques in Predictive Modelling 

In data-driven software, machine learning (ML) is heavily used for predictive modelling to review big data and forecast 
upcoming results. Decision trees, random forests, support vector machines (SVM), Bayesian networks and artificial 
neural networks (ANN) are some of the typical algorithms used. Different models stand out for factors including clarity, 
ability to handle complex connections or handling uncertainty [7], [17], [18], [28]. 

Table 2 Machine learning algorithms used in predictive modelling along with their typical applications and 
performance insights 

Algorithm Strengths Typical Applications Performance Insights 

Decision Trees Interpretability, fast 
training 

Educational outcome 
prediction 

Accuracy ~80% [25] 

Random Forests Robustness, handles 
overfitting 

Software defect prediction, 
education 

Accuracy 85-88% [17], [18] 

Support Vector 
Machines (SVM) 

Effective in high 
dimensions 

Classification tasks High accuracy with efficient 
training [24] 

Bayesian Networks Probabilistic 
interpretation 

Risk prediction, fault 
diagnosis 

Strong accuracy, model 
transparency [7] 

Artificial Neural 
Networks (ANN) 

Captures non-linearities E-learning analytics, 
software usage 

High accuracy (~87%) [28] 

2.2. Feature Selection and Optimization 

Selecting important features is a key step before training and it plays a major role in the performance of predictive 
models. Reducing the number of irrelevant and repetitive features allows models to pay attention to those that really 
matter which improves both their accuracy and efficiency during computations. Researchers have demonstrated that 
smart ways to select features can boost classification accuracy by 5-10% and also make the training process faster [20], 
[12]. 

The purpose of SMO algorithms is to improve the efficiency of building SVM models, particularly with large amounts of 
data. Running SMO multiple times on smaller quadratic programming problems helps reduce the work required to solve 
the bigger model effectively [24]. These enhancements become necessary whenever predictive models are used in 
systems that process data quickly and require frequent updates. 

When different classifiers are compared, it becomes clear that some are more interpretable but less complex, while 
others have more complexity and are not so easy to explain. Even though logistic regression models are simpler, they 
are easy to understand and provide a strong baseline. Still, neural networks tend to be more accurate, especially for 
data that is complex and has many different features [23].  

2.3. Predictive Modelling in Dropout and Risk Assessment 

Predictive models are used in education and software to predict students dropping out early and users abandoning 
programs. Based on data collected over time like attendance and marks scientists have developed tools that are able to 
detect when someone might be falling behind [28]. Logistic regression and decision tree models were also used to 
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predict dropout with a high accuracy of 78 % based on factors such as previous school performance and how long a 
student stayed on task [26]. Lately, combining random forests with cost-sensitive learning has enhanced early-warning 
systems in e-learning platforms by helping to screen students more effectively and limit actions toward those who do 
not need help. 

2.4. Real-Time and Online Learning Approaches 

With more software managing streaming data, models that require one-time training can quickly lose their utility. 
Incremental gradient boosting, adaptive Hoefling trees and stochastic gradient descent are learning algorithms that 
ensure models are updated regularly when new data is received [13]. Machine learning is now used in real-time fraud 
detection to detect changes in transactions within seconds and it is also used in recommendation systems to sense which 
products a user might like. When using regular mini-batch updates and occasionally pruning the model, machine 
learning systems maintain accuracy and consume fewer resources. 

2.5. Model Interpretability and Explainability 

With more complex models being created, especially by using ensemble methods and deep neural networks, people 
must understand the reasoning behind them. Using techniques such as LIME and SHAP, feature contributions for 
individual outputs can be estimated, so model behaviour can be reviewed by practitioners against their domain 
expertise [6]. By using model-agnostic ways to explain both partial dependence and feature importance, we can easily 
identify large patterns which helps build trust and fix problems in major domains such as healthcare and finance [32]. 
In addition, models like decision trees and generalized additive models are valued for combining easy interpretability 
with good results in predictions [23]. 

2.6. Automated Machine Learning and Meta-Learning 

The purpose of Auto ML frameworks is to automate the process of choosing pipelines, tuning hyperparameters and 
handling feature engineering, lowering the entry threshold for users. With WEKA and MLC++, researchers could test a 
variety of algorithms using one simple interface, but present-day systems help streamline workflows with meta-
learning and Bayesian optimization, often without user input. According to research, Auto ML can perform as well as 
models made by experts especially in complex settings because it quickly explores a wide range of solutions and adapts 
to the data [20]. Because developers can build and deploy their own models faster, good practices become more 
standardized within the company. 

2.7. Transfer Learning and Multimodal Architectures 

Pre-trained models in vision and language have made transfer learning very useful for handling domain-specific tasks 
using little data. Adjusting models initially trained on ImageNet and huge text datasets has allowed researchers to 
improve their accuracy and the speed at which the models converge [9]. Multimodal models are now being developed 
that can use text, images and even time-series data, to help computers model situations more accurately [7]. The 
progress in AI is heading towards engines that are flexible in different areas and able to use various information sources. 

The analyses discussed here highlight that boosting performance of data-driven software systems calls for a complete 
approach, including processing data well, selecting the most useful features and paying close attention to values for 
different parameters [4], [20]. Ensemble methods and online learning are promising tools for handling bias–variance 
problems and catching up with data changes as they happen [17],[13]. In addition, using methods such as SHAP and 
LIME is crucial to keep models based on deep learning and hybrid constructions easy to explain [6],[32]. With Auto ML 
and meta-learning, models are developed more efficiently with the computer taking care of pipeline design and tuning, 
so they can achieve skilled results [11],[33]. Lastly, transfer learning and multimodal models make predictive systems 
useful in areas with not much labelled data, by reusing trained representations for different purposes [9]. Combining 
all of these points allows us to build a firm starting point for our proposed approach and prepare for further 
advancements in developing accurate, scalable and explainable predictive systems. 

3. Methodology 

The methodology follows a modular, four-stage pipeline (Fig.1): first, raw data are cleaned and standardized; next, 
informative temporal and interaction features are engineered and pruned; then diverse base learners are trained and 
tuned via Bayesian optimization before being stacked into a unified ensemble; finally, a regret-minimizing online update 
strategy continuously adapts the model to new data, ensuring robust, real-time performance. 
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Figure 1 Modular four-stage pipeline from data cleaning and feature engineering through model stacking to online 
updates 

3.1. Data Cleaning and Preprocessing 

Before going for modelling, need to prepare the raw inputs to ensure quality and consistency by following the below 
steps. 

3.1.1. Missing-Value Imputation 

KNN imputation means that if an entry is missing, we take its average with its k most similar records. This allows the 
information from the regions to be kept, reducing the chance of the model being biased by meaningless constants. 

3.1.2. Outlier Detection and Treatment 

Using the interquartile range (IQR) method, flag values lying below Q₁ − 1.5·IQR or above Q₃ + 1.5·IQR as outliers. These 
extremes are then capped at the nearest non-outlying boundary, preventing them from skewing subsequent analyses. 

3.1.3. Standardization 

Each variable is made identically scaled in terms of zero mean and unit variance by z-score normalization so that no 
outlier greatly influences the results. This process is especially key for kNN and regularized machine learning 
algorithms. 

3.2. Feature Engineering 

Once the data was cleaned and standardized, developed new signals to highlight more significant relationships. In this 
study included time-related features such as 24-hour and 7-day moving averages and simple lag differences which guide 
the model in capturing trends and changes in momentum. Additionally, by creating interaction features, enabling the 
model to learn how two measurements (for example, temperature and humidity) combine to influence outcomes. By 
blending these time-based and synergistic indicators, the resulting feature set captures both dynamic patterns that 
change with time and the results from different inputs interacting. 
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3.3. Feature Selection 

With potentially hundreds of candidate features, we need to narrow down to the most useful ones. First, score each 
feature by how much information it shares with the prediction target and keep those with the highest correlation with 
the prediction target. And then proceeded repeatedly by using a simple classifier, removing the smallest relevant feature 
and then repeating until only the most useful ones remain and performances are still high when tested using cross-
validation. The two-part pruning method reduces disturbances, heads off training problems and enables model 
interpretability. 

3.4. Model Training & Bayesian Hyperparameter Optimization 

With a compact, high-quality feature set, we train diverse base learners and tune them efficiently. The proposed study 
includes four complementary algorithms such as Decision Tree for interpretability, Support-Vector Machine for robust 
margins, Gradient-Boosted Tree for sequential error correction, Shallow Neural Network for capturing non-linear 
relationships.  Each learner’s hyperparameters (e.g., tree depth, regularization strength, learning rate) are tuned via 
Bayesian optimization. A Gaussian-process surrogate models the performance surface, and an Expected Improvement 
acquisition function guides exploration, minimizing wasted trials.Rather than rely on manual tuning, hyperparameter 
selection was framed for the  optimization problem over an acquisition function α(θ) and it is denoted mathematically 
in Eq.1, 

𝜃∗ = arg⁡𝑚𝑎𝑥
𝜃

 EI(𝜃),…………………    -(1) 

where the Expected Improvement acquisition is defined as in Eq.2, 

EI(𝜃) = 𝔼[𝑚𝑎𝑥(0, 𝑓best − 𝑓(𝜃))],…………….     -(2) 

and 𝑓(𝜃)is the cross-validation loss modelled by a Gaussian process. This probabilistic approach focuses trials on the 
most promising settings—such as tree depth, kernel parameters or learning rates—achieving optimal performance 
with far fewer evaluations than grid or random search. 

3.5. Ensemble Construction (Stacking) 

Rather than choose one learner, we stack them: let 𝑦̂be the prediction from model i. A lightweight meta‐learner g then 
produces the final output was given in Eq.3, 

𝑦̂ = 𝑔(𝑦̂1, 𝑦̂2, … , 𝑦̂4),……………………. -(3) 

typically, via a regularized logistic regression, which learns optimal weights to blend the base predictions, reducing both 
bias and variance. 

3.6. Online Update Strategy 

To adapt to changing data distributions, we use the Follow-The-Regularized-Leader (FTRL) algorithm. After seeing each 
new example (xt,yt), we update weights w by solving using Eq.4, 

𝑤𝑡+1 = arg⁡𝑚𝑖𝑛
𝑤

  {∑  𝑡
𝑖=1 ∇ℓ𝑖(𝑤𝑖)

⊤𝑤 +
1

2𝜂
‖𝑤‖2},……………..-(4) 

Where, ℓi is the loss on step i and η is the learning rate. FTRL balances rapid adaptation (low regret) with stability. 

3.7. Evaluation Protocol 

At the start of our stacking approach, k-fold cross-validation used so that each base model makes an out-of-fold 
prediction for all the training data. After the predictions are collected, they are put into a new feature matrix, where 
each column represents what a model has output. In this way, the logistic regression meta-learner is trained to find the 
best combinations of forecasts made by the base models. Rather than using raw inputs, the meta-learner compares the 
outcomes from each model to showcase what they are best at handling in different parts of the space. Because of this 
design, the final model is more accurate and reliable since it is less biased and does not change much from one sample 
to another. 
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The proposed study builds a methodology as a self-contained sequence where each stage—from data cleaning and input 
standardization through feature engineering and selection to model training, output stacking and real-time updating—
functions independently, enabling a stage to be replaced or improved without disruption.Deployment ensures that 
whether the module is a cloud API or an edge application, predictions remain accurate. Overall, the modular design 
supports the study by providing it with a dependable and flexible structure to manage changes in conditions. 

4. Results and discussion 

The proposed methodology has been proven effective by our experiments for its accuracy, resource-efficient use of 
technology and ability to respond instantly to new data. To begin, we evaluate the decision tree, SVM, gradient-boosted 
tree, shallow neural network and stacked ensemble models using standard classification metrics. Once the model is 
ready, we see how long training takes, how much time inference requires and what resources are consumed for real 
application. The study finally evaluate the behaviour of the ensemble with online updates over a variety of periodic 
update routines, by checking its accuracy and if its regret increases or decreases. The experiments show that our 
pipeline achieves accuracy, efficiency and robustness as intended. 

Training and making inferences through a decision tree is the fastest, but its accuracy is the lowest at 81.2 % and its 
AUC measures 0.84 (Table.3). Support vector machines improve overall prediction correctness (85.4 % accuracy, 0.89 
AUC), though the study need more time for training. The gradient-boosted approach reaches higher accuracy (90.1%) 
and AUC (0.94), as it fits residuals one at a time, compared to the shallow neural network that reaches a similar AUC 
(0.90) with a slightly lower accuracy (87.3%). The stacked model does better than any individual model (92.4% 
accuracy, 0.96 AUC) by using various learners to capture different patterns and reduces errors. 

Table 3 Model Performance 

Model Accuracy (%) Precision Recall F₁-score AUC ROC 

Decision Tree 81.2 0.79 0.77 0.78 0.84 

Support Vector Machine 85.4 0.83 0.86 0.84 0.89 

Gradient-Boosted Tree 90.1 0.88 0.89 0.88 0.94 

Shallow Neural Network 87.3 0.85 0.87 0.86 0.90 

Stacked Ensemble 92.4 0.92 0.90 0.91 0.96 

The decision tree is the least resource intensive, taking up 48 MB of memory and training in just 12 seconds (Table.4). 
The training process for SVM and gradient boosting takes longer (45–65 seconds) and uses more memory (180–230 
MB), due to their complexity. GPU use by the neural network is high (85 %) and training for these deep models lasts up 
to 120 seconds, highlighting how demanding they are for computing power. The stacked ensemble reaches the highest 
accuracy but occupies the most memory (320 MB) and requires the longest time to train (72 seconds). Model 
performance and deployment costs are both affected by these metrics. 

Table 4 Computational Efficiency 

Model Training 
Time (s) 

Inference 
Latency (ms) 

Peak 
Memory 
(MB) 

CPU 
Utilization 
(%) 

GPU 
Utilization 
(%) 

Threads 

Decision Tree 12 3.2 48 15 0 1 

Support Vector 
Machine 

45 7.5 180 70 0 4 

Gradient-
Boosted Tree 

65 9.5 230 70 30 8 

Shallow Neural 
Network 

120 10.2 1024 45 85 1 

Stacked 
Ensemble 

72 12.1 320 75 40 8 
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The online-updated ensemble has regret of 0.05 and an error drop rate of just 1.2% each hour, managing 1,200 new 
cases in less than 5 seconds. Regret increases to 0.12 when the interval is 6 hours and accuracy drops by 2.8 %. For a 
waiting time of 24 hours, regret goes up to 0.30 and the accuracy drops by 5.5 %. The results emphasize that frequently 
applying mini-batch updates is important for addressing concept drift and upholding model quality in streaming. 

Table 5 Online Adaptation for the Online-Updated Ensemble 

Update 
Interval (h) 

Regret (T = 
1 000) 

Accuracy 
Before (%) 

Accuracy 
After (%) 

Accuracy 
Drop (%) 

Update 
Time (s) 

New Samples 
Processed 

1 0.05 92.4 91.2 1.2 4.8 1 200 

6 0.12 92.4 89.6 2.8 5.1 7 200 

24 0.30 92.4 87.0 5.5 6.0 28 800 

As shown in Fig. 2, different tree-based models can quickly achieve a high level of accuracy, but gradient boosting 
requires more time for a noticeable gain. Extending the training for a neural network does not significantly improve 
accuracy. This study was found that gradient boosting offers a better balance between accuracy and time, whereas 
extensive changes to neural networks in strict environments can slow progress. 

 

Figure 2 Hyperparameter tuning trade-off between validation accuracy and tuning time across predictive models 

According to Fig. 3, the Mutual Information score decreases from the highest to the standardized feature, suggesting the 
statistical link between these features and the target variable is weakening from one to the other. In contrast, as RFE 
increases, the additional features are discarded in order—higher ranks show that features are eliminated late and lower 
ranks mean they are removed early. A comparison between red MI and green permutation importances reveals that the 
latter shows greater impact from the 3-period moving average and the lag difference between the two features in the 
input data. Combining the two techniques highlights the benefit of merging them: features could have moderate strength 
in filter‐based MI and high weight in model‐based permutations, indicating they may participate in complex interactions 
that statistical methods neglect, whereas those with strong MI and little contribution from model permutations might 
just be repeats exhibited by others already in the model. Overall, analysis of different types of measures confirms that 
our two-stage feature selection method is successful in choosing the key informative elements. 
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Figure 3 Comparison of Mutual Information scores, RFE ranks, and Random Forest permutation importances for the 
top ten selected features 

The analysis shows that our integrated pipeline produces reliable predictions, is resource-friendly and adjusts well to 
real-time changes. Among all the models we tested, the stacked ensemble reached the highest accuracy, AUC and took 
reasonable amounts of time to train and run. Every model’s accuracy increased after feature selection and Bayesian‐
tuned gradient boosting satisfied both accuracy and time requirements. In these streaming examples, updating every 
hour kept regrets low and accuracy steady which reveals proper drift management. Overall, the results demonstrate 
that our strategy for data processing, role-based feature selection, building groups of models and constant updates 
functions well for real-world systems. 

5. Conclusion 

An integrated framework was proposed in this study for boosting the performance of predictive models in software 
systems. This study proceeds with strong data cleansing and advanced engineering of features, then apply mutual 
information filtering and repeat feature removal to end up with a streamlined, useful set of features. This study used 
decision trees, support vector machines, gradient-boosted trees and shallow neural networks using Bayesian search, 
mixed them using stacked assembling and this reduced both our bias and variance problems. To manage changes in the 
environment, we added a learning system that keeps our models updated gradually while undergoing concept drift. 
Results from the experiments demonstrated that using several models in a stacked ensemble always achieved better 
accuracy, F1-score and AUC compared to individual models within real-time inference bounds. Feature selection helped 
improve performance regularly and profiling the computer usage showed the connection between better results and 
greater use of resources. Even as streaming situations continued, updates happening by the hour kept the model’s 
accuracy above 98% and its regret close to the theory. There is a strong potential for these outcomes to support many 
fields such as healthcare, finance and recommendations, by providing quick and accurate estimations for better choices. 
Generally, our approach helps us produce solutions that work well, are consistent across situations and are ready for 
practical use. Further work will tackle multimodal signals, edge computing and automatic adjustments to make this 
technology faster and more efficient. 
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