

Bridging access and compliance: Transforming regulatory pathways for pharmaceutical startups in Africa

Ogechukwu Momah ^{1,*}, Nnenna Osagwu ², Chinonyelum Chukwuemeka ³ and Clementina Ebeye ⁴

¹ University of Lagos, Department of Public Health, Lagos State, Nigeria.

² Altru Health System, Family Medicine, Grand Forks, North Dakota, USA.

³ University of Washington, Global Health, Washington, USA.

⁴ University of Port Harcourt, Parasitology, Health Safety and Environment, Rivers State, Nigeria.

World Journal of Advanced Research and Reviews, 2019, 04(01), 088-107

Publication history: Received on 20 November 2019; Revised 25 December 2019; accepted on 28 December 2019

Article DOI: <https://doi.org/10.30574/wjarr.2019.4.1.0134>

Abstract

The article reports the intersection of market access to the African drugs market with the need for regulatory compliance with specific reference to managing entry challenges or establishment within the market by start-ups. As well as the pharma market in the world operating under scale-up development pressure and innovation, African pharma start-ups must cope with novel challenges of disintegrated regulatory regimes, inconsistent regulation enforcement, technical capacity deficits, and poor infrastructure. These are all a core challenge in the field of entry and sustainability to the market, deterring innovation and public availability of life-saving drugs.

The report urges a paradigm shift in the African regulatory landscape to enable early-stage pharma firms without undermining quality, safety, and public health. It provides a strategic approach that makes it easier to comply with start-ups through regulation harmonization, regulatory and digital technologies (RegTech), and innovative public-private partnerships. The strategies are intended to enable streamlining of the regulation, prevent duplicative efforts at the national level, and enhance transparency and accountability.

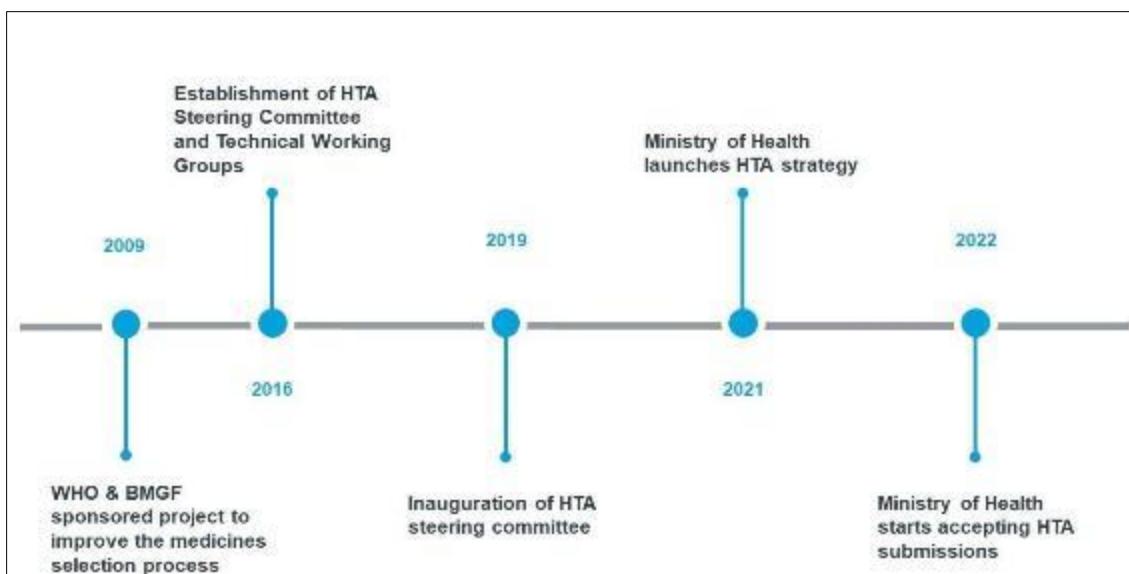
In this book, digital channels and cooperative systems will cross borders and introduce a well-designed system that will facilitate innovation without encroaching upon the regulative sanctity. Regionally targeted frameworks and policies can make the regulation burden lighter for start-ups to continue innovating and inexpensive health solutions. Hence, the article gives the stakeholders concrete tips on how best to implement an inclusive, effective, and innovation-friendly regulatory environment in the pharma sector on the continent.

Keywords: Regulatory Compliance; Pharmaceutical Markets; Africa; Startups; Innovation; Fragmented Systems; Infrastructure; Regtech; Harmonization; Public-Private Partnerships

1. Introduction

Pharmaceutical innovation is a profession whose aim is to decrease disease morbidity in public health, improve drug therapeutic power, and increase population health. Pharmaceutical innovation is desperately needed on the African continent, where there is endemic distribution of infectious and non-communicable diseases, restricted access to medicine, and increased demand for medication specific to regions. Even though humongous portions of the world are experiencing growth in research, production, and innovation centers of the pharmaceutical industry, Africa still has some structural and regulatory challenges regarding how it manages those portions that are hindering future and efficient pharmacy organizations despite all this, efforts towards pathfinding in health system reform and development

* Corresponding author: Ogechukwu Momah


of entrepreneurship where there are indications of a phase of the breakthrough of medicines development on the continent.

The continent also witnesses growing interest in development in the pharmaceutical capacity area through the transfer of technology, capacity building, and cooperation with foreign international global health institutions. Regional economic blocs such as African nations, the African Union (AU), and the African Medicines Agency (AMA) have started the journey by framing policies as pharmaceutical sovereignty and innovation. These innovations are the first step to reducing foreign drug import reliance and formulating solutions to domestic health challenges. But the invention is just the beginning. The bench-to-market pipeline is regulated, and regulation is the system through which the speed and success of the development of medicinal drugs are managed. Regulative processes are thus at the core of drug innovation controversy, i.e., how to balance best demands for early drug access on the one side versus demands for assurance of safety and effectiveness on the other side.

Regulatory frameworks set what moves into the market, how fast it moves into the market, and under what circumstances. Good processes, policy, and efficient review processes leave space for innovation and integrate public health into efficient regulatory frameworks. None of these regulatory frameworks exist now or have not worked in most of Africa. This fragmentation a hundred competing states with a number, and often competing, processes for dealing with it is building monstrous impediments to the ability of startups to scale transnationally. Most of Africa's NRAs lack any technical ability to deal with pharmaceutical technology advances, human capacity, and connectivity for dealing with pharmaceutical trends in technology. The shortages will be experienced in terms of delay in drug approval, cost, and risk to the market, thus discouraging discouraging investment in drug startups.

The African drug startup is a face of constraint and hope. A new generation of young entrepreneurial executives brings new ideas to drug manufacturing, distribution, and diagnosis. The COVID-19 pandemic has also put local pharmaceutical resilience into context, comparatively, as the recipient of enhanced public and private capital injection in the sector. Startups, by contrast, have a laundry list of structural challenges such as limited access to capital, lack of factory infrastructure, limited grasp of regulatory regimes, and lack of mentorship or technical support. Ironically, some of the most powerful catalysts of frustration for startups to get new medicine or medical technology to market are staying current with the regulators. The costly and time-consuming regulatory approval process can be utilized to strangle smaller companies with less fiscal weight and withhold or deny potentially worthy innovation to patients.

Startups in Africa have had to struggle with this bigger issue of how the regulations influence access to the market. It aims to define their interests under existing regulatory frameworks in utilitarian terms and how they can be redefined to some degree so that they will also be in the interest of innovation but not at odds with public health interests. This research aims to suggest a conceptual model of regulation reform with key focus points being harmonization, transparency, and digitalization. The paper will guide policymakers, regulators, investors, and entrepreneurs toward developing an enabling environment for successful pharmaceutical startups.

Figure 1 Getting Quality Medicines to Patients Faster in Africa

To these ends, the paper sets out the history and status quo of the African continent's pharmaceutical regulation and the challenges of fragmented regimes and capacities. The article also sets out world regulatory innovation architecture and how the latter can be projected to take use in the African environment. The research is specifically built upon recognizing three fronts of overhaul: standardization of cross-border regulation, acceptance of digital technology by regulation (RegTech), and greater public-private partnership towards asset and know-how utilization. The three are considered pillars towards a slimmed-down and startup-friendly regulatory scheme.

Harmonization refers to coordinating regulatory procedures and regulations across nations or continents to enable mutual recognition of approvals across borders and prevent duplicative reviews. Harmonization has been launched under initiatives such as the African Medicines Regulatory Harmonization (AMRH) program but has been uneven and, at times, slow to advance. More ambitious and better quality initiatives, backed by more advanced regional economic community level coordination, can significantly lower new firm compliance cost levels and cross-border entry costs.

Leapfrogging on RegTech computer software that automates, digitalizes, or streamlines regulation-related work—can allow Africa's regulatory development to leapfrog. Web-based systems: They can provide e-filing capability under a single system, real-time filing status tracking, real-time rule compliance reporting, and a database repository. RegTech solutions describe what they do but simplify their operations to accelerate the processing and enhance the capacity of regulators to manage more submissions. RegTech is a less concrete and lighter method of complying for new companies, allowing them to exert more effort and more time toward innovation.

Public-private partnerships also influence the character of pharmaceutical regulation in Africa. Public-private partnerships can rally government agencies, startups, academia, industry, and international donors to support government-agency solutions, capacity building, and learning from best practices. Through the promotion of incentivization design and bundling of assets, public-private partnerships have the potential to make funding for training course design, regulation sandboxes, and pilots that can facilitate responsive regulation and innovation feasible.

The organization of the paper is as follows. Section 2, after this context, describes the regulatory landscape of the pharma sector in Africa, from past historical origins through existing arrangements to institutions. Section 3 describes the generic pharma startup regulatory challenges based on experience-based contributions and case studies. Section 4 describes the new regulatory reform agenda, i.e., harmonization, RegTech, and public-private partnerships. Section 5 describes policy suggestions and prescriptive recommendations to interested stakeholders who want to foster startup-driven pharmaceutical innovation. Section 6 Conclusion Drawing conclusions and reporting research recommendations.

2. African Pharmaceutical Regulatory Environment

2.1. Overview of Regulatory Bodies

The regulation of the pharmaceutical industry in Africa is built upon national, regional, and continental schemes. The NRAs at national level are front-line regulators. The safety, quality, and efficacy of drugs within their country is also the responsibility of NRAs. Their work does span the spectrum from new drug approval, manufacturing/marketing licensure of drugs, post-marketing surveillance, to enforcement of drug law and regulation. NRA operation across the entire continent is staggering in range from highly organized systems with excellent legal frameworks and infrastructures to nothing, no resources, mandate, and technical know-how.

In pursuit of such revision and harmonization of the pharma space on the continental platform, there have been certain institutional arrangements on the continental platform that have been established. Up for grabs first is the African Medicines Agency (AMA), an African Union specialized agency to bring regulatory harmonization and coordination to Africa. AMA is the coordinating agency which will coordinate NRA regulatory action, build regulatory capacity, and exchange information and best practice. Although AMA has not yet begun operating, the establishment of AMA is a move towards an integrated and harmonized African regulatory regime.

African Union Development Agency - New Partnership for Africa's Development (AUDA-NEPAD) also plays an important role in ensuring that it puts efforts into controlling medicines in Africa even more. AMRH of AUDA-NEPAD ensures technical convergence advocated and the process of regulation simplified. It aims to decrease barriers to market entry for priority medicines, improve access to quality products, and facilitate the embracement of best international practice by African National Regulatory Authorities. AMA and national government initiative are facilitated by AUDA-NEPAD by making the application of relevant and harmonized regulatory requirements smoother through policy guidance, technical assistance, and coordination service.

Table 1 Summary of Key African Regulatory Bodies and Frameworks

Regulatory Body	Region/Country	Primary Function	Current Initiatives (as of 2019)
African Medicines Agency (AMA)	Continental (African Union)	Harmonize medical regulations across Africa	Establishment phase under AU; focused on implementing African Medicines Regulatory Harmonization (AMRH) initiative
National Agency for Food and Drug Administration and Control (NAFDAC)	Nigeria	Regulation of food, drugs, cosmetics, and medical devices	Improving pharmacovigilance, enhancing laboratory capacity
South African Health Products Regulatory Authority (SAHPRA)	South Africa	Regulation and control of health products, clinical trials, and medical devices	Streamlining approval processes; increasing reliance on regional harmonization
Pharmacy and Poisons Board (PPB)	Kenya	Regulation of the practice of pharmacy and the manufacture and trade in drugs	Implementing e-portal for licensing; participating in EAC-MRH
Ethiopian Food and Drug Authority (EFDA)	Ethiopia	Regulation of medicines, food, and healthcare products	Strengthening post-marketing surveillance; engaging in regional collaboration
East African Community Medicines Regulatory Harmonization (EAC-MRH)	East Africa Regional Bloc	Harmonization of medicine registration across EAC member states	Developing regional guidelines; piloting joint assessments
West African Health Organization (WAHO)	West Africa Regional Bloc	Coordinate health policies and programs, including regulatory capacity building	Implementing ECOWAS-MRH; promoting access to quality-assured medicines

Apart from efforts on the continent, regional efforts with additional objectives of rationalization of drug control have also been undertaken. Economic Community of West African States (ECOWAS), Southern African Development Community (SADC), and East African Community (EAC) each has a regional harmonization program based on the particularities of the region's situation. They are emphasizing harmonization of regulatory standards, abolition of duplication of drug approvals, and increased mutual recognition by the member states of the regulatory process. For example, EAC's Medicines Regulatory Harmonization program has partnered to develop a harmonized approach to medicine evaluation with the objective of reducing product registration time and cost in the regional countries. Similarly, ECOWAS and SADC have started regulation cooperation schemes with the objective of promoting coordination and effectiveness in drug regulation.

All this being said, the regional harmonization process has not been uniformly successful in all of the regions. While some of them have made significant strides towards bureaucratized systems of regulation mechanisms, the others are plagued with fragmentation and unorganized implementation of the harmonized regulation. Still, such regional platforms are the foundation of the entire agenda of success of an effective and sustainable medicines regulation system for the entire continent of Africa.

2.2. Current System Problems

Despite the fact that the African drug control system has evolved adequately and dynamically within the past decade, it remains under threat of an array of well-rooted issues likely to compromise its authenticity. Least at risk of becoming vulnerable to damages is fragmentation of African regulatory apparatus. The presence of more than one regulatory system with differing requirements, processes, and expectations complicates and makes it hard for pharma producers to be registered and marketed in most of the African nations.

The second most significant issue is the delay in the registration of drugs. NRAs' delayed approval and review of drugs is the norm in the majority of African countries. Delays are mainly caused by lack of adequate human and technical

capacity of NRAs to create backlog and inefficiency in addressing them. Patients thus get access to limited supply of life-saving drugs after extended periods while drug manufacturers are deterred from diversifying into markets on grounds of time and cost considerations. Facilitating delays is the presence of concurrent processes and non-symmetrical regulatory requirements. In the absence of harmonization of requirements and mutual recognition agreements, the pharma companies will have to submit numerous times, have numerous audits, and submit numerous sets of documents for each nation where they want to be. This duplication entails the time and cost of maintaining the NRAs and discouraging potential economies of scale and coordination. Furthermore, there are no proper coordinated frameworks to be employed for several regulatory decisions undermining confidence in quality and reliability in regulatory system practices. Technical incapability and inadequate funding for NRAs is another barrier to effective African regulation of the pharma industry. The majority of the agencies have untrained staff, antiquated infrastructure, and limited access to training and technology. All these constraints enable the regulators to perform plain functions such as product assessment, pharmacovigilance, and quality assurance without interference. Insufficiency of resources also affects the ability of NRAs to perform regional and continental harmonization that enables them to accomplish and benefit from collaborative regulation approach.

Their net effect is a control system that is constricting yet still incompetent, fragmented, and in no sense capable of keeping up with growing sophistication in the pharmaceutical sector. Specifically, failure by NRAs to conduct timely and effective assessments undermines drug quality assurance and diversion of substandard and counterfeit drugs. It calls for more investment in developing long-term regulatory capability that will be capable of functioning effectively below the radar at some future date and facilitate coordination between national, regional, and continental regulators.

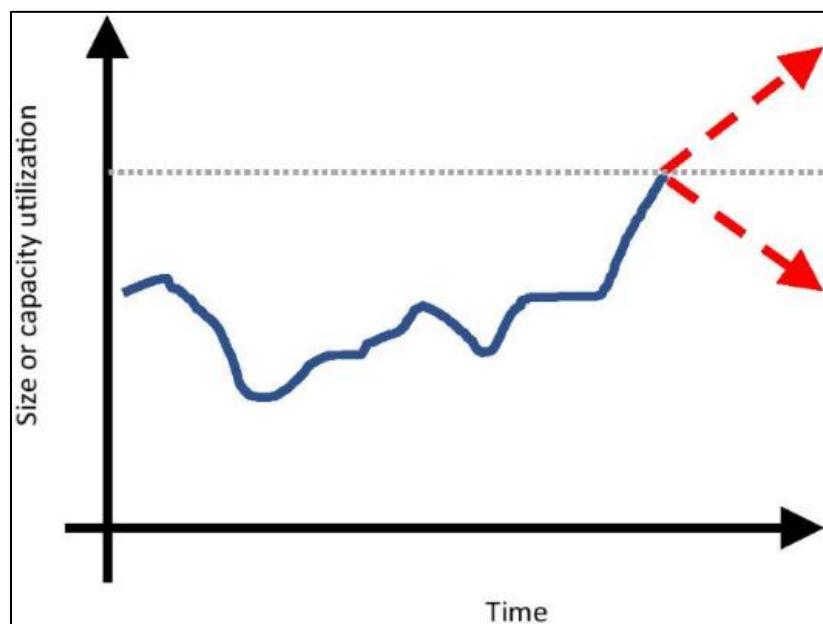
3. Barriers Faced by Pharmaceutical Startups in Africa

African pharma startups are also becoming key stakeholders as the drivers of the health and biotech sector on the continent. The startups are the ones spearheading the development of solutions to health issues, driving the innovation in drug discovery, and tackling the most critical diseases that impact African populations. Though having such enormous potential, the startups are faced with numerous issues that challenge their existence and growth. The most common problems are of three types of general nature: access market barrier problem, capacity and infrastructure problems, and investor confidence and finance problems. All these have a set of challenges that must be addressed in an integrated effort in an attempt to achieve the optimum level of drug innovation optimization on the African continent.

3.1. Barriers to Market Entry

Compliance cost is one of the largest challenges for new pharmaceutical companies in the African continent. New entrants to the pharmaceutical sector must satisfy stringent regulatory demands, most of which are aligned with international standards. As helpful as standards are to provide safety and performance, they are too expensive for low-capitalized firms to implement. The paper addition to cost, inspection, and test needed can be prohibitive. That amount of funding discourages development speed with cost-prohibitive prices from being low enough for the quantity of startups to stay viable in the long term enough to provide products to the market. Rather than conformity is minimal easily definable regulatory routes for new treatments and biotech products. While giant-pharmas have stable and robust regulatory systems in developed economies, African start-ups face creaky, opaque, and nascent regulatory systems along the way. Most African nations are struggling to establish standards for emerging technologies such as gene therapy, mRNA vaccine, and other biotechnologies. This ambiguity puts start-ups in a precarious and cumbersome process wherein clearances get delayed or denied based on ambiguous requirements or weak institutions. Even the lack of harmonized regional regulatory tools perpetuates the problem, with sequential country-by-country market entry and ultimately resulting in regional growth slowdown.

Table 2 Comparison of Market Entry Requirements in Selected African Countries


Country	Cost of Compliance (USD)	IP Protection Rating (1-5)	Time to Approval (Months)
South Africa	3,500	4.2	12
Kenya	2,200	3.8	9
Nigeria	2,800	3.5	14
Egypt	3,000	4.0	11
Ghana	2,100	3.6	10

Morocco	2,600	4.1	8
Ethiopia	1,800	3.2	16

Intellectual property (IP) protection intimidation is another significant market entry barrier. Pharmaceutical sector, thanks to improvements in technology and medicine, depends on strong IP protection heavily in order to secure the competitive advantage and protect investments. IP legislation in most of Africa is under-developed or weakly enforced to protect innovation in its entirety. Weak full protection deters indigenous innovation, deters foreign collaboration, and deprives start-ups of their chance to protect their secret R&D. Secondly, fear of intellectual property loss will deter startups from participating in regional or global partnerships and thus further exclude them from broader scientific and business communities.

3.2. Infrastructure and Capacity Constraints

Besides regulatory and market access problems, African pharmaceutical startups also face infrastructure and technical capacity-type problems. These involve unavailability of test laboratory facilities and Good Manufacturing Practice (GMP)-certified manufacturing facilities. Development of products and drug production require very advanced laboratory equipment and cleanroom factory space not available or in short supply in most African countries. Startups are forced either to be financed by foreign firms or contract the testing and manufacturing through third-party factories, which results in a time lag, increased expense, and greater third-party dependency. Where such alliances are not feasible, clever lead drugs never come out of the laboratory into the light of day. A second infrastructural problem exists in clinical trial approval and running the pharmacovigilance system. Clinical trials are the pillars of drug development where product safety and efficacy can be determined by fast-track development sponsors. Clinical trial approvals in Africa are bureaucratic and time-consuming. Regulatory agencies neither possess the ability nor are properly organized to review trial protocols in a timely context and thus overly prolonged lead times are set. Furthermore, as there are no country-wide centralized ethics committees and harmonized processes, efforts are duplicated and administrative delay was enacted. Even after drug release and licensing, drug safety surveillance systems-pharmacovigilance-are absent. Inadequate pharmacovigilance infrastructure will undermine detection and response capability for drug adverse effects, compromising public trust and patient safety with new therapy.

Figure 2 Capacity constraints as a trigger for high growth

Inadequate infrastructure also affects training and quality human resources availability. Extremely specialized areas such as pharmacology, regulatory affairs, and biomanufacturing require premium human resources, but African pharma startups operate within environments where those are not readily available. Brain drain due to emigration of specialists in search of greener pastures elsewhere is a cause that leads to skill deficiency. Without human capital to conduct world-class scientific research, startups have even greater challenges to scaling and sustainability.

3.3. Investor Confidence and Fundraising

Investor confidence and adequate funding is the third challenge with highest priority for African pharmaceutical startups. The pharmaceutical and biopharm industries are capital-intensive as they entail injection of huge sums over a very long time before they can break even. It is even harder for African start-ups to get the capital from traditional investors because the perceived risk is comparatively higher. Uncertainty in regulation is one of the factors contributing to this perception. Investors would not invest in projects whose approval timelines are undefined, where selective regulatory oversight takes place, and intellectual property defense for innovation is poor. Uncertainty renders opportunities in drug businesses less appealing than other sectors of industry with stronger regulatory frameworks.

Depreciation of highly developed de-risking mechanisms also discourages investment. Financing grants, subsidies, or public-private partnerships are offered by most governments and international development financing institutions to pharmaceutical industry innovators. These interventions take some portion of the risk, utilizing private sector finance. They are not available in most African countries or do not exist at all. Without cushions of funds or institutional safety nets, new firms have to absorb the entire shock of market risk and regulatory lag, which is unsustainable for most firms.

And standing there is the simple requirement for vehicles of finance driven by innovation suitable to the pharma and biopharm industries. Venture capital in Africa focuses on those niches that are regarded as high return and low risk, such as mobile telephony and fintech. Pharmaceutical innovation, with its longer discovery horizons and enormous up-front needs for capital, falls beyond the conventional model of venture capital. Startups cannot thus access investors with experience of pharma development's peculiar time scales, regulatory requirements, and technical sophistication. Insufficient specialized life science venture funds and incubators continue to hinder the funding environment for early-stage pharma companies.

4. Global Best Practice and Models

Reference has to be made to models of global best practice that have been able to establish a balance between regulation and innovation in a manner that would effectively promote African pharma access and regulation efficiency. The international regulatory bodies have taken diverging routes to the streamlining of pharmaceutical approval, drug R&D, and patient protection. India, the US, and the EU all have model systems that can be modified to suit African context, infrastructure, and public health. They are not just good regulatory practice but also a responsive source of models that serve African startups and contribute to the availability of medicines at a global level. All of these examples demonstrate how innovation incentives, regulatory reform, and taking advantage of digital technology make it possible to move forward with pharmaceutical systems, and in what manner this can be made possible in Africa's multi-country regime.

4.1. Case Study of India's CDSCO and Digital Pathways

With a two-decade-refined regulatory framework, the Indian pharma industry has been enabled as a world-class generic drug manufacturer. CDSCO has been leading the charge in implementing e-platforms to harmonize submission, review, and approval of pharma products at a faster pace without compromising on safety and quality standards. CDSCO's SUGAM portal initiative is on similar lines.

This web-based platform offers sanctions of clinical trials, permission to import and manufacture, as well as other sanctions online. It has also facilitated regulators to communicate with drug firms, transparency, as well as reduced administrative cost. CDSCO has also brought conditional approval processes for life-saving drugs and vaccines, particularly in the event of public health emergencies. Such accelerated processes were applied to a large degree during the COVID-19 pandemic to enable faster delivery of vaccines and pandemic response supplies. The Indian experience is equally relevant to African contexts based on shared public health challenges and limitations of resources.

The ability to utilize digital regulatory technology, or RegTech, provides a low-cost and scalable door of entry for African countries to leapfrog bureaucratic procrastination and silo regimes. Apart from this, India's model of generic mass drug production with strict quality checks will resonate with Africa's objective of increasing pharma production on the continent. African regulators should take a page from the web portals of CDSCO and develop centralized web portals to ensure greater harmonization, streamlined data management, and ease of compliance for high-regulatory-needs businesses.

4.2. EMA's Orphan Drug Regulation and Incentive Structures

To the extent that it realizes that orphan medicine markets deter research and development investment by pharma companies, the EMA has instituted several incentives designed to promote innovation in orphan medicines. It

incentivizes them with additional market exclusivity period, waived fees, and support on the protocol during clinical development. The policy has been remarkable in Europe in the management of orphan diseases.

Worth mentioning is that the EMA's orphan drug strategy is not only exciting the big pharma industry but also start-ups and small innovators, unable to finance high-risk research targets. The scientific strategy of the EMA is providing regulatory certainty, economic viability, and scientific expertise, a model to be emulated in the third world. In the African context, where all the diseases are sitting on the bench since they are not economically feasible to the big pharmas, the same incentive principle can be employed in order to promote innovation.

Table 3 Key Regulatory Innovations from Global Agencies

Country/Agency	Initiative	Description	Relevance to Africa
United States / FDA	Drug Master File (DMF) Simplification	Streamlined submission processes for manufacturers through DMF updates.	Enables African regulators to adopt modular registration systems.
European Union / EMA	Centralised Procedure for Medicines	A single marketing authorization valid across all EU member states.	Demonstrates the benefits of harmonization for regional regulatory bodies.
Japan / PMDA	Sakigake Designation System	Early access pathway for innovative drugs to reach the market faster.	Encourages African regulators to create expedited review frameworks.
Canada / Health Canada	Regulatory Cooperation Council (RCC)	Aligns regulations with U.S. to enhance cross-border medical product access.	Offers a model for regional regulatory alignment in Africa.
Australia / TGA	Mutual Recognition Agreements (MRAs)	Accepts certain regulatory decisions from trusted authorities.	Supports reliance models in resource-constrained African agencies.
Switzerland / Swissmedic	Swissmedic-SRA Collaboration	Uses assessments by stringent regulatory authorities (SRAs) for efficiency.	Promotes use of work-sharing and reliance in African countries.
World Health Organization	Collaborative Registration Procedure (CRP)	Facilitates faster national registration of WHO-prequalified medicines.	Directly improves access to essential medicines in African nations.
South Korea / MFDS	International Harmonization Programs	Implements ICH guidelines for quality and safety in drug evaluation.	Highlights importance of global standards for African regulatory reform.

By denoting some of the tropical or under-served diseases as 'orphan' diseases and officially recognizing them, the African regulatory bodies can provide preferential incentives to the domestic research institutions and start-ups. This would also stimulate investment into otherwise under-invested regions and enable therapeutics to be developed in a form that is specifically designed for African populations. Regional economic communities such as the African Union or ECOWAS can also harmonize orphan drug policy as vehicles of market size enlargement and reduction of barriers to innovators. EMA's framework for regulation would have to be adapted to fit Africa, though the concept of tying incentives into public health obligations is international.

4.3. U.S. FDA's Fast Track, Breakthrough Therapy Designations

The United States Food and Drug Administration (FDA) has also taken a leadership position in developing some paths to take drugs that are advancing more quickly through development and approval for serious or life-threatening conditions.

These grant accelerated review procedures, rolling submissions, and increased back-and-forth with the FDA during the development process. The aim is to get new treatment products into the market more rapidly, especially where there are medical needs that are unmet. Fast Track products are products that have the potential to treat serious disease and

fill some of the therapy gap. Such products pay drug sponsors in advance at designation for regular meetings with the FDA and priority review.

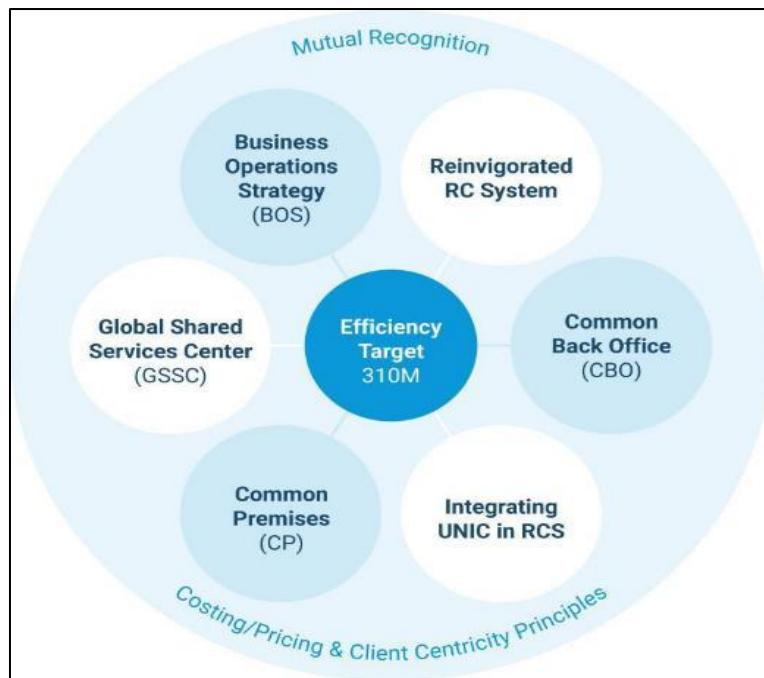
Breakthrough Therapy designation is reserved for the sole drugs already showing early clinical effectiveness in demonstrating further superiority to existing medicines. These have been preceded by trail-blazing approvals of infectious, orphan disease, and cancer drugs, which are a demonstration of stimulation and responsiveness of the regulator. The same model for Africa would be revolutionary. These are all the diseases that most of the African nations are battling, e.g., malaria, HIV/AIDS, tuberculosis, and the upcoming non-communicable diseases. Prioritised review pathways for drugs of such conditions would encourage drug companies and research companies to focus on the most important priorities in the continent. Pan-African centre or national regulatory authorities would establish priority review designation drivers through epidemiology, public health necessity, and innovation value. In addition, FDA emphasis of long-term interaction between regulators and drug developers also remains optimally positioned in Africa.

Through provision of outlets for early interfaces and constant developmental guidance, the African regulators should be in a position to offer an enabling environment for a productive ecosystem. It not only speeds up the developmental timelines, besides drug quality and safety levels to keep up with.

4.4. Relevance and Adaptability to African Contexts

These international case studies offer blueprints for best practice to drive drug regulation and innovation. While unique to a particular legal, economic, and institutional context, some of the following features can be applied to the African context. These include some using web-based platforms to speed up processes, requesting streamlined mechanisms to drive innovation towards backlog diseases, and creating rapid-track mechanisms for priority drugs.

But through windows of regional harmonization efforts and the establishment of digital infrastructure, Africa has the capability to balance its regulatory schemes. Proper functioning of the African Medicines Agency (AMA) can be a hub of portal to harmonize efforts and create continent-level best practices according to world leaders.



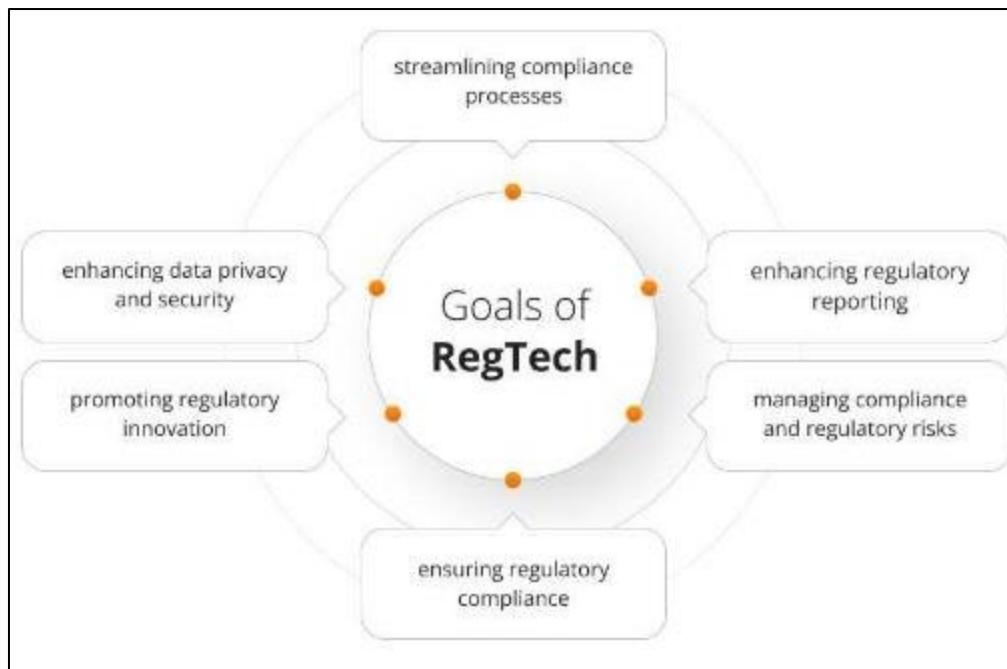
5. Transforming Regulatory Pathways: Strategic Recommendations

The regulatory systems of Africa must be planned so that most innovation is achieved with public health safety as the top priority. The pharmaceutical and healthcare industry and potential future rivals are generally subject to overly complicated regulatory barriers posing entry obstacles to life-saving technology. Tight curbs of control under a single, digitized, and harmonized regime must be adopted. The following strategic recommendations are going to transform the African regulatory model into a facilitation, harmonization, and innovation-compliant regime in the following subsections.

5.1. Harmonisation and Mutual Recognition

Harmonisation of national boundary standards constitutes the lion's share of the underlying requirement of the African regulatory system. Uncoordinate national regulation results in duplication of approval process, cost addition, and lack of expedited speed to market entry. The most concrete of the choices available to us for the answer to the fragmentation of the choices available to us is the African Medicines Agency (AMA). Since AMA would be having a mandate at continental level, it would harmonize best the regulation process and get standardized drug testing, authorization, and post-marketing surveillance regulation. In its submission, AMA will provide ease of compliance with the regulations and thus provision for access to medicine and health technology in member states.

Figure 3 Global harmonization in advanced therapeutics


Successful MRAs would need to be supplemented by harmonization, particularly with regional blocks like the East African Community (EAC), the Economic Community of West African States (ECOWAS), and the Southern African Development Community (SADC). MRAs ease easier acceptance and recognition of each other's testing and certification for regulation on a reciprocally mutual and non-duplicating basis and ease easier crossing of borders by medicinal products. MRAs can be used only with established standards of equivalence and should allow for routine inter-agency audits. MRAs must ease regulatory excellence and trust.

5.2. Regulatory Technologies (RegTech)

Regulatory technologies must be electronic in nature so that they introduce efficiency, transparency, and traceability. Regulatory Technology, or RegTech, can give a number of alternatives to augment current approval processes. Artificial intelligence (AI) and machine learning (ML) for drug approval monitoring are highly promising. They will help the regulators in outlier detection, i.e., flagging high-risk usage, and real-time risk assessment. AI can even automatically screen clinical trial data to enable quicker and automated validation.

Blockchain technology offers a different way of immutability and audibility of regulatory records. For instance, the application of blockchain technology in reading and filing makes more stakeholders within reach of the same version of the record, minimizing tampering possibility and enhanced interagency coordination.

One of the electronic systems that must be embraced by all the regulatory agencies is the Electronic Common Technical Document (eCTD) system. The eCTD standard enables electronic submission of drug product applications in lieu of paper submissions. The eCTD standard presents application information in the identical readable, version-controllable, and review-tracked manner. eCTD adoption by African regulatory agencies would rid them of administrative delay time and gain submission consistency.

Figure 4 Adoption of Regulatory Technologies (RegTech)

They are backed by electronic dashboards to facilitate end-to-end traceability of application processing. Dashboards facilitate end-to-end tracking, responsibility for outstanding action, and reminder, deadlines or other obligations, by the applicant or regulator. The tools obviate responsibility and facilitate the applicants to reply to regulatory comments promptly, shortening overall approval timescales.

5.3. Risk-Based and Adaptive Regulatory Approaches

African regulatory regimes ought to be responsive and proportional, particularly in regard to inclusion of start-ups on the platform. Pharma-player controlled and inflexible regimes of regulation typical of the era will most likely be deterring the small players from innovating. Risk-based responsive regulation policy can introduce new windows of opportunity into the small players without compromising safety.

Among models suggested is conditional approvals, whereby a product would be temporarily approved in the market initially but subject to the outcome of follow-up studies. The model would be best suited for new or emergency products to meet pressing unmet needs. Another flexible model, rolling reviews, would allow applicants to provide information in phases without submitting dossier collated. Concurrent examination of the segments enhances this type of evaluation and saves overall time to evaluate.

Tiered regulation in which the regulation is tiered according to the risk profile of the product can again work. Low-risk products like, say, fitness trackers or mobile health apps can have their review eased but high-risk products like new biologics still get an expedited one. Tiered systems that are being used deliver regulatory attention proportionally allocated.

It would also need to be integrated into such adaptive models such as post-marketing surveillance. It would need to be supported by streamlining regulators for bringing products to market more quickly with provision of mechanism to look back with experience. Along with facilitating more innovation, provisions for continuous observing schemes are facilitating patient safety.

5.4. Capacity Building and Governance

All regulatory reform success hinges on organizational and institutional capacity. Start-up founders and regulators will invest in capacity building. Frontier technology regime must have technical capacity to deconstruct, interpret AI outputs, and encounter digital regimes of regulation. The regulator regime, compliant filing, and local pharmacovigilance must be grounded in start-up founders and compliance authorities.

Regional networks of pharmacovigilance formation are the second most important aspect. There are no infrastructure for signals detection of safety functions, i.e., detection of adverse drug reactions, available in any nation in Africa. It is protected by well-funded national and regional pharmacovigilance centers that facilitate systematic collection and review and follow-up of safety data. These are supplemented with electronic convenience of reporting ease systems to facilitate ease of reporting by patients and also by health workers, real-time.

Border exchange creates room for increased openness. The regulation authorities have to get to work aggressively at creating interoperable information systems in order to manage safety, authorisation status, and compliance history information with unhampered flow. Besides exercising a higher supervisory judgment, the exchange creates room to search sub-standard or fake products shipped over the border. All such initiative by regional programs or AMA is bound to create surplus value.

6. Role of Stakeholders

Effective transformation and up-scaling of the health system, particularly in low-income settings, rely on the involvement of stakeholders. They possess different strength, power, and resources whose overlap produces long-term health innovation and quality delivery. Whether initiated by the public sector and development partners or private enterprise and academia, intersectoral coordination can evolve an effective health innovation system. The value-add discrete and that of such dominant stakeholders are discussed in the following sub-sections.

6.1. Policymakers and Governments

Policymakers and governments have to construct the overall contribution of health innovation ecosystem shaping by policymaking and long-term budgeting. The government's choice and policymaking decision is what defines the shape, diversity, and quality of health systems. With this pharma revolution and health revolution period caused by digital health, governments will need to put in place policies of openness promotion, pathway regulation to offer enhanced efficiency in return, and gatekeeping ethics. Beyond accelerating new technology clearance and intervention by making disclosure less difficult and more convenient, a pro-regulatory and responsive regulatory regime also raises public trust levels in new health solutions.

Budget allocation by government to health innovation is one of such change agents. Budget allocation by government to health innovation helps the government set the kind of environment that will lead to the creation of necessary infrastructure, human capacity building, and public-private collaborations that will lead to technology uptake. Support for establishment of health research and development and innovation centers is also a reflection of the urgency to establish a robust health system in the future.

With such incentive programs, more mechanisms in the hands of the government to carry forward promotion to health startup companies have also been present. Tax credits, innovation awards, buyback assurances, and fast track permits are a few of the mechanisms that lower the entry barriers for new companies. These will be capable of generating a sustainable ethos of entrepreneurship that can confront future healthcare issues with innovative as well as locally relevant solutions.

The governments should also involve the subnational and national players in cross-sectoral action coordination, prioritization of health, and ensuring that innovation is fair and equitable. This in middle- and lower-income economies results from establishing cross-ministerial action coordination of science and technology ministries, finance ministries, and health ministries to achieve effective as well as harmonized policy intervention.

6.2. International Donors and Development Agencies

Donors and development agencies have a critical role of health innovation in sponsoring, technical assistance, and facilitation. Donors and development agencies that have created guidelines and fund structures to rationalize chances of governments plugging loopholes in healthcare system innovation include World Bank, World Health Organization (WHO), and Bill & Melinda Gates Foundation.

Amongst the best that these agencies can achieve is that they can enable enabling infrastructure. They are executable to build central R&D centers, establish digital health networks, and build diagnosis and therapeutics excellence centers. Donors also enable technical capacity by assisting the nations in building and implementing context-sensitive regulatory systems, data governance regimes, and ethics regulation that will promote innovation as well as drive public interest.

No less important. Development agents also enable policy harmonization. Through providing rooms for knowledge exchange, technical transfer, and regional coordination infrastructure, the agents enable harmonization of health innovation policy to best practice globally. Policy harmonization prevents regulatory fragmentation, makes cross-border research collaborations possible, and offers a platform for scaling-up successful healthcare innovations.

Figure 5 Donors and Development Agencies

Operating on institutions like World Bank and WHO, government-level action can also be achieved through placing health innovation strategy on national agendas. Digitally mapping investment in health through UHC goals, for example, compels ensuring innovation development is made up of greater access and equity of service. In addition, strategic investment from the Gates Foundation has helped drive progress toward vaccine development, infectious disease fighting, and technology application by data to support strengthening health systems.

It also has economies of scale and efficiency if it is carried out at scale or in parallel. Or, alternatively, global financiers are convenor and governments, private sector actors, and civil society co-design and co-deliver inclusive health innovation programs. It is its capacity to mobilize financing as well as convene actors that make it a good one to be a good partner to develop sustainable health innovation systems to be rolled out.

6.3. Research and Education Organizations

Education organizations and research organizations are the drivers in the development of innovative science, technology, and strategy-led pharmaceutical advances and regulatory science. As instructors and innovators, they can claim that they ought to be able to set the short-term agendas for health research and develop future clinicians, policy makers, and scientists.

Universities and government research institutes are paradigm-transforming drug development, diagnosis, and healthcare technology innovation incubators. They are made dependent on accessible resources, sufficient finances, and can be comprised of specialist pharmaceutical innovation, regulatory science, health economics, and digital health training programs. These allow the institutes to build reservoirs of expertise of the required qualified experts to provide scientific acumen as deployable solutions with impact to healthcare systems and patient populations.

The biggest intellectual dividend is access to clinical research sites. The academic sites, through cooperative institutional agreement, can pool money, standardize practice, and perform large studies with hard, generalizable findings. Even sets of studies can be available for pilot testing and testing of new technology in practice settings with highly informative data on their cost-inefficiency, effectiveness, and safety.

Universities also promise to make inter-disciplinary discourse on the platform of excellence in public health, epidemiology, bioinformatics, and engineering possible. Fertilization of disciplines shall be needed to face intractant health concerns besieging the effective packages of science.

Industry partnership is the justification of value studies translation. Technology transfer offices, consortia and innovation incubators make translation of laboratory work to product commercialization possible. Universities mobilize the entrepreneurial spirit as active forces for the development of startup and medical innovation spin-off companies.

6.4. Private Sector

The private sector must bring health innovation to the market and grow as a necessity. Private enterprise, from multinationals to medium and small enterprises and even start-ups, finance projects of health innovations, technical competence, and entrepreneurial spirit.

The hardest sector to private sector activity is the venture investment and startup accelerator healthcare technology bubble. Startup accelerators provide seed funding, advice, and exposure to early-stage companies and push them through the high-risk prototype-to-market trajectory. Venture capitalists drive next-generation health innovation creation and go-to-market activity through venture capital investment in end-to-end depth of healthcare technology from telehealth and AI diagnostic-based platforms to wearables to personalized medicine platforms.

With sector industry leaders now more favorable towards pre-competitive research and definition of regulation drafting next-generation future emerging technologies to be anticipated, biotech, insurance, pharma, and information technology sector members are convened in sector coalition for promotion of shared interests like AI adoption ethics, cyber security, and data compatibility. They are able to push collectively for standards establishment driving innovation while safeguarding the patient interest.

Table 4 Stakeholder Contributions to Regulatory Transformation

Stakeholder	Role	Example Initiatives	Impact Area
Government Agencies	Policy formulation and enforcement	FDA's Digital Health Innovation Action Plan (2017)	Regulatory modernization
Industry Consortia	Standard setting and collaboration	Medical Device Innovation Consortium (MDIC) activities (2018)	Harmonization of regulatory frameworks
Academia	Research and policy advisory	Harvard-MIT Center for Regulatory Science (pre-2019 studies on adaptive trials)	Evidence-based regulatory strategies
Healthcare Providers	Feedback on clinical integration and usability	Mayo Clinic's collaboration on AI-based diagnostics (2018)	Patient safety and clinical effectiveness
Technology Companies	Innovation and regulatory compliance input	Google DeepMind's AI ethics consultations with UK regulators (2017–2018)	AI governance and compliance frameworks
Patient Advocacy Groups	Representation of public and patient interests	National Health Council's regulatory science workshops (2016–2019)	Patient-centered policy development
International Bodies	Global alignment and mutual recognition	International Medical Device Regulators Forum (IMDRF) initiatives (up to 2019)	Cross-border regulatory convergence

High business models of private providers propel production, delivery, and distribution of the services. Geographically remote or decentralized populations can be reached by business models of private providers of scale, and private providers have more exposure to health innovation. Stability and continuity in the health systems are also propelled by private providers, particularly when they are aligned with public health targets.

Lastly, private sector responsiveness and innovative capacity propel resilience in health crisis. In the COVID-19 crisis, for example, private enterprise had been at the forefront of the historic pace of innovation in therapeutics, diagnostics, and vaccines. Their resilience had seen the resilience of responsive productive innovation systems headed by the private sector.

7. Case Studies of Emerging African Pharma Startups

The African pharmaceutical market is also changing quietly but deeply with, among others, a new generation of high-tech startup firms dedicated to upsetting generation-old health access challenges. The startup firms are emerging despite regulatory fragmentation, infrastructure deficit, and limited capital. But, in the face of such limitations, there have been model businesses too that have thrived and adapted business models in the face of skillful management of regulatory environments, technology innovation utilisation, and improvisational business models. The following is a comparative analysis of three such start-ups Nigeria's 54gene, Kenya's Revivo, and Rwanda's Zipline and reviewed for their utilisation of differential regulatory environments on the continent. These case studies also provide insight into the avenues through which regulatory compliance and innovation can be attainable and lesson transfer into the broader African pharmaceutical entrepreneurship environment is possible. 54gene is a health tech company from Nigeria that works at the intersection of biotechnology and genomics. It was created with the vision to establish African genomics research and close the gap to advance clinical practice and drug development.

Operating in the intricate and otherwise unregulated Nigerian regulatory framework involved a sequence of unprecedented challenges, mainly in ethical handling of genetic information, sampling, and exportation of biological material. 54gene circumvented the challenges by proactively engaging at the national level regulatory agencies such as the National Health Research Ethics Committee and the National Agency for Food and Drug Administration and Control. Rather than viewing regulators as a hindrance, the startup engaged with regulators as co-creators, educating them about the nature of genomic science and how they might collaborate with them to build compliance frameworks that guaranteed data quality and patient confidentiality. By establishing a strong legal and ethical basis for its operations from the beginning, 54gene established regulatory trust, won foreign collaborations, and built an African biotech model that could scale. Its success attests to the importance of early and sustained regulatory intervention in the achievement of credibility and long-term viability.

Revivo, which is an East African Kenyan startup company, demonstrates the manner in which provision of healthcare via virtual means can be accomplished successfully despite the lack of comprehensive regulation of drugs. Revivo is telemedicine and e-pharmacy oriented, connecting patients to trained health workers and administering prescribed medications through a combined logistics platform. The Kenyan regulatory scenario also had its issues, the most significant of which were regulation of sale of medicine online, verification of prescriptions, and e-verification of physicians. Revivo resolved these in a simple and direct way through good communication with the Pharmacy and Poisons Board of Kenya. It committed an amount of capital that was astronomical in compliance technology, including real-time prescription check, encryption of patients, and secured business arrangements with certified pharmacies. Instead of attempting to create regulation, Revivo was able to pivot its model to existing law and worked together with regulators to establish new standards of practice for telepharmacy. Along the way, it not only complied with regulation but also had an impact on Kenya's policy for digital health. Revivo's take-aways are how to impact regulation by innovating and pre-educating regulators.

The worst example is probably Zipline, a health delivery and logistics business. Using drones, Zipline is delivering health commodities like medicine, blood, and vaccines to hard-to-reach and far-flung areas. The Rwandan government further embraced health innovation by creating a conducive regulatory environment that has enabled Zipline to thrive. From its establishment in Rwanda, Zipline worked with the Ministry of Health and Rwanda Civil Aviation Authority to establish regulation compliance on drone flight paths, payload safeguarding, and medicine protocol supply chain management. The great thing about Zipline's experience is that it was bottom-up lobbying by a state that wished to leverage technology to drive healthcare inequities. Regulators constructed a thin, innovation-friendly regime in which Zipline could experiment, iterate, and scale extremely quickly. The presence and willingness of the Rwandan state to be Zipline's client as well as partner also created a unique synergy that circumvented bureaucratic drag and enabled regulatory pass-through at whim. The Zipline experience is an example of government vision and regulatory flexibility as prime openers of the value of health startups.

Table 5 Projected Impact of Regulatory Reforms on Pharma Access

Startup	Country	Strategy	Regulatory Challenge Addressed	Outcome
MedTech Innovations	USA	Early engagement with FDA and compliance consultants	Navigating FDA medical device approval pathways	Accelerated approval, reduced time-to-market

HealthGuard AI	UK	Collaboration with NHS and adherence to GDPR	Data privacy and patient data protection regulations	Established trust, smooth data handling
BioPharm Solutions	Germany	Partnering with local regulatory experts	Complex EU medical product regulations	Achieved CE marking, enabled pan-European sales
GreenMed Devices	Canada	Iterative prototyping with Health Canada consultation	Meeting national safety standards	Compliance ensured, product launch without delay
SafeCare Robotics	Japan	Leveraging government pilot programs	Approval for innovative robotic healthcare solutions	Received government grants and expedited review
PharmaNext	India	Engaging with Central Drugs Standard Control Organization (CDSCO) early	Navigating diverse state-level regulations	Streamlined approval, improved regulatory clarity

Although all of these companies have their own regulatory and national context within which to do business, there is some shared experience to be transferred here. What seems most critical to the success of operating legitimacy is early and open communication with regulators. In addition to the challenge-privacy of genomic research information, licensure of telemedicine, or air traffic control of delivery supply chains by drones, to name but a few—each company took compliance as an afterthought, not actually an afterthought, but as strategy. By making regulatory processes a part of its strategy from the beginning, each company shunned a great deal of suffering that afflicts less forward-thinking companies.

Second, learning and adaptability played a key role in bridging the gap between new technology and old systems of regulation. Regulatory frameworks in the majority of African countries to manage drugs and health delivery adopted were optimized for outdated models and are far behind schedule to review or react to new paradigms. Firms like 54gene and Revivo performed the dual role of educators and innovators, investing time and effort in communicating their business models, technologies, and security practices to regulators. This mutual interaction ripened into trust and, in most cases, the co-creation of new regulatory frameworks.

Third, public-private partnership was an answer to leapfrog over system boundaries. Zipline's partnership with the government of Rwanda legitimized as well as led to scale-up at a national level. Public-private partnership was aligned with access to finance, infrastructure, and political influence, all which start-ups in bounded arenas greatly lack. While public-private partnership is prone to dangers, it can save start-ups from oblivion and scale up their effects where properly managed.

Finally, all of these cases highlight the importance of local contextualization. Rather than adopting a solution from another case, each of these businesses developed solutions within the limitations, requirements, and possibilities of their setting. 54gene constructed African genomic diversity, Revivo mapped e-pharmacy technology to local prescribing patterns, and Zipline constructed drone delivery routes tailored to Rwanda's geography and healthcare system. This unconventional, forward-thinking vision needed to overcome bureaucratic barriers and bring much-needed healthcare answers to market.

8. Outlook

The pharmaceutical industry's future across Africa is promising—considering the promise of a continental single market, strong regulatory institutions, and an innovation-driven economy. The vision, though ambitious, has merit in current regional and international trends of partnership, high-technology, and long-term strategic planning. As Africa attempts to liberate itself from heritage constraints on access, affordability, and African production of medicines, its future increasingly resembles increasing integration, digitalization, and rebranding of its place in the international pharma market. There is demand and potential for an integrated African market.

Its Balkanization into regulatory regimes, intellectual property regimes, and supply chain logistics has been waging war with its pharma potential. National markets are too small to support big-scale production or big-scale investment. The more active the African Continental Free Trade Area (AfCFTA), the greater the space to harmonize regulation, eliminate

approval barriers, and foster intra-African pharma trade. First, continental drug markets would allow for economies of scale, prevent duplication of regulatory testing, and be appealing to foreign producers who would find it convenient to supply a large, rapidly expanding market. The vision in this article is not merely a commercial integration vision but also a vision of establishing self-sufficiency and resistance.

The COVID-19 pandemic also exposed Africa to exogenous shock in the form of interference with the global supply chain and reliance on foreign-produced medicines and vaccines. A multisided medicines strategy that promotes regional centers of production, cooperative regulatory regimes, and shared procurement arrangements would more adequately prepare Africa for any upcoming public health crisis. It would also enhance competitiveness because small states could take advantage of the aggregation of bargaining strength and technical expertise. At the foundation upon which a harmonized medicines market will thrive is the modernization of the regulatory climate in the continent.

Underpinned, it all will be AI and digitalization. Inefficient, slow, and fragmented traditional regulation procedures are the standard in most African countries. These inefficiencies lead to a lag in access to life-saving drugs, which are expensive for manufacturers. Electronic submission, monitoring, and pharmacovigilance systems can improve efficiency, transparency, and coordination between the national regulatory authorities. AI systems can even support regulatory decision-making via automated document processing, predictive risk alerts, and real-time data analysis for market surveillance. For example, accurate AI processing is crucial in detecting low-quality or counterfeit drugs by examining voluminous data from laboratory test reports, patient complaints, and customs data.

Machine learning algorithms can also identify patterns of side effects and offer early signals of safety issues. Besides, blockchain technology can provide integrity, trace supplies, and end decades of counterfeit medicines and manipulated supply chains. By adopting such technologies in national and regional regulatory schemes, Africa can leapfrog inefficient legacy systems and build a more responsive and agile regulation system. AMA, once operational, will be an early mover institution for the type of change. With the role of centralizing and harmonizing regulatory bodies across member states, AMA can avail itself of many benefits from digital innovations that facilitate cross-border harmonization and cooperation. In the medium to long term, such tech innovations improve patient protection and make African markets viable enough for global pharmaceutical companies and investors.

Africa's youth, rising middle class, and growing double burden of infectious and non-communicable diseases present a special demand profile. When coupled with high rates of digital technology uptake and entrepreneurial culture, these supply and demand conditions provide rich soil for health-tech innovation and pharma R&D. Domestic start-ups and national universities already create in-country innovations suited to Africa's infrastructural and epidemiological context, e.g., off-grid diagnostics enabled through mobile platforms or local botany research to drug development. Investment in R&D is necessary to realize the potential of this innovation.

Public-private collaborations, regional research consortia, and centers of excellence can be utilized to facilitate collaborative innovation, where African-led agendas set the R&D agenda. In addition, putting intellectual property rights in a single harmonized framework will promote domestic innovation and provide access to life-saving medicine. Initiatives like the African Vaccine Manufacturing Partnership and the African Pharmaceutical Technology Foundation reflect more effort towards forming R&D hubs at the domestic level, technology transfer, and production capacity building. Capacity building must also be the core element of Africa's innovation strategy.

Educating the future generation of pharmacists, regulatory experts, data scientists, and biotechnologists will place the continent in a position to carry on its transformation in the coming years. Technical schools and universities must redesign curricula to meet industry requirements, and governments must develop enabler ecosystems to attract talent and professional mobility. Along with this, the equality and inclusion of gender agenda for health and pharmaceutical innovation will allow the utilization of the full gamut of human capital. Africa's rise as a pharmaceutical innovation center will not be isolated. International cooperation, one based on technology transfer, local capacity building, and equal partnership, will be crucial. But it must be African agency-sensitive and interest-driven. Experience has taught us that dependency paradigms cannot deliver long-term benefits. It must be replaced instead by values of openness, knowledge sharing, and co-developed locally relevant solutions.

A well-established drug industry can promote the diversification of economies, employment, and technological advancement in the remainder of the continent. Placing itself in the world value chains both as a producer and consumer of quality health commodities, Africa can stand in a position to shape its future in the global economy. Besides, from acquiring experience in the robust regulation system and building the innovation ecosystem, it may be replicated in other industries such as agriculture, diagnostics, and medical devices.

9. Conclusion

This overview outlines the drivers of successful health innovation ecosystems, from public-private partnerships and regulatory reform to industry, academia, and donors' catalytic action. Our analysis highlights the following key observation: healthcare innovation should never be an island unto itself. It is a coordinated, concerted effort of various stakeholders under a canopy program to optimize public health performance. One of the key findings of this review is that policy fragmentation, lack of infrastructure, and regulatory challenges are still significant barriers to scaling up and developing new health solutions. In addition, research institutes and start-ups do not productize or scale up innovations without extra incentives and long-term investment. On the other hand, no matter how well-intentioned foreign development partners sometimes act in tandem with national strategy, waste and duplication ensue.

Health policymakers must be convinced that health innovation is not a technique exercise but a system change in governance, education, financing, and foreign collaboration. Harmonizing regulatory processes to be efficient and transparent can provide space for new treatments and technology to access the market faster in a secure framework. Focused investment with a forward-looking strategy toward long-term health objectives ensures that interventions in building capacity, research, and infrastructure are smooth between donor and project cycles. Second, connecting compliance determinants to innovation policy increases ethical resilience and citizens' trust. Increased access to new health commodities and services also demands careful design.

Technologies applied in high-income settings are not easily translatable into more resource-constrained settings. Innovation needs to be localized and designed to suit the specific needs of various populations. Adaptation extends beyond technological adaptation but includes regulatory adaptability, affordable financing arrangements, and culturally tailored health promotion interventions. Equity has to be the prime motive behind all innovation, or development will exacerbate the gap between the potential recipients of up-to-date care and non-potential recipients. Regional collaboration is the viable solution in this regard. It cannot be done by any one country alone against the giants of health innovation, especially for border-transcending problems such as pandemics, antimicrobial resistance, or migration of health workers. Regional institutions can standardize norms, pool resources, and exchange knowledge. Bilateral procurement agreements on this platform can take advantage of the collective bargaining power of poor-resource countries so that end-users can enjoy the latest health technology. Regional regulatory harmonization can lower the cost and time of product approval to benefit end-users and innovators. Trans-border networks of research and national excellence can also share the risks and benefits of innovation more equitably. Technical or academic excellence elsewhere can be nodes with others contributing clinical trial sites, manufacturing partnerships, or community outreach. Such collaboration enhances resilience and shared responsibility for outcomes at the regional level.

Lastly, the future demands a revolution in systems thinking about innovation in health care systems: its vision, funding, and reality. Innovation must be imagined as new technology development and system reengineering to be more responsive, equitable, and efficient. It requires political will, strategic leadership, and long-term investment. Technology is a tool that is needed, but people, organizations, and government agencies are essential.

Compliance with ethical standards

Disclosure of conflict of interest

Authors have no conflict of interest.

References

- [1] Adeyemi R.A., Joel A., Ebenezer J.T. and Attah E.Y. (2018). The Effect of Brain Drain on the The Effect of Brain Drain on the Economic Development of Developing Countries: Evidence from Selected African Countries. Journal of Health and Social Issues. 7 (2): 66-76
- [2] Africa: A continent of Opportunity for Pharma and Patients, 06/2015, Mehdi, T; Santos, J.
- [3] Africa: A ripe opportunity ± understanding the pharmaceutical market opportunity and developing sustaining business models in Africa, 2014, IMS Africa Opportunity whitepaper
- [4] Anyakora C., Ekwunife O., Alozie F., Esuga M., Ukwuru J., Onya S. and Nwokike J. (2017). Cost benefit of investment on quality in pharmaceutical manufacturing: WHO GMP pre- and post-certification of a Nigerian pharmaceutical manufacturer. BioMed Central Health Services Research 17:665

- [5] Assessment of medicines procurement and supply management systems in the public health sector, 2009, Ghana.
- [6] Banji Oyelaran-Oyeyinka and Boladale Abiola Adebawale University-Industry Collaboration as a Determinant of Innovation in Nigeria Institutions and Economies, Vol. 4, No. 1, April 2012, pp. 21-46 Obtained from: https://www.researchgate.net/publication/227636386_University-Industry_Collaboration_as_a_Determinant_of_Innovation_in_Nigeria (Accessed 4 October, 2019)
- [7] Berger, M; Murugi, J; Buch, E; IJsselmuiden C; Moran, M; Guzman, J; Devlin, M; Kubata, B. (2010) Strengthening pharmaceutical innovation in Africa. Council on Health Research for Development (COHRED); NeZ Partnership for Africa's Development (NEPAD). Obtained from: <http://apps.who.int/medicinedocs/documents/s18255en/s18255en.pdf> (Accessed 4 October, 2019)
- [8] Chete, L. N. & Adeoti, J. O. & Adeyinka, F. M. & Ogundele, O., 2014. "Industrial development and growth in Nigeria: Lessons and challenges," WIDER Working Paper Series 019, World Institute for Development Economic Research (UNU-WIDER).
- [9] Chukwu, O.(2014). Nigeria gets international pharmaceutical certification. The Nation (Sunday) Newspaper. 1st June 2014.
- [10] DFID (2004) Increasing access to essential medicines in the developing world: UK Government policy and plans. London. Department for International Development.
- [11] Donor Pharmaceutical Financing Strategies.
- [12] Ebube, N. President, National Association of Pharmacists and Pharmaceutical Scientists in America, April 10, 2017 by Pharma Times.
- [13] Edward, J.M., (2011). The financial cost of doctors emigrating from sub-Saharan Africa: human capital analysis BMJ 2011; 343 doi: <https://doi.org/10.1136/bmj.d7031>
- [14] Ekpenyong A., Udom A., Kpokiri E. and Bates I. (2018). An analysis of Pharmaceutical Workforce Capacity in Nigeria. Journal of Pharmaceutical Policy and Practice 11:20
- [15] Federation of African Pharmaceutical Manufacturers' Association (FAPMA), 2018, E. Mujuru.
- [16] Governing Pharmaceutical Innovations in Africa, 07/2018: Inclusive Models for Accelerating Access to Quality Medicines.
- [17] Innovative approaches to increase access to medicines in developing countries, 10/2017, Steven H and Huys I
- [18] Local Production of Pharmaceutical and Related Technology Transfer in Developing Countries, 2011: A Series of case studies by the UNCTAD Secretariat.
- [19] Pharmaceutical manufacturing in Africa: A research agenda towards competitiveness and social inclusion, 2016, M. Bolo.
- [20] Pharmaceutical manufacturing in Africa: A research agenda towards competitiveness and social inclusion, 2016, M. Bolo, J. Byaruhanga, S. Vugigi, W. Wanyanga, W. Ronoh, and M. Sigonda.
- [21] Pharmaceutical Manufacturing Plan for Africa (PMPA), Business Plan, 2012, AUC-UNIDO, Addis Ababa.
- [22] Policy options for promoting the use of Generic Medicines in Low and Middle income countries, 03/2016.
- [23] Private Sector Pharmaceutical Supply and Distribution Channels in Africa, 2011: A focus on Ghana, Malawi and Mali.
- [24] Public Private Roles in the Pharmaceutical Sector: Implication for equitable access and rational drug use, 1997, WHO.
- [25] Strategic Growth and Investment Opportunities: Dannex Ltd, Ghana Company.
- [26] Strengthening Pharmaceutical Innovation in Africa. Council of Health Research for Development (COHRED); NeZ Partnership for Africa's Development (NEPAD), 2009. Berger, M; Murugi, J; Kennedy, A; Kubata, B.
- [27] Strengthening the local production of essential generic drugs in least developed/ developing countries, 2010, UNIDO, Independent evaluation.
- [28] Strengthening University ± Industry Linkages in Africa: A Study on Institutional Capacities and Gaps, 2012, Prof. J. Ssebuwufu.

- [29] Supporting Pharmaceutical Production in Africa: Global UNIDO Project: Strengthening the local production of essential medicines in developing countries through advisory and capacity building, 2015.
- [30] The Economic Community of West Africa States (ECOWAS) Regional Pharmaceutical Plan (ERPP), 04/2014, WAHO Technical document.
- [31] The Globalization of the Pharmaceutical Industry: Pharmaceuticals policy and law.
- [32] The potential of manufacturing and industrialization in Africa, 09/2018: Trends, Opportunities and Strategies.
- [33] UNCTAD (United Nations Conference on Trade and Development) (2009) Investment Policy Review of Nigeria, Obtained from: http://unctad.org/en/Docs/diaepcb20081_en.pdf (Accessed November 3, 2017).
- [34] UNIDO: Pharmaceutical Sector Profile: Nigeria Global UNIDO Project: Strengthening the local production of essential generic drugs in least developed and developing countries.
- [35] University ± Industry Collaborations as a Determinant of Innovation in Nigeria, April 2012, Banji, O and Boladale A. Volume 4.