

If sacrificial cathodic protection works inside a tank, why not in a pipe?

Cynthia Chiamaka Ezech ¹ and Oludare A. Jeremiah ^{2,*}

¹ Researcher and Technology Development Lead, FEDDO Integrated Service, Lagos, Nigeria.

² Chief Executive Officer, FEDDO PTY LTD, Perth, Australia.

World Journal of Advanced Research and Reviews, 2019, 1(03), 100–118

Publication history: Received on 23 March 2019; Revised 25 April 2019; accepted on 29 April 2019

Article DOI: <https://doi.org/10.30574/wjarr.2019.1.3.0133>

Abstract

Sacrificial Cathodic Protection (SCP) is a widely employed method to prevent corrosion in metallic structures, particularly those exposed to aggressive electrolytic environments. It functions by electrically connecting a more reactive metal (the anode) to the structure (the cathode), allowing the anode to corrode in place of the protected material. While SCP has demonstrated consistent efficacy in confined environments such as tanks, its application in pipeline systems has yielded inconsistent and often inadequate results. This paper investigates the scientific and engineering underpinnings of this discrepancy, offering a comparative analysis of SCP performance in tanks versus pipelines. The discussion begins by outlining the fundamental electrochemical principles behind SCP, including the need for continuous electrolyte contact, effective electrical connectivity, and uniform current distribution. Tanks, due to their enclosed geometry and stable internal electrolytes, naturally support these requirements. Conversely, pipelines present a unique set of challenges: extended physical distances, discontinuous or resistive soil environments, variable moisture content, and the presence of dielectric coatings—all of which interfere with effective current flow and ionic transport. Using both theoretical modeling and real-world case studies, this paper demonstrates how these conditions result in poor anode performance, uneven current distribution, and localized corrosion in pipelines. It also explores alternative cathodic protection strategies, such as impressed current systems, which can overcome these limitations. By demystifying common misconceptions, the study provides practical guidelines for corrosion engineers and asset managers on the appropriate use and limitations of SCP systems, emphasizing the importance of system-specific design rather than one-size-fits-all assumptions.

Keywords: Sacrificial Cathodic Protection; Electrochemical Corrosion; Pipeline Integrity; Electrolyte Continuity; Anodic Current Distribution; Corrosion Engineering

1. Introduction

1.1. Background and Importance of Corrosion Control

Corrosion is one of the most pervasive and financially burdensome challenges in the lifecycle of industrial infrastructure. In sectors such as oil and gas, marine transportation, water utilities, and energy transmission, corrosion-related degradation compromises safety, reduces system reliability, and drives up maintenance costs. Industry estimates place global corrosion-related losses at several trillion dollars annually, not including indirect costs such as environmental remediation, litigation, and lost production time [1].

Internal corrosion, in particular, presents unique complexities due to its concealed progression and variability in electrochemical conditions. Unlike external corrosion, which can often be monitored visually or through surface sensors, internal corrosion occurs within confined environments such as pipelines, pressure vessels, and storage tanks—areas where early detection is technically demanding and logically expensive [2]. It may arise due to the

* Corresponding author: Oludare A. Jeremiah

presence of water, acidic gases like CO_2 and H_2S , or microbial activity in contact with carbon steel surfaces. This form of degradation can result in pitting, under-deposit corrosion, or wall thinning that may progress silently until failure occurs [3].

Sacrificial cathodic protection (SCP) has long been employed as a corrosion control strategy. This electrochemical technique involves coupling the structure of interest to a more anodic metal, which preferentially corrodes, thereby protecting the base material. SCP is widely used in marine environments, underground storage tanks, and ballast water tanks due to its passive, maintenance-light characteristics [4]. Its long history of effectiveness in these environments has reinforced confidence in its application.

However, questions have emerged regarding SCP's limited performance in pipeline systems. While storage tanks often benefit from SCP under static or semi-static conditions, pipelines introduce a far more dynamic and spatially complex set of variables. These include inconsistent electrolyte presence, variable soil resistivity, and long current paths—all of which affect electrochemical behavior and protection coverage [5]. As such, corrosion engineers must confront a critical question: If SCP works so well in enclosed tanks, why does it not offer the same protective capability in buried or operational pipelines?

This paper addresses that question by analyzing the physical, electrochemical, and operational distinctions between tanks and pipelines. Understanding these differences is essential not only for avoiding system failure but also for designing economically and technically sound corrosion control systems [6].

1.2. Scope and Purpose of the Study

The purpose of this paper is to examine why sacrificial cathodic protection, a time-tested and well-validated corrosion mitigation technique in tank systems, often underperforms or fails when applied to pipeline configurations. This investigation is grounded in electrochemical theory, field observations, and case study evaluations. It aims to identify the underlying technical challenges that distinguish the performance of SCP in tanks from that in pipelines [7].

Tanks, especially those holding aqueous solutions, present a relatively uniform and closed environment where electrolyte continuity, temperature, and pH conditions remain stable over time. The geometry of tanks ensures that the anode-to-cathode distance remains small, and the electrolyte path is typically predictable and conductive [8]. These conditions favor even current distribution and maintain consistent protection potential across internal surfaces.

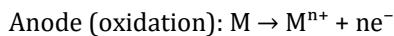
Pipelines, by contrast, present a linear structure with extensive length and highly variable soil environments. These buried or subsea systems experience differences in moisture content, temperature gradients, and electrical resistivity along their path. Moreover, coating systems intended to reduce corrosion risk can inadvertently limit SCP effectiveness by isolating the steel surface from the anode circuit. Additionally, pipeline geometries can create discontinuities in the electrical path, reducing current flow and protection coverage [9].

The intent of this study is not only to explain the technical reasons for SCP limitations in pipelines but also to provide strategic insights for corrosion engineers, pipeline operators, and designers. It proposes an evidence-based framework for evaluating the feasibility of SCP, offers alternatives where appropriate, and emphasizes the importance of context-specific corrosion protection planning [10].

1.3. Structure of the Article

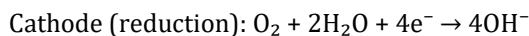
The structure of this paper is designed to lead the reader through a logical and comprehensive exploration of sacrificial cathodic protection within the context of tanks and pipelines. Following this introduction, Section 2 provides a detailed overview of the electrochemical principles of SCP, including material selection, current demand, and reaction kinetics [11]. Section 3 contrasts the physical and environmental characteristics of tanks versus pipelines, using comparative models and resistance formulas.

In Section 4, modeling approaches are used to simulate SCP performance in varying geometries, supported by theoretical and field-based data. Section 5 presents real-world case studies demonstrating SCP application successes and failures. Section 6 introduces relevant electrochemical equations and compares anode efficiency in different geometries.


Section 7 discusses practical design implications, and Section 8 presents best practices, including hybrid protection strategies. Finally, Section 9 summarizes findings and offers practical recommendations for corrosion mitigation planning in pipeline systems.

2. Fundamentals of sacrificial cathodic protection (SCP)

2.1. Electrochemical Basis of SCP


Sacrificial Cathodic Protection (SCP) operates on the principle of galvanic coupling, where a more active metal (the sacrificial anode) corrodes preferentially to protect a less active metal (the structure). This is achieved by forming an electrochemical cell, where oxidation occurs at the anode and reduction at the cathode [5].

At the sacrificial anode, the oxidation reaction can be expressed as:

Here, M represents the active metal—commonly magnesium (Mg), zinc (Zn), or aluminum (Al)—which loses electrons to form positively charged ions. The electrons released by the anode travel through a metallic path to the protected structure.

At the structure (cathode), these electrons reduce environmental species. In aerated systems, the most common reaction is:

This reduction reaction leads to the generation of hydroxide ions at the metal surface, increasing alkalinity and suppressing corrosion [6].

The essential conditions for SCP to function include a conductive path between anode and structure, an electrolyte capable of carrying ionic current, and a driving voltage provided by the electrochemical potential difference between the two metals. The protective current generated mitigates the corrosion rate of the cathode by supplying electrons that prevent the oxidation of its metallic surface [7].

Unlike impressed current systems, SCP is self-regulating and requires no external power source. However, its effectiveness depends heavily on environmental consistency and proximity of the anode to the structure. These conditions are relatively easy to maintain in controlled environments but can deteriorate in dynamic field applications such as pipelines [8].

2.2. SCP Design Parameters

Designing an effective SCP system involves optimizing several electrochemical and physical parameters. Among the most critical are current density, potential shift, anode material selection, and total circuit resistance.

Current density (J) is defined as:

$$J = I / A$$

where I is the protection current (in amperes), and A is the surface area of the structure to be protected. Current density varies based on environmental severity. For example, coated steel in soil may require only 0.02 mA/cm^2 , while bare steel in seawater may need over 1.0 mA/cm^2 [9].

The potential shift required to polarize the steel surface into a passive state is generally accepted as -850 mV or more negative, measured against a saturated copper/copper sulfate reference electrode. SCP systems must generate sufficient current to achieve this potential under operating conditions.

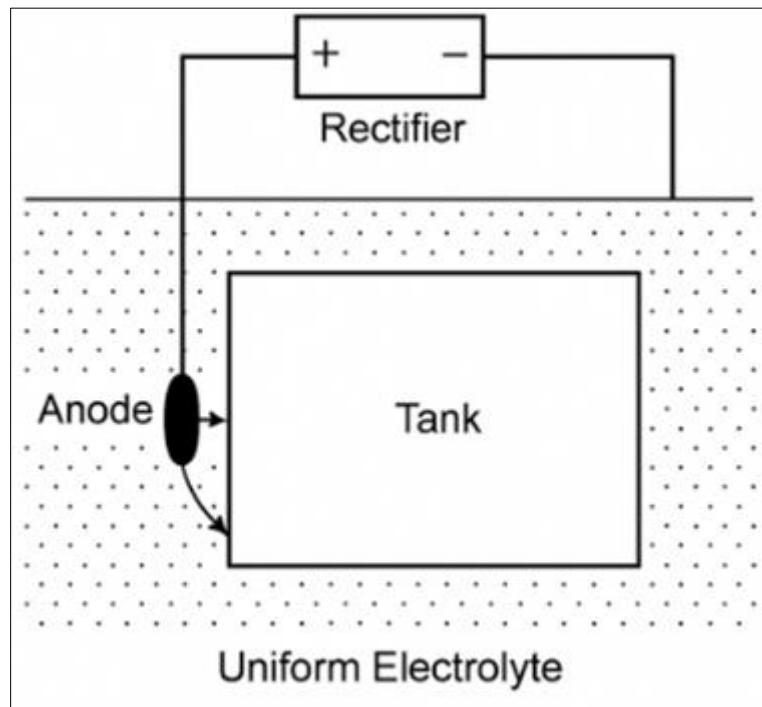
Ohm's Law governs the current output:

$$I = V / R$$

where V is the potential difference between the anode and the structure, and R is the total resistance of the circuit. Resistance includes the resistivity of the electrolyte, contact resistance at the anode interface, and losses due to coatings or isolation flaws.

Anode materials must provide an appropriate balance between driving potential and consumption rate. Magnesium offers high driving voltage but depletes quickly in low-resistivity soils. Zinc is optimal in seawater due to its stable electrochemical behavior. Aluminum, though highly efficient, requires careful alloying to prevent passivation [10].

An overdesigned SCP system can lead to hydrogen evolution and coating disbondment. Underdesign can cause incomplete protection, localized corrosion, and shortened asset life. Thus, proper material selection and predictive modeling are essential to ensure system longevity and reliability [11].


2.3. SCP in Tanks: Why It Works

SCP performs reliably in tank environments due to several favorable factors inherent to their geometry and operation. One of the primary advantages is the presence of a homogeneous and static electrolyte, such as water, brine, or fuel-contaminated condensate. These fluids provide continuous ionic pathways necessary for current flow from the sacrificial anode to the protected structure [12].

In tanks, anodes can be positioned to ensure close proximity to all exposed surfaces, minimizing resistance and enabling even current distribution. The geometry of tanks—compact, enclosed, and usually symmetrical—reduces the complexity of potential gradients, enhancing predictability and uniformity in protection.

Moreover, temperature and pH conditions in tanks tend to remain relatively stable over time, especially in closed systems. This consistency preserves anode performance and electrolyte conductivity, both of which are crucial for maintaining effective corrosion protection [13].

Another key factor is accessibility for inspection and maintenance. Unlike buried pipelines, tank interiors can often be drained and entered for routine monitoring, anode replacement, or cleaning. Engineers can verify protection levels via reference electrode readings and make real-time adjustments to anode quantity or placement.

Figure 1 Schematic of SCP system in a tank with uniform electrolyte and close anode proximity to structural surfaces

These conditions—short current paths, consistent fluid medium, and ease of monitoring—explain why SCP systems in tanks are generally reliable and low-maintenance. The same conditions, however, are difficult to replicate in long-distance pipeline systems, where environmental and operational variables change continuously along the asset's length [14].

In summary, SCP works well in tanks because their physical and chemical stability aligns with the electrochemical requirements of galvanic protection. Understanding this context is essential before attempting to apply similar systems in more complex pipeline environments.

3. Geometrical and environmental differences in pipes vs. Tanks

3.1. Physical Configuration: Tanks vs. Pipelines

A critical difference between tanks and pipelines in sacrificial cathodic protection (SCP) design lies in their geometry and spatial configuration. Tanks are usually compact structures with minimal anode-to-surface distance, facilitating even distribution of protective current. The relatively small volume and contained environment of a tank allow the anode's potential field to influence nearly all wetted surfaces without excessive resistance or current decay [11].

In tanks, anodes can be placed symmetrically or suspended to ensure that all surfaces, including base plates and side walls, remain within effective protective zones. This controlled layout is conducive to both efficient anode use and simplified monitoring. The anode spacing is often optimized such that the furthest protected area is still within the effective potential range of the galvanic current [12].

Pipelines, in contrast, present an elongated and often buried structure extending for hundreds or thousands of meters. The linear form of a pipeline inherently limits the distribution range of galvanic current from sacrificial anodes. Because SCP relies on proximity, protective current diminishes significantly over distance, particularly when anodes are placed at wide intervals. This causes protection attenuation, where distant pipe sections receive insufficient current [13].

Additionally, pipelines are often coated to improve corrosion resistance. While this reduces the total exposed area, it also restricts current flow paths, making uniform SCP coverage more difficult to achieve without careful anode placement.

Table 1 Comparative Geometrical and Electrical Properties of Tanks vs. Pipelines

Property	Tanks	Pipelines
Typical Length	Short (10–100 m)	Long (up to several kilometers)
Cross-sectional Exposure	Large and uniform (e.g., full base, side walls)	Narrow and linear (pipe circumference)
Surface-to-Volume Ratio	Moderate to high	High (especially in small-diameter pipelines)
Current Distribution	Easier to achieve uniformity with strategic anode placement	More challenging due to resistance along the length
Anode Positioning Flexibility	High (anodes can be placed inside or outside the tank wall)	Low (anodes typically buried alongside or connected periodically)
Monitoring Access Points	Centralized and readily accessible	Limited, often requiring test posts spaced along the route
Electrical Continuity	Often integrated as a single structure	Requires bonding of joints and sections to ensure continuity
Soil/Environmental Contact	Generally stationary, limited variability	Varies widely over length due to terrain and soil differences

3.2. Electrolyte Pathways and Continuity

An essential requirement for the effectiveness of sacrificial cathodic protection is a continuous electrolyte path between the anode and the protected metal. This pathway allows for ionic conduction, closing the electrochemical circuit. In tanks, the electrolyte is typically a homogenous, conductive fluid (e.g., water, seawater, or oil-water emulsions), maintaining a consistent medium through which ions can move freely [14].

Pipelines, particularly those buried in soil or traversing mixed environments, are exposed to heterogeneous and often discontinuous electrolytes. Moisture content in soil can vary drastically with depth, geography, and season, resulting in

segments of the pipe having insufficient or resistive electrolyte coverage. The presence of dry zones, low-conductivity clay, or frozen soil can interrupt ionic current paths and create "protection shadows" [15].

The resistance to ionic current between the anode and the cathode (pipe surface) can be described by Ohm's Law in the context of electrolytic resistance:

$$R = \rho \cdot L / A$$

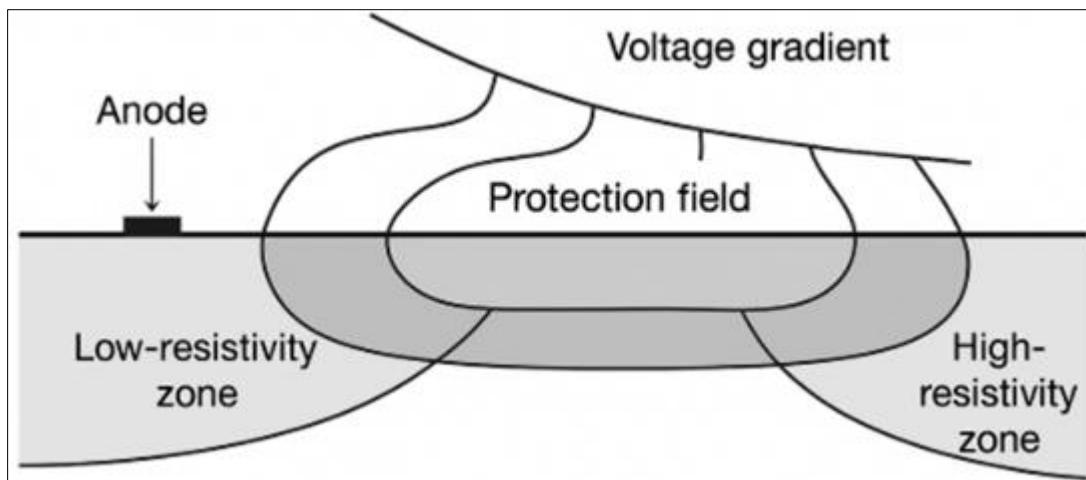
Where:

- R is the resistance (ohms, Ω)
- ρ is the resistivity of the electrolyte or soil ($\Omega \cdot \text{m}$)
- L is the distance between the anode and cathode (m)
- A is the cross-sectional area of the conductive path (m^2)

This equation shows that as L increases or A decreases (as in narrow or non-continuous pathways), resistance increases proportionally. In tanks, L is short and A is large, resulting in low resistance and efficient current delivery. In pipelines, where L can span meters and A is variable due to soil saturation, the resulting resistance becomes significant [16].

The lack of electrolyte continuity, especially over long pipe segments, contributes directly to uneven current distribution and limits the feasibility of SCP as a sole corrosion control method in pipeline systems.

3.3. Role of Soil Resistivity and Coating Systems


Another defining variable influencing SCP effectiveness in pipelines is soil resistivity. High-resistivity soils such as sand, dry clay, or rocky terrain inhibit current flow, thereby reducing the protective range of galvanic anodes. In contrast, the conductive fluid in tanks presents uniform low resistivity, enabling consistent ionic flow and even cathodic polarization across the tank interior [17].

In pipelines, soil resistivity may fluctuate over short distances, especially in terrains where alternating wet and dry zones are common. This variability means that some sections of pipe receive adequate protection, while others remain underprotected or even unprotected. Designing SCP to accommodate such diversity would require an impractically dense array of sacrificial anodes.

Compounding this issue is the presence of external pipeline coatings, typically designed to minimize corrosion by reducing exposure to environmental elements. While coatings reduce the total exposed surface area and thus the current demand, they also interfere with the SCP current path. Protective current can only reach the pipeline where there are coating defects, holidays, or intentional exposure zones [18].

In theory, this targeted protection might seem efficient. However, in practice, coating defects are randomly distributed and often go undetected until significant corrosion damage has already occurred. Furthermore, the current will preferentially flow to the nearest low-resistance path, leading to localized overprotection near anodes and underprotection at remote defects.

The variability of soil resistivity and unpredictability of coating flaws result in erratic SCP current spread. Without external power control—as in impressed current systems—SCP lacks the flexibility to adapt to these changing resistance profiles.

Figure 2 Resistance mapping schematic showing SCP current attenuation along a buried pipeline with variable soil conditions and coating coverage. High-resistivity zones are depicted with steeper voltage gradients and narrower protection fields

4. Modeling and simulation of scp behavior in pipes

4.1. Theoretical Modeling Approaches

The application of numerical methods in evaluating sacrificial cathodic protection (SCP) performance in pipelines has become an essential tool for design validation and system optimization. Among these, the Finite Element Method (FEM) is widely used to simulate the spatial distribution of electric potential along metallic surfaces immersed in or buried under conductive environments [15].

FEM allows corrosion engineers to break down complex geometries—such as coated pipelines in heterogeneous soil—into small, solvable elements. The approach involves solving Laplace's Equation under steady-state, no-source conditions:

$$\nabla^2 V = 0$$

Where V is the electric potential. This partial differential equation governs the potential field in a homogeneous, resistive medium and is subject to boundary conditions defined by the structure's geometry, the location of the anodes, and the conductivity of the surrounding environment [16].

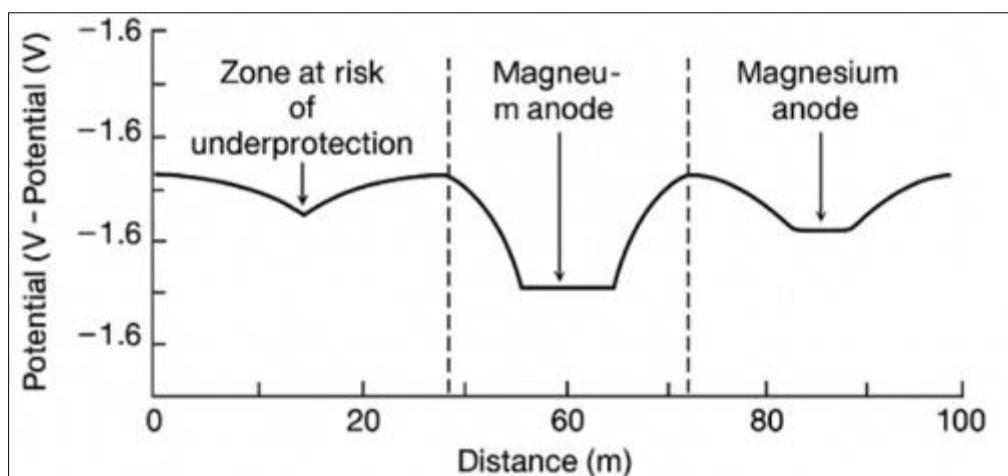
In SCP simulations, boundary conditions include:

- Dirichlet boundaries at the sacrificial anodes (imposed potential),
- Neumann boundaries at coating breaks or defects (current outflow),
- And insulated boundaries at intact coatings.

Using this framework, engineers can simulate how the SCP current propagates through the electrolyte and how much protective potential reaches each segment of the pipeline. Coating defects are modeled as localized regions with reduced surface resistance, allowing current to flow into the pipe metal.

The simulation domain typically includes the steel pipe, the surrounding electrolyte (soil or water), and sacrificial anodes connected via electrical nodes. The potential drop is calculated at each node to visualize the effectiveness of the system.

Such theoretical models provide a cost-effective way to predict whether an SCP system design will meet protection criteria before physical deployment, especially in geometrically complex or environmentally challenging installations [17].


4.2. Case Simulations of Short vs. Long Pipe Sections

To understand SCP performance over varying pipeline lengths, simulations were carried out on three different cases: a 10-meter, 100-meter, and 1-kilometer steel pipeline segment. Each model assumed a partially coated pipeline with discrete defects, an embedded magnesium anode system, and a soil resistivity of 100 ohm-cm. Coating holidays were introduced at fixed intervals, and FEM was applied to predict the potential profile along the pipe [18].

In the 10-meter model, the proximity of the anodes to all surface areas ensured near-uniform protection. The simulation showed that pipe-to-soil potentials remained well below the -850 mV protection criterion across all defect points. The current distribution was balanced, with minimal attenuation over the short distance.

The 100-meter case exhibited noticeable voltage decay along the length of the pipeline. Potentials near the anodes were strong, but values progressively weakened toward the center and ends of the section. At roughly 60–70 meters from the anode location, protection levels approached threshold values, indicating partial underprotection [19].

In the 1-kilometer case, simulation results clearly demonstrated that sacrificial current failed to protect areas beyond 200–300 meters from the anodes. Sections in the central region experienced pipe-to-soil potentials above -750 mV, failing to meet minimum protection standards. Even the inclusion of multiple anodes did not ensure full coverage without precise placement strategies.

Figure 3 FEM simulation output showing the potential profile for a 100-meter coated pipeline with three magnesium anodes. The figure illustrates the steep potential gradient away from each anode and indicates zones at risk of underprotection.

These results confirm that SCP is highly **distance-sensitive**. Its effectiveness diminishes rapidly in longer pipeline segments unless anodes are densely and strategically placed—a condition rarely feasible in large-scale field systems.

5. Discussion of Model Accuracy and Limitations

Although FEM offers valuable insights for SCP design, the accuracy of simulation results is heavily influenced by the assumptions and simplifications made during model development. One of the primary limitations is the assumption of homogeneous soil resistivity across the pipeline domain. In reality, soil composition and moisture content vary widely over distance and depth, leading to non-linear resistance profiles that affect current flow unpredictably [20].

Additionally, models often assume constant electrolyte saturation surrounding the pipe. However, field conditions such as dry patches, frozen ground, or aerated zones significantly alter ionic conductivity. These inconsistencies are difficult to parameterize in FEM frameworks, and their absence may result in overly optimistic protection estimates [21].

Another critical assumption is the treatment of coating defects. In simulations, holidays are usually modeled as fixed-size, evenly distributed points. However, in practice, coating flaws are random in size, shape, and location. Some may be microscopic, while others span several centimeters. Without accurate defect mapping, the model's ability to predict corrosion hotspots is limited.

The electrical connection integrity between the anode and pipeline is also idealized in most simulations. Field connections are subject to degradation, mechanical loosening, or corrosion at the bonding point, all of which introduce resistance not accounted for in a theoretical model [22].

Moreover, FEM does not inherently account for dynamic environmental factors, such as temperature fluctuation, seasonal water table changes, or microbial activity. These temporal effects can significantly alter the corrosion environment, requiring time-dependent modeling or integration with field-sensor data for improved accuracy.

Despite these constraints, FEM remains a powerful tool for preliminary SCP design. Its ability to visualize potential fields and predict regions of underprotection offers critical guidance, especially when supported by conservative assumptions and supplemented with real-world data validation.

As computational capabilities expand and real-time monitoring technologies evolve, future modeling efforts can incorporate adaptive parameters, reducing reliance on fixed assumptions and improving the accuracy and applicability of SCP simulation in complex pipeline networks [23].

6. Practical case studies and field observations

6.1. SCP Application in Small-Diameter Pipelines

Sacrificial Cathodic Protection (SCP) remains a viable corrosion mitigation approach for small-diameter pipelines, particularly when system lengths are short and electrolyte conditions are favorable. Applications such as urban utility conduits, offshore flowlines, or subsea tie-backs frequently utilize SCP due to their compact geometries and consistent ionic media [19].

In these settings, electrolyte saturation is typically stable, whether from compacted moist soil or a marine environment where seawater functions as an excellent conductor. Small diameters (generally under 150 mm) and lengths under 50 meters ensure that protective current from sacrificial anodes can adequately polarize the entire exposed surface. These systems often experience less variation in soil resistivity and benefit from easier installation access, making SCP both cost-effective and technically sufficient [20].

For instance, in offshore pipelines connecting manifolds to subsea risers, magnesium or zinc bracelet anodes are clamped directly to the pipe surface. These anodes are spaced along the length of the pipe and are designed to corrode over the asset's operational lifespan. The consistent seawater environment allows for reliable potential maintenance below the -800 mV protection threshold [21].

Urban infrastructure such as gas or water mains laid in controlled trenches with moisture-retaining backfill also exhibit favorable conditions. Engineers commonly use pre-packaged magnesium anodes connected via test leads and junction boxes for easy monitoring. These systems are particularly suited to distributed assets where impressed current systems would be impractical or over-engineered [22].

However, even in these ideal use cases, challenges remain. Localized coating damage, third-party interference, or stray currents from nearby electrified transport systems can compromise SCP effectiveness. Thus, periodic monitoring and proper grounding are still required to ensure performance.

6.2. Field Failures of SCP in Long-Distance Buried Pipelines

While SCP can be successful in limited applications, numerous field failures have occurred when attempting to protect long-distance buried pipelines exclusively with sacrificial systems. These failures illustrate the shortcomings of relying on galvanic protection across extended distances and varied soil profiles.

A notable case involved a rural high-pressure natural gas pipeline that extended approximately 7 kilometers through farmland, woodland, and semi-arid terrain. The pipeline was protected using magnesium ribbon anodes placed at intervals of 100 meters. Despite theoretical current output calculations supporting the design, field inspections revealed significant premature corrosion and local pitting within four years of operation [23].

Table 2 Summary of SCP field performance metrics across distances

Pipe Section (m)	Soil Type	Average Potential (mV)	Protection Status
0–100	Clay/loam	-910	Protected
100–500	Sandy/silt	-790	Underprotected
500–1000	Gravel/dry clay	-710	Unprotected
1000+	Mixed terrain	-650 to -580	Critical failure

These results demonstrate the natural attenuation of current with distance, particularly in dry or resistive soil conditions. Field logs indicated that anodes near the test stations maintained adequate output, but their effectiveness deteriorated rapidly beyond 300 meters.

This performance drop aligns with Ohm's Law, where the resistance between anode and pipeline increases with distance:

6.3. Ohmic Resistance and Current Attenuation

Current attenuation in sacrificial cathodic protection systems over distance can be expressed with Ohm's Law:

$$R = (\rho \cdot L) / A$$

Where:

R = Resistance (Ohms)

ρ = Soil resistivity (Ohm·m)

L = Distance between anode and cathode (m)

A = Cross-sectional area of the conductive path (m^2)

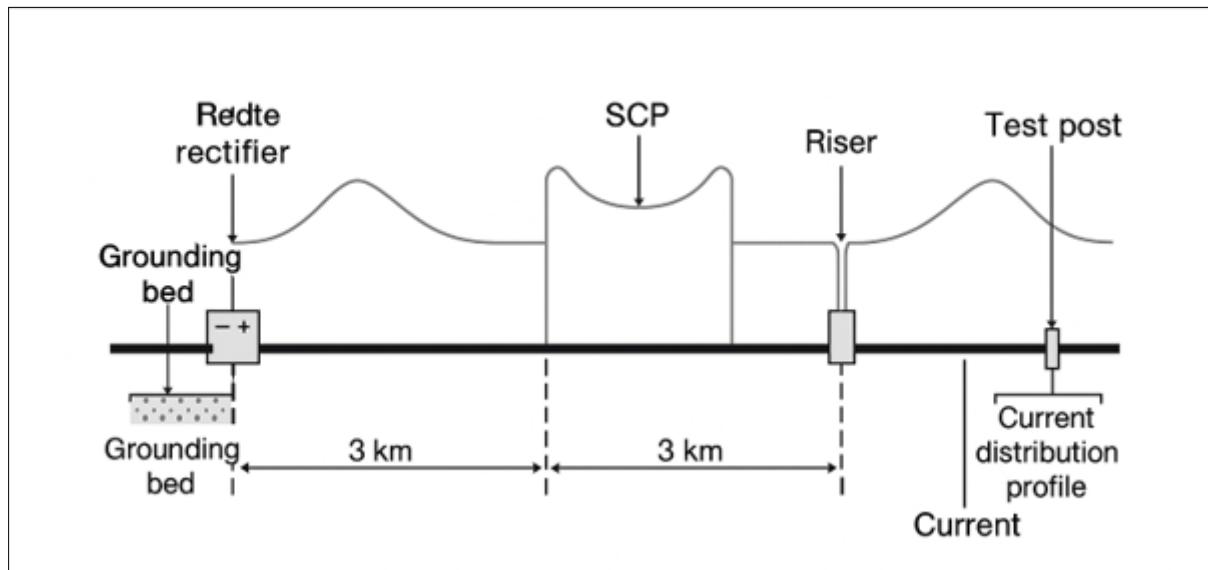
The decay in pipe-to-soil potential over distance from the anode can be approximated using a simplified exponential decay model:

$$V(x) = V_0 \cdot e^{-kx}$$

Where:

- $V(x)$ = Potential at distance x
- V_0 = Initial potential near the anode
- k = Attenuation constant dependent on resistance and geometry
- x = Distance from anode (m)

Inspection reports also highlighted coating flaws, compounded by poor ionic continuity in semi-arid sections. Some anode tails were found to be inadequately connected due to mechanical damage during backfilling, increasing circuit resistance [24].


Post-failure assessment concluded that SCP alone was insufficient for such an extensive asset. The design lacked redundancy and failed to account for spatial variations in resistivity. These findings support the consensus that long pipelines require more controllable and adaptable protection mechanisms, such as impressed current cathodic protection (ICCP).

6.4. Hybrid Designs and Workarounds

To bridge the limitations of SCP in large-scale pipelines, engineers have increasingly adopted hybrid cathodic protection (CP) systems that combine SCP segments with ICCP zones, particularly in transition areas and operationally critical

segments. This approach optimizes performance by leveraging the low-maintenance benefits of SCP where feasible, while using ICCP to extend coverage and address high-resistance regions [25].

For example, SCP is often used at pipeline risers, river crossings, and terminal stations where grounding is controlled and electrolyte conditions are predictable. In contrast, ICCP systems—powered by rectifiers and controlled via remote monitoring—are deployed along mainline segments subject to soil variability or where long-distance current distribution is necessary.

Figure 4 Real-world hybrid SCP/ICCP configuration showing pipeline route with ICCP rectifier stations spaced every 3 km, and SCP applied at transition points such as risers and valve sites. The figure includes test posts, grounding beds, and current distribution profiles.

Another practical workaround is the **use of segmental SCP**—short isolated pipe sections protected individually using localized sacrificial systems. Each segment includes a test lead and a nearby anode, minimizing the reliance on distant current propagation. The current required for each isolated section can be determined by:

$$I = J \cdot A$$

Where:

- I = Required anode current (A)
- J = Design current density (A/m^2)
- A = Bare metal surface area (m^2)

Engineers may also deploy booster anodes—intermediate SCP units wired back to a central monitoring point. These are often installed with voltage-limiting devices to avoid overprotection in moist zones while ensuring that drier areas maintain minimum required potential.

Although hybrid systems introduce complexity, they also bring adaptability and resilience. Rectifiers can be tuned in real time, and SCP segments act as passive backups in case of power failure. Moreover, when correctly designed, hybrid CP systems reduce anode consumption, lower lifecycle costs, and improve inspection outcomes [26].

7. Mathematical comparison of protection efficiency

7.1. Protection Current Requirement Formula

A fundamental aspect of designing sacrificial cathodic protection systems is calculating the required current output to achieve full polarization of the exposed metal surface. The current requirement is determined by the design current density, which is influenced by environmental severity, electrolyte type, and coating quality.

Standards such as NACE SP0169 and DNV-RP-B401 provide recommended current density values for different conditions. For instance, bare steel in seawater may require up to 1.0 mA/cm^2 , whereas coated structures in moist soils may only need 0.01 to 0.05 mA/cm^2 , depending on coating integrity and defect percentage.

The required total current is given by the equation:

$$I = A \cdot J$$

Where:

I = Total current (Amps)

A = Total exposed surface area (m^2)

J = Design current density (A/m^2)

In practice, the surface area A includes only the bare or exposed areas due to coating defects, weld joints, or intentional test sections. This helps reduce overdesign and extend anode service life.

Example: For a 100-meter segment of bare steel pipeline with an outer surface area of 15 m^2 , using a current density of 0.05 A/m^2 :

$$I = 15 \cdot 0.05 = 0.75 \text{ A}$$

This calculated current serves as the baseline input for further design parameters, such as anode sizing, spacing, and installation intervals. Failure to accurately estimate J leads to either underprotection or overdesign, making this equation a central tool in SCP engineering.

7.2. Anode Consumption Rate Calculation

Once the required protection current is established, the next step is to determine the mass of sacrificial anode material needed to sustain that current for a defined service period. The anode mass is derived from Faraday's laws of electrolysis, which relate current to metal consumption over time [26].

The formula for anode consumption is:

$$W = (I \cdot t / n \cdot F) \cdot M$$

Where:

W = Mass consumed (grams or kg)

I = Current (Amps)

t = Time (seconds)

n = Number of electrons transferred per atom

F = Faraday's constant ($96,485 \text{ C/mol}$)

M = Molar mass of anode metal (g/mol)

This equation calculates the theoretical mass, but a practical design includes an efficiency factor, since real anodes don't corrode uniformly or completely. Typical efficiency factors: Magnesium $\sim 50\%$, Zinc $\sim 90\%$, Aluminum $\sim 90\text{--}95\%$.

Example: Assume a magnesium anode provides 0.75 A for 10 years ($3.15 \times 10^8 \text{ seconds}$), with $n = 2$, $M = 24.3 \text{ g/mol}$, and 50% efficiency.

$$W = ((0.75 \cdot 3.15 \times 10^8) / (2 \cdot 96485)) \cdot 24.3 \approx 29.7 \text{ kg (theoretical)}$$

Adjusting for 50% efficiency: $W_{\text{practical}} = 29.7 / 0.5 = 59.4 \text{ kg}$

Thus, for this pipeline segment, $\sim 60 \text{ kg}$ of magnesium anode is required to ensure 10 years of protection. This approach ensures accuracy in material procurement, logistics planning, and lifecycle forecasting [27].

8. Application of Design Equations in Pipe vs. Tank

Applying these calculations to tanks versus pipelines reveals how system geometry and environmental factors influence SCP design. Both structures may contain equal volumes or surface areas, but the protection current and anode consumption differ significantly due to configuration and environmental uniformity [28].

Table 3 Design Comparison — SCP Parameters for Same Surface Area

Parameter	Storage Tank (Uniform Electrolyte)	500m Pipeline (Variable Soil)
Surface Area (m ²)	150	150
Current Density (A/m ²)	0.01	0.05
Required Current (A)	1.5	7.5
Anode Efficiency (%)	90	50
Anode Mass for 10 yrs (kg)	~55	~250

This table demonstrates that although the exposed surface area may be equal, the pipeline demands five times more current and almost five times more anode mass due to:

- Higher current density (due to coating holidays and soil variability)
- Lower anode efficiency (e.g., magnesium in high-resistivity soil)
- Current attenuation over long distances

Additionally, tanks benefit from shorter current paths and uniform electrolyte (e.g., water or oil emulsion), which minimizes potential loss. In contrast, the heterogeneous resistivity of soil, coating damage, and potential drop along a 500-meter pipeline necessitate larger or more frequent anode deployment [29].

These insights affirm the limitations of using tank-derived SCP assumptions for pipelines. Accurate, scenario-specific calculations are essential for system viability and long-term asset integrity.

9. Limitations, risks, and misconceptions

9.1. Common Misunderstandings About SCP in Pipes

One of the most frequent engineering errors in cathodic protection design is the assumption that pipelines and tanks can be protected identically using sacrificial anode systems. This misconception is rooted in the long-standing success of SCP in stationary tanks, particularly those storing water or hydrocarbons in stable environments [23].

However, applying the same principles to pipelines ignores several critical differences in geometry, environmental variability, and current path distribution. Tanks are compact structures with short anode-to-surface distances and a contained, uniform electrolyte. This geometry allows protective current to distribute evenly with minimal resistance. By contrast, pipelines often span kilometers across soil with highly variable conductivity, moisture, and temperature. These environmental changes dramatically affect ionic continuity and current attenuation [24].

Many pipeline failures linked to corrosion can be traced back to an underestimation of resistance losses. As current travels from a sacrificial anode through high-resistivity soil to a remote pipe surface, voltage drop increases, diminishing the effective polarization at the pipe. This leads to underprotected zones and accelerated corrosion at distal sites.

Another misunderstanding involves coating assumptions. Engineers may rely on overly optimistic coating integrity, failing to account for undetected holidays or long-term degradation. In such cases, the SCP system is asked to protect more surface area than designed, compounding its ineffectiveness [25].

This false equivalence between tanks and pipelines continues to result in poorly performing protection systems, emphasizing the need for application-specific designs that consider the actual resistive environment, coating quality, and structural layout.

9.2. Risks of Underprotection and Overdesign

The consequences of SCP misapplication in pipelines span both extremes: underprotection and overdesign. Both outcomes compromise the effectiveness and economic efficiency of corrosion control strategies [26].

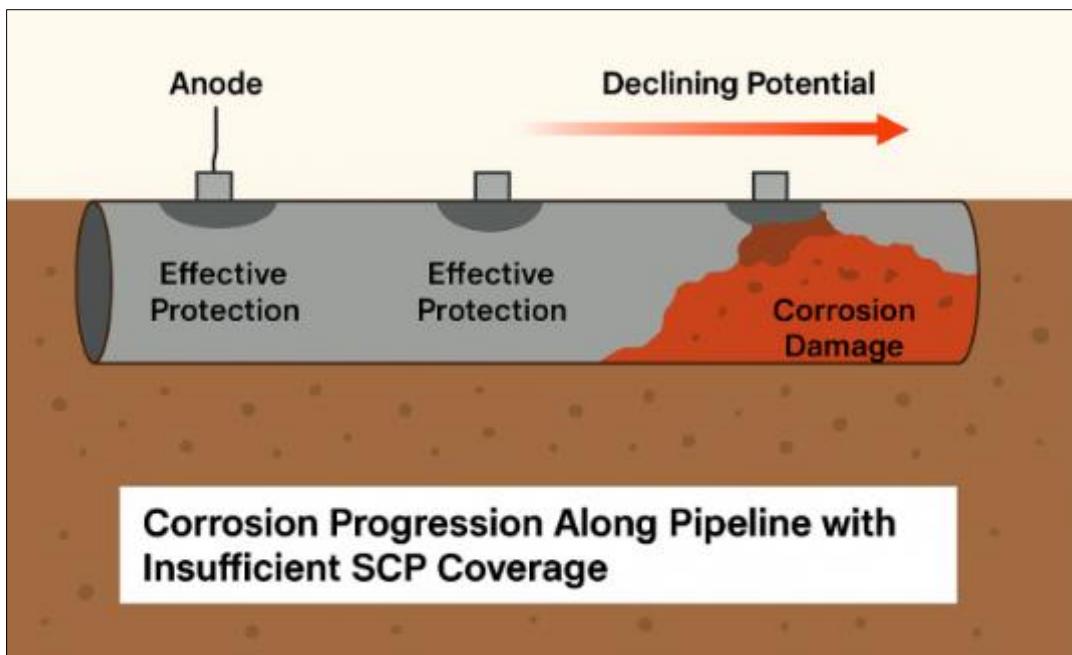
Underprotection typically arises from inadequate current delivery to remote or shielded sections of the pipe. When current attenuation isn't considered during design, large sections of the pipe may remain below protection potential thresholds. This results in localized corrosion, particularly at coating holidays and mechanical joints, where electrolyte penetration is more likely. Over time, even small defects evolve into pits or cracks, increasing the risk of leak or rupture.

Conversely, overdesign occurs when excessive current is delivered to areas that don't require it—either due to miscalculated surface area or overly conservative current density assumptions. This can lead to anode wastage, as materials are consumed without providing incremental benefit. In wet environments, excessive polarization may also result in hydrogen evolution, which degrades protective coatings and leads to cathodic disbondment [27].

Overdesign can also cause shielding effects, where current preferentially flows to certain areas and bypasses others, leaving critical regions inadequately protected. Additionally, high current density can mask problem areas during monitoring, giving a false sense of protection.

These risks underline the importance of accurate, balanced SCP design, incorporating field data, soil testing, and segmental analysis. Proper calibration between the extent of exposure and required current is essential for ensuring that resources are not misallocated and that the full pipeline remains protected over its intended lifespan.

9.3. Material Selection and Operational Challenges


Choosing the right materials for sacrificial anodes in pipeline applications is a non-trivial task influenced by electrochemical properties, environmental compatibility, and lifecycle expectations. Improper material selection can lead to reduced protection efficiency or unintended corrosion effects on the protected asset [28].

The anode material must be sufficiently active to produce a driving potential greater than the open-circuit potential of the steel pipeline. Common materials include magnesium, zinc, and aluminum, each with varying output potentials and consumption rates. In high-resistivity soils, magnesium is typically favored due to its high driving voltage, while zinc and aluminum are more effective in low-resistance environments like seawater.

However, the alloying composition of these materials greatly affects their performance. For instance, aluminum anodes must be properly alloyed to avoid passivation, which can halt the anode reaction entirely. Magnesium, while highly active, is more prone to rapid depletion and hydrogen generation in wet environments [29].

Another concern is galvanic mismatch when dissimilar metals are used in combination with incompatible piping materials. This mismatch can reverse polarity or lead to accelerated attack at connection points. Material compatibility, particularly in pipeline risers and transition zones, must be verified through galvanic series analysis and laboratory testing.

Lastly, seasonal variations in soil conductivity—caused by freeze-thaw cycles, groundwater fluctuation, or vegetation changes—can significantly alter SCP performance. Without continuous monitoring or adaptive design, such fluctuations may result in extended periods of underprotection or current starvation.

Figure 5 Corrosion progression along a buried pipeline with insufficient SCP coverage. The figure demonstrates areas of effective protection near anodes, with declining potentials and corrosion damage further along the pipe, validating current attenuation trends observed in field failures

10. Alternative approaches and best practices

10.1. Impressed Current Cathodic Protection (ICCP) in Pipelines

Impressed Current Cathodic Protection (ICCP) offers a robust alternative to sacrificial systems, particularly in long-distance pipeline applications where SCP fails to deliver consistent protection due to current attenuation and soil variability. ICCP systems use an external DC power source—typically a rectifier—to drive protective current from inert anodes (often mixed metal oxides, graphite, or silicon iron) into the pipeline [27].

One of the primary advantages of ICCP is design flexibility. Engineers can tailor current output to match varying environmental conditions and modify settings over time. This adaptability ensures sustained protection even when coating integrity changes, soil resistivity fluctuates, or pipeline sections are added [28].

ICCP systems also offer extended coverage, capable of delivering uniform potential over kilometers of buried pipeline through distributed anode beds and remote grounding. In high-resistivity areas, deep well anodes and booster stations ensure current penetration without the material consumption limitations associated with SCP.

These systems are particularly effective for pipelines with mixed terrain, changing soil chemistry, or unreliable moisture profiles. For example, in cross-country transmission lines, rectifiers spaced every 1–3 kilometers can maintain a consistent -850 mV potential, independent of the natural electrochemical gradient [29].

Moreover, ICCP facilitates centralized monitoring and maintenance. Operators can observe current flow, voltage output, and pipeline potential in real time, allowing for rapid adjustments in response to anomalies. This level of control significantly reduces the risk of underprotection and makes ICCP the preferred method for complex or mission-critical pipeline installations [29].

10.2. Mixed Mode Systems and Smart Monitoring

As pipeline systems grow more diverse in structure and exposure, many operators are turning to mixed-mode cathodic protection designs, combining sacrificial and impressed current strategies for optimal performance. This hybrid approach is especially useful in transition zones, such as risers, terminals, or valve assemblies, where grounding conditions differ from long straight pipeline segments [30].

In such configurations, SCP systems are used in short, localized sections where current demand is low and corrosion risk is concentrated. Meanwhile, ICCP systems are applied to extended areas with fluctuating resistivity or where remote power access is feasible. The synergy of these methods provides redundancy and site-specific efficiency [31].

This design evolution is closely linked to the adoption of smart monitoring technologies. Remote Monitoring Units (RMUs) are now deployed at test posts and rectifier stations to log pipe-to-soil potentials, anode outputs, and AC interference levels. These units can transmit data via GSM or satellite, enabling centralized oversight [32].

Coupon probes are also widely used to simulate coating defects. These devices provide localized corrosion rate feedback and validate protection adequacy at targeted spots. By monitoring actual metal loss, they supplement electrical readings and improve data accuracy [33].

Additionally, hybrid power systems, such as solar-powered ICCP rectifiers, offer operational autonomy in remote locations, where grid power is unavailable. These units support consistent protection with minimal maintenance, further expanding CP coverage in off-grid or inaccessible terrains [34].

Together, these innovations allow pipeline operators to dynamically adapt CP systems, reducing material costs and enhancing long-term integrity management.

10.3. Industry Standards and Design Guidelines

The implementation of cathodic protection in pipeline systems—whether sacrificial, impressed, or hybrid—is governed by well-established industry standards and design guidelines. These frameworks ensure technical consistency, performance validation, and environmental safety [35].

Among the most cited documents is NACE SP0169, which outlines control criteria for cathodic protection of buried and submerged metallic pipelines. It sets forth guidance on minimum pipe-to-soil potential levels, test methods, and monitoring requirements. It also addresses considerations such as interference currents, AC mitigation, and anode placement in mixed-resistivity environments [36].

For pipelines located near storage tanks or fuel distribution networks, API Recommended Practice 1632 is often referenced. This document provides strategies for integrating CP systems with above-ground components and includes procedures for maintaining electrical isolation while achieving consistent potential coverage [37].

Internationally, ISO 15589 is a comprehensive standard that combines design, installation, operation, and maintenance protocols for pipeline cathodic protection. It emphasizes life cycle cost optimization and offers formulas and guidelines for current demand, anode spacing, and monitoring accuracy [38]. The ISO approach supports alignment across multinational operators and asset owners, particularly in projects spanning different jurisdictions or soil conditions [39].

These standards not only guide engineers in design calculations, but also serve as benchmarks for audit, inspection, and regulatory compliance. Incorporating them into project specifications helps ensure long-term protection reliability, environmental stewardship, and public safety in pipeline corrosion control initiatives [40].

11. Conclusion and engineering implications

11.1. Summary of Findings

This article critically examined the performance of Sacrificial Cathodic Protection (SCP) systems in enclosed tank environments versus extended pipeline applications. SCP has demonstrated long-term success in tank systems due to favorable conditions including compact geometry, short anode-to-metal distances, and the presence of a uniform and conductive electrolyte. Tanks offer stable temperature, predictable pH, and accessible interior surfaces for periodic inspection and maintenance. These conditions collectively ensure even current distribution and sustained corrosion protection.

Conversely, pipelines introduce a set of variables that challenge the underlying assumptions of SCP performance. Long distances, fluctuating soil resistivity, and inconsistent moisture content lead to significant current attenuation and protection gaps. In addition, pipeline coatings, while reducing exposed area, often obscure localized holidays or degrade over time, compounding protection challenges. SCP is unable to compensate for such variations due to its passive nature.

and distance sensitivity. The misapplication of tank-based SCP assumptions to buried or subsea pipelines has led to both underprotection and overdesign in numerous documented cases. These findings affirm that SCP's efficacy is highly dependent on the surrounding environment and structural context, and that it is not a universally transferable solution for corrosion control.

11.2. Recommendations for Pipeline Design

Pipeline corrosion protection should adopt a context-sensitive approach that accounts for environmental, geometric, and operational realities. SCP is best reserved for short or isolated pipeline segments where current paths are predictable, and resistivity is low. It can also serve well in controlled transition zones, such as risers or terminal stubs.

For medium to long-distance pipelines, Impressed Current Cathodic Protection (ICCP) systems offer greater adaptability and coverage. These systems allow for tailored current output, centralized control, and real-time monitoring. Hybrid designs that combine SCP and ICCP are also recommended in projects involving diverse soil profiles or mixed metallic assemblies.

All pipeline CP systems should incorporate modern monitoring technologies such as remote units, coupon probes, and current mapping tools. Design models must be validated with real-world testing and regularly updated to reflect changing conditions. Proper alignment with engineering standards ensures structural integrity and extends asset life.

11.3. Closing Remarks on Corrosion Strategy Evolution

The design and implementation of corrosion protection systems continue to evolve, moving toward more intelligent, responsive, and risk-based strategies. Traditional SCP methods have their place, but their effectiveness is inherently bounded by spatial and electrochemical constraints. A one-size-fits-all approach is increasingly obsolete in today's diverse pipeline environments.

Future corrosion strategies will likely incorporate predictive analytics, machine learning, and real-time condition monitoring to dynamically adjust protection schemes. Research into material behavior under variable resistivity and intermittent moisture conditions will also refine current density models and improve anode utilization efficiency.

Ultimately, the key to effective pipeline corrosion control lies in understanding the **specific** conditions of each application. Design must be informed by geometry, exposure, material compatibility, and field data—not generalized assumptions. By embracing a context-driven methodology, engineers and operators can implement protection systems that are not only technically sound but also economically sustainable and operationally resilient.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

- [1] Peabody AW. Control of pipeline corrosion. 2nd ed. Houston: NACE International; 2001.
- [2] Fontana MG. Corrosion engineering. 3rd ed. New York: McGraw-Hill; 1986.
- [3] Jones DA. Principles and prevention of corrosion. 2nd ed. Upper Saddle River (NJ): Prentice Hall; 1996.
- [4] National Association of Corrosion Engineers (NACE). SP0169-2013: Control of external corrosion on underground or submerged metallic piping systems. Houston: NACE International; 2013.
- [5] British Standards Institution. BS EN 12954:2019: Cathodic protection of buried or immersed metallic structures – General principles and application for pipelines. London: BSI; 2019.
- [6] Leeds S, Leeds J. Cathodic protection. Oil and Gas Pipelines. 2015 Apr 16:457-84.
- [7] British Standards Institution. BS EN ISO 15589-1:2015: Petroleum, petrochemical and natural gas industries – Cathodic protection of pipeline transportation systems – Part 1: On-land pipelines. London: BSI; 2015.
- [8] British Standards Institution. BS EN ISO 15589-2:2015: Petroleum, petrochemical and natural gas industries – Cathodic protection of pipeline transportation systems – Part 2: Offshore pipelines. London: BSI; 2015.

- [9] British Standards Institution. BS EN ISO 18086:2015: Corrosion of metals and alloys – Determination of AC corrosion – Protection criteria. London: BSI; 2015.
- [10] British Standards Institution. BS EN ISO 21857:2020: Petroleum, petrochemical and natural gas industries – Prevention of corrosion on pipeline systems influenced by stray currents. London: BSI; 2020.
- [11] Chatterjee S, Ghosh P, Roy M. Evaluation of cathodic protection systems for underground pipelines: A review. *Corros Rev.* 2018;36(5):435–447.
- [12] Kermani MB, Morshed A. Carbon dioxide corrosion in oil and gas production – A compendium. *Corrosion.* 2003;59(8):659–683.
- [13] Li X, Cheng YF. Corrosion and cathodic protection of X100 pipeline steel in carbonate/bicarbonate solution. *Electrochim Acta.* 2007;52(28):8008–8014.
- [14] Zhang J, Wang J, Han E-H, Ke W. Effect of alternating current on corrosion and cathodic protection of pipeline steel. *Corros Sci.* 2008;50(7):1861–1867.
- [15] Mansfeld F. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. *Electrochim Acta.* 1990;35(10):1533–1544.
- [16] Tan Y-J, Bailey S, Kinsella B. An investigation of the behaviour of steel under cathodic protection in seawater using electrochemical impedance spectroscopy. *Corros Sci.* 1996;38(9):1545–1560.
- [17] Kiefer JH, Kehr J. AC corrosion of cathodically protected pipelines: Causes and solutions. *Mater Perform.* 2009;48(11):28–33.
- [18] Song G, Atrens A. Understanding magnesium corrosion – A framework for improved alloy performance. *Adv Eng Mater.* 2003;5(12):837–858.
- [19] Liu C, Zhang J, Wang J. Stray current corrosion of buried pipelines: Mechanism and protection. *Corros Rev.* 2015;33(4–6):239–252.
- [20] Pourbaix M. Lectures on electrochemical corrosion. New York: Springer; 1973.
- [21] NACE International. Corrosion costs and preventive strategies in the United States. Houston: NACE International; 2002.
- [22] DNV GL. RP-B401: Cathodic protection design. Høvik: DNV GL; 2017.
- [23] DNV GL. RP-F103: Cathodic protection of submarine pipelines by galvanic anodes. Høvik: DNV GL; 2007.
- [24] DNV GL. RP-F106: Factory applied pipeline coatings for corrosion control. Høvik: DNV GL; 2013.
- [25] DNV GL. RP-F112: Design of cathodic protection systems for subsea installations. Høvik: DNV GL; 2018.
- [26] Oil & Gas UK. Guidelines for the management of pipeline integrity. Aberdeen: Oil & Gas UK; 2012.
- [27] API. RP 651: Cathodic protection of aboveground petroleum storage tanks. Washington (DC): American Petroleum Institute; 2014.
- [28] API. RP 1632: Cathodic protection of underground petroleum storage tanks and piping systems. Washington (DC): American Petroleum Institute; 2001.
- [29] Smith R, Jones L. Implementation of hybrid cathodic protection systems in offshore pipelines. In: Proceedings of the Corrosion Conference; 2017 Mar 26–30; New Orleans, LA. Houston: NACE International; 2017. p. 1234–1245.
- [30] Brown T, Lee K. Challenges in cathodic protection of deepwater risers. In: Offshore Technology Conference; 2016 May 2–5; Houston, TX. Richardson (TX): OTC; 2016. p. 567–578.
- [31] Garcia M, Patel S. Monitoring techniques for cathodic protection systems in aging pipelines. In: Pipeline Pigging and Integrity Management Conference; 2015 Feb 9–12; Houston, TX. Houston: Clarion Technical Conferences; 2015. p. 89–98.
- [32] Temizel C, Canbaz CH, Palabiyik Y, Putra D, Asena A, Ranjith R, Jongkittinarukorn K. A comprehensive review of smart/intelligent oilfield technologies and applications in the oil and gas industry. In: SPE Middle East Oil and Gas Show and Conference 2019 Mar 15 (p. D042S087R001). SPE.
- [33] Al-Dhubaib TA, Issaka MB, Barghouty MF, Mubarak S, Dowais AH, Shenqiti MS, Ansari NH. Saudi Aramco intelligent field development approach: building the surveillance layer. In: SPE Intelligent Energy International Conference and Exhibition 2008 Feb 25 (pp. SPE-112106). SPE.

- [34] van der Steen E. An evolution from smart wells to smart fields. In SPE Intelligent Energy International Conference and Exhibition 2006 Apr 11 (pp. SPE-100710). SPE.
- [35] Al-Jasmi A, Qiu F, Ali Z. Digital oil field experience: An overview and a case study. In SPE Digital Energy Conference and Exhibition 2013 Mar 5 (pp. SPE-163718). SPE.
- [36] Al-Jasmi A, Nasr H, Goel HK, Moricca G, Carvajal GA, Dhar J, Querales M, Villamizar MA, Cullick AS, Rodriguez JA, Velasquez G. ESP "Smart Flow" Integrates Quality and Control Data for Diagnostics and Optimization in Real Time (Part of KwIDF Project). In SPE Middle East Intelligent Oil and Gas Symposium 2013 Oct 28 (p. D021S005R001). SPE.